
3GPP TSG-CT Meeting #89e
CP-202185
E-Meeting, 14th – 16th September 2020

Source:
Ericsson
Title:
Challenge to working agreement #35
Agenda item:
6.1
Document for:
Agreement
1. Abstract
Ericsson challenges the working agreement #35. The reason for the challenge is that C1-205183 and C1-205184 are in our opinion technically broken.
2. Discussion
2.1 Introduction

Working agreement #35 was declared in the Aug 2020 CT1 meeting and is as documented at https://www.3gpp.org/specifications-groups/32-tsg-working-agreements as follows:

[image: image1.png]
Ericsson's view is that C1-205183 and C1-205184 are technically broken.

2.2 Technical problem

The CR in C1-205184 proposes the following changes (indicated by revision marks):

6.2.2
Transmission of V2X communication over Uu from UE to V2X application server

...

Upon a request from upper layers to send a V2X message of a V2X service identified by a V2X service identifier using V2X communication over Uu:
...
b)
if:

1)
the type of data in the V2X message is non-IP; or

2)
the type of data in the V2X message is IP, and the V2X service identifier is not included in the list of V2X service identifiers of the V2X services configured for V2X communication over Uu using existing unicast routing as specified in clause 5.2.4;

then:

...
3)
if the PDU session is of "IPv4", "IPv6" or "IPv4v6" PDU session type:

...
iii)
if TCP is to be used for the determined V2X application server address:

A)
if a TCP connection with the determined V2X application server address is not established yet, the UE shall establish a TCP connection with the determined V2X application server address; and

B)
the UE shall generate a TCP message as described in IETF RFC 793 [rfc793]. In the TCP message, the UE shall include the V2X message provided by upper layers in the data octets filed. The UE shall send the TCP message to the determined V2X application server address via the TCP connection; and

...

and

6.2.3
Reception of V2X communication over Uu from UE to V2X application server

If the V2X application server is configured with one or more UDP ports for uplink transport or one or more TCP ports for bidirectional transport, of V2X message(s) of V2X service(s) identified by V2X service identifier(s) using the V2X communication over Uu as specified in clause 6.2.7:

...
2)
if the V2X application server is configured with a TCP port for bidirectional transport, the V2X application server shall listen for incoming TCP connection(s) on a local IP address and the TCP port, shall accept the incoming TCP connection(s), shall receive one or more TCP message(s)via the accepted TCP connection(s) and shall extract a V2X message of the V2X service from the received TCP message.
...

According to marked text of subclause 6.2.2 above, the UE is supposed to include V2X message in a TCP message. According to marked text of subclause 6.2.3 above, the V2X AS is supposed to extract V2X message from a TCP message.

Observation-1:
C1-205184 requires that the UE includes a V2X message in a TCP message and that the V2X AS extracts a V2X message from a TCP message.

C1-205183 proposes the same changes in subclause 6.2.2 and subclause 6.2.3 (indicated by revision marks):

ii)
the UE shall generate a TCP message as described in IETF RFC 793 [rfc793]. In the TCP message, the UE shall include the V2X message provided by upper layers in the data octets filed. The UE shall send the TCP message to the determined V2X application server address via the TCP connection;

and

If the V2X application server is configured with a TCP port for bidirectional transport, the V2X application server shall listen for incoming TCP connection(s) on a local IP address and the TCP port, shall accept the incoming TCP connection(s), shall receive one or more TCP message(s) via the accepted TCP connection(s) and shall extract a V2X message of the V2X service from the received TCP message.

Observation-2:
C1-205183 contains the same requirements as C1-205184.
However, rfc793 states:

 Processes transmit data by calling on the TCP and passing buffers of

 data as arguments. The TCP packages the data from these buffers into

 segments and calls on the internet module to transmit each segment to

 the destination TCP. The receiving TCP places the data from a segment

 into the receiving user's buffer and notifies the receiving user.

and

 The data that flows on a connection may be thought of as a stream of

 octets. The sending user indicates in each SEND call whether the data

 in that call (and any preceeding calls) should be immediately pushed

 through to the receiving user by the setting of the PUSH flag.

 A sending TCP is allowed to collect data from the sending user and to

 send that data in segments at its own convenience, until the push

 function is signaled, then it must send all unsent data. When a

 receiving TCP sees the PUSH flag, it must not wait for more data from

 the sending TCP before passing the data to the receiving process.

 There is no necessary relationship between push functions and segment

 boundaries. The data in any particular segment may be the result of a

 single SEND call, in whole or part, or of multiple SEND calls.
 The purpose of push function and the PUSH flag is to push data through

 from the sending user to the receiving user. It does not provide a

 record service.
 There is a coupling between the push function and the use of buffers

 of data that cross the TCP/user interface. Each time a PUSH flag is

 associated with data placed into the receiving user's buffer, the

 buffer is returned to the user for processing even if the buffer is

 not filled. If data arrives that fills the user's buffer before a

 PUSH is seen, the data is passed to the user in buffer size units.

and

 Sometimes users need to be sure that all the data they have

 submitted to the TCP has been transmitted. For this purpose a push

 function is defined. To assure that data submitted to a TCP is

 actually transmitted the sending user indicates that it should be

 pushed through to the receiving user. A push causes the TCPs to

 promptly forward and deliver data up to that point to the receiver.

 The exact push point might not be visible to the receiving user and

 the push function does not supply a record boundary marker.

Based on rfc793 text above, in TCP, the data (i.e. V2X message) provided by sending user (i.e. UE) are packaged into TCP segments. Each TCP segment is included in one TCP message. The receiving TCP layer provides the data from the TCP segments to receiving user (i.e. V2X AS) .

Packaging of the data (i.e. V2X message(s)) to one or more TCP segments is responsibility of the sending TCP layer.

As the packaging of the data (i.e. one or more V2X message(s)) to one or more TCP segment(s) is responsibility of the TCP layer, it is not guaranteed that the sending TCP layer will always send one V2X message in one TCP segment. In fact, according to the text above:

-
rfc793 enables the sending TCP layer to split the data provided in one SEND call (i.e. one V2X message) to several TCP segments. If so, the receiving TCP layer can provide the V2X AS with data from each received TCP segment separately. In such case, the V2X AS receives the V2X message in several parts (one part from each TCP segment), needs to wait until it receives the last part of the V2X message and then it needs to assemble the V2X message from the received parts before handling the V2X message.

-
rfc793 enables the sending TCP layer to put the data provided in several SEND calls (i.e. several V2X messages) to one TCP segment. If so, the receiving TCP layer can provide the V2X AS at once with all the data from the received TCP segment. In such case, the V2X AS needs to split the data provided by the TCP layer to the individual V2X messages before handling the V2X messages.
Furthermore, even if the UE used the push function to influence segmentation of the data (which is not specified in the CR), this still would not ensure that the receiving TCP layer provides the V2X AS with the data so that the each data contains solely one V2X message, as the exact push point might not be visible to the receiving user and the push function does not supply a record boundary marker.
The fact that the TCP provides solely octet stream and (without enhancements) does not preserve implicit structures (i.e. V2X messages) sent within the octet stream can be seen also in rfc3286, which describes the TCP as follows:

 SCTP is message oriented and supports framing of individual message

 boundaries. In comparison, TCP is byte oriented and does not

 preserve any implicit structure within a transmitted byte stream

 without enhancement.

Observation-3:
In TCP, data provided by the sending user are carried in TCP segments. Each TCP segment is included in one TCP message. The data from the received TCP segments are provided to the receiving user.
Observation-4:
Packaging of data (i.e. one or more V2X messages) to one or more TCP segments is responsibility of the TCP layer.

Observation-5:
When the UE provides a V2X message to the TCP layer, the V2X AS can receive from the TCP layer the V2X message in parts, and needs to assemble the V2X message from the received parts before handling the V2X message.

Observation-6:
When the UE sends several V2X messages to the TCP layer, the V2X AS can receive from the TCP layer all those V2X messages at once and needs to split the data into the V2X messages before handling the V2X messages.

Thus, in C1-205184 and C1-205183, the V2X AS does not know whether the data received over TCP are (a) one V2X message (b) a part of the V2X message and if so, whether the part is the last part of the V2X message, or (c) several V2X messages.
As result, the V2X AS can incorrectly consider a received part of a V2X message as an entire V2X message or can incorrectly consider several received V2X messages as one V2X message.

The V2X AS will handle such incorrect V2X message according to V2X message specification (e.g. IEEE 1609, ISO 29281-1, ETSI EN 302 636-3, CCSA YD/T 3707-2020) and such handling will fail (e.g. when the incorrect V2X message contains a part of the V2X message only, decoding will not be possible or will miss information in the not-received-yet part of the V2X message).
Observation-7:
C1-205184 and C1-205183 does not enable the V2X AS to determine whether the data received from the TCP layer contains (a) a V2X message, (b) a part of the V2X message or (c) several V2X messages. As result, the V2X AS can incorrectly consider a received part of a V2X message as an entire V2X message or can incorrectly consider several received V2X messages as one V2X message. V2X AS will be unable to correctly handle such incorrect V2X message according to the V2X message specification (e.g. IEEE 1609, ISO 29281-1, ETSI EN 302 636-3, CCSA YD/T 3707-2020).
2.3 Well-known solution for transport of binary messages of variable length via TCP connection

The segmentation of binary messages of variable length when transported over TCP connection is not a new problem.

The solution to this problem is simple - when the message is sent over TCP connection, the message is prefixed with a length indicator.
Examples of such solution:
Example-1)
rfc8229 stating:

3. TCP-Encapsulated Header Formats

 Like UDP encapsulation, TCP encapsulation uses the first four bytes

 of a message to differentiate IKE and ESP messages. TCP

 encapsulation also adds a Length field to define the boundaries of

 messages within a stream. The message length is sent in a 16-bit

 field that precedes every message. ...

...
3.2. TCP-Encapsulated ESP Header Format

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Length |
 +-+

 | |

 ~ ESP header [RFC4303] ~

 | |

 +-+

 Figure 2

 The ESP header is preceded by a 16-bit Length field in network byte

 order that specifies the length of the ESP packet within the TCP

 stream.

Example-2) 24.502 stating:

8.2.4
Transport of NAS messages over TCP connection
In order to transport a NAS message over the untrusted non-3GPP access between the UE and the N3IWF or over the trusted non-3GPP access between the UE and the TNGF:

a)
the NAS message shall be framed in a NAS message envelope as defined in subclause 9.4;
b)
the NAS message envelope shall be transported as a payload of one or more TCP packets using the TCP connection; and

c)
the UE and the N3IWF for untrusted non-3GPP access and the TNGF for trusted non-3GPP access shall transport the one or more TCP packets encapsulating the NAS message envelope according to subclause 8.2.2.
...

9.4
NAS message envelope
NAS message envelope is used to frame the NAS message prior to its encapsulation as the TCP payload in the inner IP datagram.

NAS message envelope is encoded according to figure 9.4-1 and table 9.4-1.

	Bits
	

	7
	6
	5
	4
	3
	2
	1
	0
	Octets

	Length
	1 - 2

	NAS Message
	3 - m

Figure 9.4-1: NAS message envelope format

Table 9.4-1: NAS message envelope value

	Octet 1 and Octet 2 indicate the Length field. The Length field contains the length of the NAS message in bytes.

	Octet 3 to octet m indicate the NAS Message field. The NAS Message field contains the NAS message which is to be framed in prior to encapsulation as the TCP payload in the inner IP datagram of the transmitted IP packet.

Observation-8:
When sending a binary message of variable length over TCP connection, IETF and 3GPP prefix the message with a length indicator, to enable determination whether the data received from the TCP layer contains (a) an entire message, (b) a part of the message or (c) several messages.

The existing text in subclause 9.2.1 of 24.587 baseline contains such length indicator too:

	8
	7
	6
	5
	4
	3
	2
	1
	

	Type = {IP based V2X message type}
	octet 1

	Length of V2X envelope contents
	octet 2

octet 3

	IP based V2X message
	octet 4
octet n

Figure 9.2.1.2: Format of V2X envelope for IP based V2X message
	8
	7
	6
	5
	4
	3
	2
	1
	

	Type = {non-IP based V2X message type}
	octet 1

	Length of V2X envelope contents
	octet 2

octet 3

	V2X message family
	octet 4

	non-IP based V2X message
	octet 5
octet n

Figure 9.2.1.3: Format of V2X envelope for non-IP based V2X message

Observation-9:
When sending a V2X message over TCP connection, 24.587 baseline prefixes the V2X message with a length indicator, to enable V2X AS determination whether the data received from the TCP layer contains (a) an entire V2X message, (b) a part of the V2X message or (c) several V2X messages.

However, C1-205184 removes encapsulation of the V2X message in the V2X envelope and does not provide any other solution how to enable the V2X AS to determine whether the data received over TCP contain (a) a V2X message, (b) a part of the V2X message and if (b) whether the received part is the last part of the V2X message, or (c) several V2X messages.
Observation-10:
C1-205184 removes from TS 24.587 a working solution for V2X AS determination whether the data received from the TCP layer contains (a) an entire V2X message, (b) a part of the V2X message or (c) several V2X messages, and does not replace it with any other solution.
3. Conclusions

Observation-1:
C1-205184 requires that the UE includes a V2X message in a TCP message and that the V2X AS extracts a V2X message from a TCP message.

Observation-2:
C1-205183 contains the same requirements as C1-205184.
Observation-3:
In TCP, data provided by the sending user are carried in TCP segments. Each TCP segment is included in one TCP message. The data from the received TCP segments are provided to the receiving user.
Observation-4:
Packaging of data (i.e. one or more V2X messages) to one or more TCP segments is responsibility of the TCP layer.

Observation-5:
When the UE provides a V2X message to the TCP layer, the V2X AS can receive from the TCP layer the V2X message in parts, and needs to assemble the V2X message from the received parts before handling the V2X message.

Observation-6:
When the UE sends several V2X messages to the TCP layer, the V2X AS can receive from the TCP layer all those V2X messages at once and needs to split the data into the V2X messages before handling the V2X messages.

Observation-7:
C1-205184 and C1-205183 does not enable the V2X AS to determine whether the data received from the TCP layer contains (a) a V2X message, (b) a part of the V2X message or (c) several V2X messages. As result, the V2X AS can incorrectly consider a received part of a V2X message as an entire V2X message or can incorrectly consider several received V2X messages as one V2X message. V2X AS will be unable to correctly handle such incorrect V2X message according to the V2X message specification (e.g. IEEE 1609, ISO 29281-1, ETSI EN 302 636-3, CCSA YD/T 3707-2020).
Observation-8:
When sending a binary message of variable length over TCP connection, IETF and 3GPP prefix the message with a length indicator, to enable determination whether the data received from the TCP layer contains (a) an entire message, (b) a part of the message or (c) several messages.

Observation-9:
When sending a V2X message over TCP connection, 24.587 baseline prefixes the V2X message with a length indicator, to enable V2X AS determination whether the data received from the TCP layer contains (a) an entire V2X message, (b) a part of the V2X message or (c) several V2X messages.

Observation-10:
C1-205184 removes from TS 24.587 a working solution for V2X AS determination whether the data received from the TCP layer contains (a) an entire V2X message, (b) a part of the V2X message or (c) several V2X messages, and does not replace it with any other solution.
4. Proposal

Given that:

-
C1-205184 and C1-205183 do not contain a working solution for V2X AS determination whether the data received from the TCP layer contains (a) an entire V2X message, (b) a part of the V2X message or (c) several V2X messages;

-
which leads to V2X AS incorrectly handling (b) a part of a V2X message or (c) several received V2X messages as a V2X message;

-
which leads to V2X AS unable to handle the incorrect V2X message containing (b) a part of a V2X message or (c) several received V2X messages, according to the V2X message specification (e.g. IEEE 1609, ISO 29281-1, ETSI EN 302 636-3, CCSA YD/T 3707-2020);
it is proposed to overturn the working agreement and return C1-205183 and C1-205184 to CT1.
