Page 1

Joint-Working-Group (Parlay, ETSI TISPAN Project OSA, 3GPP CT5) (
C5-060152
Meeting #35, Prague, Czech Republic, 24 - 27 Apr 2006
	CR-Form-v8

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	0133
	(

rev
	-
	(

Current version:
	6.5.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Remove deprecated items from Trust and Security Management interfaces

	
	

	Source:
(

	CT5 ETSI PTCC

	
	

	Work item code:
(

	OSA7
	
	Date: (

	28/04/2006

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-7

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Ph2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)

	
	

	Reason for change:
(

	CT5 have introduced rules for management of backwards compatibility in their specifications. These are described in TS 29.198-01. At each major release, deprecated items in the most recent version of the n-2 release are removed. This CR implements this rule for the Trust and Security Management interfaces in TS 29.198-03 for release 7.

	
	

	Summary of change:
(

	Remove the following deprecated methods and any reference to them:

IpClientAPILevelAuthentication.authenticate(),

IpInitial.initiateAuthentication(),

IpAPILevelAuthentication.authenticate(),

IpAPILevelAuthentication.selectEncryptionMethod(),

IpAccess.endAccess(),

IpAccess.releaseInterface().

Also remove the data types TpEncryptionCapabilities, TpEncryptionCapabilitiesList and TpEndAccessProperties, which are used only by these methods.

Delete the deprecated service property 'Supported Interfaces'

	
	

	Consequences if
(

not approved:
	The backwards compatibilty rules will not be implemented consistantly, thereby confusing users of this specification.

Deprecated methods and other items, already demonstrated to be broken and already replaced, will remain in the specification, encouraging users of the specification to use these methods, which is contrary to the intention of deprecating them.

	
	

	Clauses affected:
(

	6.1.1.1, 6.2, 6.3.1.1, 6.3.1.3, 6.3.1.5, 6.3.1.6, 6.4.1.1, 6.4.1.2, 7.2, 7.3.2.2.3, 8.2, 9.3, 10.3.3, 10.3.4, 10.3.5, 10.3.9,

	
	

	
	Y
	N
	
	

	Other specs
(

	X
	
	 Other core specifications
(

	29.198-04-03, 29.298-08

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

	1st Modified Section

6.1.1
Trust and Security Management Sequence Diagrams

6.1.1.1
Initial Access

The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage, the client has no guarantee that this is a Framework interface reference, but it is to initiate the authentication process with the Framework. The Initial Contact interface supports the initiateAuthenticationWithVersion method to allow the authentication process to take place.

Once the client has been authenticated by the Framework, it can gain access to other framework interfaces and SCFs. This is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

Independently, the client could decide to authenticate the Framework, before deciding to continue using the interfaces provided by the Framework.

[image: image1.wmf]Client

 : IpInitial

 : IpAPILevelAuthentication

Framework

 : IpAccess

 :

IpClientAPILevelAuthentication

1: initiateAuthenticationWithVersion(clientDomain, authType, frameworkVersion)

2: selectAuthenticationMechanism()

3: challenge()

5: challenge()

9: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

8: selectSigningAlgorithm()

7: requestAccess()

1:
Initiate Authentication

The client invokes initiateAuthenticationWithVersion on the Framework's "public" (initial contact) interface to initiate the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a reference to its authentication interface.

2:
Select Authentication Mechanism

The client invokes selectAuthenticationMechanism on the Framework's API Level Authentication interface, identifying the authentication algorithm it supports for use with CHAP authentication. The Framework prescribes the method to be used. OSA authentication is based on CHAP, which prescribes the MD5 hashing algorithm as the minimum to be supported. Note however that the framework need not accept this algorithm.

3:
The client authenticates the Framework, issuing a challenge in the challenge() method.

4:
The client provides an indication if authentication succeeded.

5:
The Framework authenticates the client. The sequence diagram illustrates one of a series of one or more invocations of the challenge method on the client's API Level Authentication interface. In each invocation, the Framework supplies a challenge and the client returns the correct response. The Framework could authenticate the client before the client authenticates the Framework, or afterwards, or the two authentication processes could be interleaved. However, the client shall respond immediately to any challenge issued by the Framework, as the Framework might not respond to any challenge issued by the client until the Framework has successfully authenticated the client.

6:
The Framework provides an indication if authentication succeeded.

7:
Request Access

Upon successful authentication of the client by the Framework, the client is permitted to invoke requestAccess on the Framework's API Level Authentication interface, providing in turn a reference to its own access interface. The Framework returns a reference to a framework Access interface that is unique for this client. The success or failure of the client's authentication of the Framework does not affect the client's right to invoke requestAccess.

8:
The client and framework negotiate the signing algorithm to be used for any signed exchanges.

9:
The client invokes obtainInterface or obtainInterfaceWithCallback on the framework's Access interface. This is used to obtain a reference to a framework interface that supports the required framework functionality, such as service discovery, integrity management, service subscription etc.

	Next Modified Section

6.2
Class Diagrams

[image: image2]

Figure: Trust and Security Management Package Overview
	Next Modified Section

6.3
Interface Classes

6.3.1
Trust and Security Management Interface Classes
The Trust and Security Management Interfaces provide:

-
the first point of contact for a client to access a Framework provider;

-
the authentication methods for the client and Framework provider to perform an authentication protocol;

-
the client with the ability to select a service capability feature to make use of;

-
the client with a portal to access other Framework interfaces.

The process by which the client accesses the Framework provider has been separated into 3 stages, each supported by a different Framework interface:

1)
Initial Contact with the Framework;

2)
Authentication;

3)
Access to Framework and Service Capability Features.

6.3.1.1
Interface Class IpClientAPILevelAuthentication

Inherits from: IpInterface.
If the IpClientAPILevelAuthentication interface is implemented by a client, challenge(), abortAuthentication() and authenticationSucceeded() methods shall be implemented.

	<<Interface>>

IpClientAPILevelAuthentication

	

	
abortAuthentication () : void

authenticationSucceeded () : void

challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.1.2
Method abortAuthentication()

The framework uses this method to abort the authentication process where the client is authenticating the Framework. This method is invoked if the framework wishes to abort the authentication process before it has been authenticated by the client, (unless the client responded incorrectly to a challenge in which case no further communication with the client should occur.) Calls to this method after the Framework has been authenticated by the client shall not result in an immediate removal of the Framework's authentication (the client may wish to authenticate the Framework again, however).

Parameters

No Parameters were identified for this method.

6.3.1.1.3
Method authenticationSucceeded()

The Framework uses this method to inform the client of the success of the authentication attempt. The client may invoke requestAccess on the Framework's APILevelAuthentication interface following invocation of this method.

Parameters

No Parameters were identified for this method.

6.3.1.1.4
Method challenge()

This method is used by the framework to authenticate the client. The client must respond with the correct responses to the challenges presented by the framework. The number of exchanges is dependent on the policies of each side. The authentication of the client is deemed successful when the authenticationSucceeded method is invoked by the Framework.

The invocation of this method may be interleaved with challenge() calls by the client on the IpAPILevelAuthentication interface. The client shall respond immediately to authentication challenges from the Framework, and not wait until the Framework has responded to any challenge the client may issue.

Returns <response> : This is the response of the client application to the challenge of the framework in the current sequence. The formatting and construction of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response packet shall be used to carry the response octet set. That octet set will be the result of applying the designated hashing algorithm, which is indicated via the client's invocation of selectAuthenticationMechanism(), to an octet set consisting of the concatenation of the CHAP Identifier, the shared "secret", and the supplied challenge value. The Name field of the CHAP Response packet must be present and contain a valid value in order for the CHAP Response to be valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

1.
Extract the Identifier and Value fields from the CHAP Challenge packet passed in the challenge() method's challenge parameter

2.
Build an octet set consisting of the concatenation of the Identifier, the "shared secret", and the Value from the CHAP Challenge

3.
Compute the hash of the octet set resulting from the previous step using the designated hashing algorithm

4.
Construct a complete CHAP Response packet with the resulting octet set from previous step as the CHAP Value

Steps for validating the response octet set:

1.
Verify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP Response. If it does not, authentication fails.

2.
Build an octet set consisting of the concatenation of the original Identifier, the "shared secret", and the original challenge value

3.
Compute the hash of the resulting octet set from the previous step using the designated hashing algorithm

4.
Verify the octet set resulting from the previous step matches the octet set contained in the Value field of the CHAP Response. A match indicates successful authentication.

Parameters

challenge : in TpOctetSet

The challenge presented by the framework to be responded to by the client. The challenge format used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).
The challenge octet set must be formatted as a CHAP Challenge packet as defined in section 4.1 of RFC 1994. A complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet must be present and contain a valid value in order for the CHAP Response to be valid. However, the Name field is not used in the authentication process.
Steps for constructing the challenge octet set:
1.
Create a random challenge value (octet set). Per RFC 1994, this value must between 1 and 255 octets in length.
2.
Construct a CHAP Challenge packet based on 4.1 of RFC 1994 with the octet set from the previous step passed in the Value field within the CHAP Challenge.
Returns

TpOctetSet

	Next Modified Section

6.3.1.3
Interface Class IpInitial

Inherits from: IpInterface.
The Initial Framework interface is used by the client to initiate the authentication with the Framework. This interface and the initiateAuthenticationWithVersion() method shall be implemented by a Framework.
	<<Interface>>

IpInitial

	

	
initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType, frameworkVersion : in TpVersion) : TpAuthDomain

6.3.1.3.2
Method initiateAuthenticationWithVersion()

This method is invoked by the client to start the process of authentication with the framework, and request the use of a specific authentication method using the new method with support for backward compatibility in the framework. The returned fwDomain authInterface will be selected to match the proposed version from the Client in the Framework response. If the Framework cannot work with the proposed framework version the framework returns an error code (P_INVALID_VERSION).

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework that is unique for each requesting client. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Note, there are no identifiers used in the authentication interface to correlate requests and responses, therefore the authentication interface may not be shared amongst multiple clients.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};
The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an instance of a service for which a client application has signed a service agreement (i.e. TpServiceInstanceID), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see challenge() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).
A client application (identifiable by a given TpClientAppID) may optionally initiate authentication with the Framework by invoking this method multiple times. The Framework may elect to reject these subsequent requests, or may choose to associate them together as independent sessions under the same TpClientAppID.
The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication that is used when an underlying distribution technology authentication mechanism is used.
frameworkVersion : in TpVersion

This identifies the version of the Framework implemented in the client. The TpVersion is a String containing the version number. Valid version numbers are defined in the respective framework specification.
Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE, P_INVALID_VERSION
	Next Modified Section

6.3.1.5
Interface Class IpAPILevelAuthentication

Inherits from: IpAuthentication.
The API Level Authentication Framework interface is used by the client to authenticate the Framework. It is also used to initiate the authentication process.

If the IpAPILevelAuthentication interface is implemented by a Framework, then selectAuthenticationMechanism(),challenge(), abortAuthentication() and authenticationSucceeded () shall be implemented. IpAPILevelAuthentication inherits the requirements of IpAuthentication, therefore requestAccess() shall be implemented.

	<<Interface>>

IpAPILevelAuthentication

	

	

abortAuthentication () : void

authenticationSucceeded () : void

selectAuthenticationMechanism (authMechanismList : in TpAuthMechanismList) : TpAuthMechanism

challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.5.3
Method abortAuthentication()

The client uses this method to abort the authentication process where the framework is authenticating the client. This method is invoked if the client no longer wishes to continue the authentication process, (unless the framework responded incorrectly to a challenge in which case no further communication with the framework should occur.) If this method has been invoked before the client has been authenticated by the Framework, calls to the requestAccess operation on IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been properly authenticated. If this method is invoked after the client has been authenticated by the Framework, it shall not result in the immediate removal of the client's authentication. (The Framework may wish to authenticate the client again, however).

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.5.4
Method authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt. Calls to this method have no impact on the client's rights to call requestAccess(), which depend exclusively on the framework's successful authentication of the client.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.5.5
Method selectAuthenticationMechanism()

The client uses this method to inform the Framework of the different authentication mechanisms it supports as part of API level Authentication. The Framework will select one of the suggested authentication mechanisms and that mechanism shall be used for authentication by both Framework and Client. The authentication mechanism chosen as a result of the response to this method remains valid for an instance of IpAPILevelAuthentication and until this method is re-invoked by the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be found, the framework throws the P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM exception.

Returns: selectedMechanism. This is the authentication mechanism chosen by the Framework. The chosen mechanism shall be taken from the list of mechanisms proposed by the Client.

Parameters

authMechanismList : in TpAuthMechanismList

The list of authentication mechanisms supported by the client.
Returns

TpAuthMechanism

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM
6.3.1.5.6
Method challenge()

This method is used by the client to authenticate the framework. The framework must respond with the correct responses to the challenges presented by the client. The domainID received in the initiateAuthenticationWithVersion() can be used by the framework to reference the correct public key for the client (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the client.

The invocation of this method may be interleaved with challenge() calls by the framework on the client's APILevelAuthentication interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The formatting and construction of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response packet shall be used to carry the response octet set. That octet set will be the result of applying the designated hashing algorithm, which is indicated via the client's invocation of selectAuthenticationMechanism(), to an octet set consisting of the concatenation of the CHAP Identifier, the shared "secret", and the supplied challenge value. The Name field of the CHAP Response packet must be present and contain a valid value in order for the CHAP Response to be valid. However, the Name field is not used in the authentication process.

Steps for constructing the response octet set:

1.
Extract the Identifier and Value fields from the CHAP Challenge packet passed in the challenge() method's challenge parameter

2.
Build an octet set consisting of the concatenation of the Identifier, the "shared secret", and the Value from the CHAP Challenge

3.
Compute the hash of the octet set resulting from the previous step using the designated hashing algorithm

4.
Construct a complete CHAP Response packet with the resulting octet set from previous step as the CHAP Value

Steps for validating the response octet set:

1.
Verify that the Identifier sent in the original CHAP Challenge matches the Identifier received in the CHAP Response. If it does not, authentication fails.

2.
Build an octet set consisting of the concatenation of the original Identifier, the "shared secret", and the original challenge value

3.
Compute the hash of the resulting octet set from the previous step using the designated hashing algorithm

4.
Verify the octet set resulting from the previous step matches the octet set contained in the Value field of the CHAP Response. A match indicates successful authentication.

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge format used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).
The challenge octet set must be formatted as a CHAP Challenge packet as defined in section 4.1 of RFC 1994. A complete and properly formatted CHAP Challenge packet must be used. The Name field of the CHAP Challenge packet must be present and contain a valid value in order for the CHAP Response to be valid. However, the Name field is not used in the authentication process.
Steps for constructing the challenge octet set:
1.
Create a random challenge value (octet set). Per RFC 1994, this value must between 1 and 255 octets in length.
2.
Construct a CHAP Challenge packet based on 4.1 of RFC 1994 with the octet set from the previous step passed in the Value field within the CHAP Challenge.
Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED
	Next Modified Section

6.3.1.6
Interface Class IpAccess

Inherits from: IpInterface.
This interface shall be implemented by a Framework. As a minimum requirement the obtainInterface() and obtainInterfaceWithCallback(), selectSigningAlgorithm() and terminateAccess() methods shall be implemented.

	<<Interface>>

IpAccess

	

	obtainInterface (interfaceName : in TpInterfaceName) : IpInterfaceRef

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, clientInterface : in IpInterfaceRef) : IpInterfaceRef

listInterfaces () : TpInterfaceNameList

selectSigningAlgorithm (signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList) : TpSigningAlgorithm

terminateAccess (terminationText : in TpString, digitalSignature : in TpOctetSet) : void

relinquishInterface (interfaceName : in TpInterfaceName, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

6.3.1.6.1
Method obtainInterface()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to other framework interfaces. (The obtainInterfaceWithCallback method should be used if the client is required to supply a callback interface to the framework.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME
6.3.1.6.2
Method obtainInterfaceWithCallback()

This method is used to obtain other framework interfaces. The client uses this method to obtain interface references to other framework interfaces, when it is required to supply a callback interface to the framework. (The obtainInterface method should be used when no callback interface needs to be supplied.)

Returns <fwInterface> : This is the reference to the interface requested.

Parameters

interfaceName : in TpInterfaceName

The name of the framework interface to which a reference to the interface is requested. If the interfaceName is invalid, the framework returns an error code (P_INVALID_INTERFACE_NAME).
clientInterface : in IpInterfaceRef

This is the reference to the client interface, which is used for callbacks. If a client interface is not needed, then this method should not be used. (The obtainInterface method should be used when no callback interface needs to be supplied.) If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
Returns

IpInterfaceRef

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_INTERFACE_NAME, P_INVALID_INTERFACE_TYPE

6.3.1.6.4
Method listInterfaces()

The client uses this method to obtain the names of all interfaces supported by the framework. It can then obtain the interfaces it wishes to use using either obtainInterface() or obtainInterfaceWithCallback().

Returns <frameworkInterfaces> : The frameworkInterfaces parameter contains a list of interfaces that the framework makes available.

Parameters

No Parameters were identified for this method.

Returns

TpInterfaceNameList

Raises

TpCommonExceptions, P_ACCESS_DENIED

6.3.1.6.6
Method selectSigningAlgorithm()

The client uses this method to inform the Framework of the different signing algorithms it supports for use in all cases where digital signatures are required. The Framework will select one of the suggested algorithms. This method shall be the first method invoked by the client on IpAccess. The algorithm chosen as a result of the response to this method remains valid for an instance of IpAccess and until this method is re-invoked by the client.

Subsequent invocations of selectSigningAlgorithm() may change the signing algorithm used during the access session. However, once signServiceAgreement() has been called on the client by the framework, the signing algorithm currently selected must be used for the client's invocation of signServiceAgreement() on the Framework as well as for subsequent calls to terminateServiceAgreement(). Other operations requiring digital signatures will use the latest algorithm specified by selectSigningAlgorithm().

If an algorithm that is acceptable to the framework within the capability of the client cannot be found, the framework throws the P_NO_ACCEPTABLE_SIGNING_ALGORITHM exception.

Returns: selectedAlgorithm. This is the signing algorithm chosen by the Framework. The chosen algorithm shall be taken from the list proposed by the Client.

Parameters

signingAlgorithmCaps : in TpSigningAlgorithmCapabilityList

The list of signing algorithms supported by the client.
Returns

TpSigningAlgorithm

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_SIGNING_ALGORITHM
6.3.1.6.7
Method terminateAccess()

The terminateAccess method is used by the client to request that its access session with the framework is ended. After it is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. Also, all remaining service instances created by the framework either directly in this access session or on behalf of the client during this access session shall be terminated.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630 using the latest signing algorithm selected with selectSigningAlgorithm(). The content is made of the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The client uses this to confirm its identity to the framework. The framework can check that the terminationText has been signed by the client. If a match is made, the access session is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNATURE
6.3.1.6.8
Method relinquishInterface()

The client uses this method to release an instance of a framework interface that was obtained during this access session.

Parameters

interfaceName : in TpInterfaceName

This is the name of the framework interface which is being released. If the interfaceName is invalid, the framework throws the P_INVALID_INTERFACE_NAME exception. If the interface has not been given to the client during this access session, then the P_TASK_REFUSED exception will be thrown.
terminationText : in TpString

This is the termination text describes the reason for the release of the interface. This text is required simply because the digitalSignature parameter requires a terminationText to sign.
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630 using the latest signing algorithm selected with selectSigningAlgorithm(). The content is made of the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The client uses this to confirm its identity to the framework. The framework can check that the terminationText has been signed by the client. If a match is made, the interface is released, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNATURE, P_INVALID_INTERFACE_NAME

	Next Modified Section

6.4
State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return an exception. Apart from the methods that can be invoked by the client also events internal to the gateway or related to network events are shown together with the resulting event or action performed by the gateway. These internal events are shown between quotation marks.

6.4.1
Trust and Security Management State Transition Diagrams
6.4.1.1
State Transition Diagrams for IpInitial

[image: image3]

Figure : State Transition Diagram for IpInitial

6.4.1.2
State Transition Diagrams for IpAPILevelAuthentication

[image: image5.wmf]Idle

IpInitial.initiateAuthenticationWithVersion

Authenticating

Framework

FW Aborts

^IpClientAPILevelAuthentication.abortAuthentication

selectAuthenticationMechanism

challenge / Client

challenges FW

selectAuthenticationMechanism

Framework

Authenticated

FW Aborts

^IpClientAPILevelAuthentication.

abortAuthentication

authenticationSucceeded / Client

satisfied with FW response

selectAuthenticationMechanism

challenge / Client

re-challenges Framework

Figure : STD for IpAPILevelAuthentication: Client authenticates Framework using initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.6
Idle State

When the client has invoked the IpInitial initiateAuthenticationWithVersion method, an object implementing the IpAPILevelAuthentication interface is created. The client now has to select the authentication mechanism to be used using selectAuthenticationMechanism.
6.4.1.2.7
Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the challenge method on the Framework. The Framework may either buffer the requests and respond when the client has been authenticated, or respond immediately, depending on policy. When the client has processed the response from the authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process is not yet complete, then another authenticate request or challenge is sent to the Framework. If the response is valid and the authentication process has been completed, then a transition to the state Framework Authenticated is made and the Framework is informed of its success by invoking authenticationSucceeded. At any time the Framework may abort the authentication process by calling abortAuthentication on the client's APILevelAuthentication interface. The client may also call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.2.8
Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling authenticationSucceeded on the Framework's IpAPILevelAuthentication interface. The client may at any time request re-authentication of the Framework, by calling the challenge method, resulting in a transition back to Authenticating Framework state. The client may also call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.2.9
Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the challenge method on the client. When the Framework has processed the response from the authenticate request or challenge on the client, the response is analysed. If the response is valid but the authentication process is not yet complete, then another authenticate request or challenge is sent to the client. If the response is valid and the authentication process has been completed, then a transition to the state Client Authenticated is made, the client is informed of its success by invoking authenticationSucceeded. In case the response is not valid, the Authentication object is destroyed. This implies that the client has to re-initiate the authentication by calling once more the initiateAuthenticationWithVersion method on the IpInitial interface. At any time the client may abort the authentication process by calling abortAuthentication on the Framework's IpAPILevelAuthentication interface. The client may also call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.2.10
Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the framework decides to re-authenticate the client, then the challenge is sent to the client and a transition back to the AuthenticatingClient state occurs. The client may also call selectAuthenticationMechanism to choose another hash algorithm.

[image: image7.wmf]Idle

requestAccess

^P_ACCESS_DENIED

IpInitial.initiateAuthenticationWithVersion

Authenticating

Client

requestAccess

^P_ACCESS_DENIED

selectAuthenticationMechanism

selectAuthenticationMechanism

FW challenges Client

^IpClientAPILevelAuthentication.challenge

Invalid Client Response

abortAuthentication

/ Client Aborts

Client

Authenticated

FW satisfied with Client response

^IpClientAPILevelAuthentication.authenticationSucceeded

requestAccess / new IpAccess

selectAuthenticationMechanism

FW re-challenges Client

^IpClientAPILevelAuthentication.challenge

Figure : STD for IpAPILevelAuthentication: Framework authenticates Client using initiateAuthenticationWithVersion() and challenge() method combination

6.4.1.2.16
Idle State

When the client has invoked the IpInitial initiateAuthenticationWithVersion method, an object implementing the IpAPILevelAuthentication interface is created. The client now has to select the authentication mechanism to be used using selectAuthenticationMechanism.
6.4.1.2.17
Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the challenge method on the Framework. The Framework may either buffer the requests and respond when the client has been authenticated, or respond immediately, depending on policy. When the client has processed the response from the authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process is not yet complete, then another authenticate request or challenge is sent to the Framework. If the response is valid and the authentication process has been completed, then a transition to the state Framework Authenticated is made and the Framework is informed of its success by invoking authenticationSucceeded. At any time the Framework may abort the authentication process by calling abortAuthentication on the client's APILevelAuthentication interface. The client may also call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.2.18
Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling authenticationSucceeded on the Framework's IpAPILevelAuthentication interface. The client may at any time request re-authentication of the Framework, by calling the challenge method, resulting in a transition back to Authenticating Framework state. The client may also call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.2.19
Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the challenge method on the client. When the Framework has processed the response from the authenticate request or challenge on the client, the response is analysed. If the response is valid but the authentication process is not yet complete, then another authenticate request or challenge is sent to the client. If the response is valid and the authentication process has been completed, then a transition to the state Client Authenticated is made, the client is informed of its success by invoking authenticationSucceeded. In case the response is not valid, the Authentication object is destroyed. This implies that the client has to re-initiate the authentication by calling once more the initiateAuthenticationWithVersion method on the IpInitial interface. At any time the client may abort the authentication process by calling abortAuthentication on the Framework's IpAPILevelAuthentication interface. The client may also call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.2.20
Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the framework decides to re-authenticate the client, then the challenge is sent to the client and a transition back to the AuthenticatingClient state occurs. The client may also call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.3
State Transition Diagrams for IpAccess

[image: image8.wmf]Active

IpAuthentication.requestAccess

obtainInterface / return requested FW interface

obtainInterfaceWithCallback / return requested FW interface

application initiated access termination

terminateAccess / destroy all interface objects used by the client

network operator initiated access termination

 / destroy all interface objects used by the client

 ^IpClientAccess.terminateAccess

listInterfaces

selectSigningAlgorithm

relinquishInterface

Figure : State Transition Diagram for IpAccess

6.4.1.3.1
Active State

When the client requests access to the Framework on the IpAuthentication (IpAPILevelAuthentication) interface, an object implementing the IpAccess interface is created. The client can now request other Framework interfaces, including Service Discovery, Integrity Management, Service Subscription etc., and if at any point these framework interfaces are no longer required, to relinquish these. In addition the client can select the signing algorithm that shall be used during the access session in cases where a digital signature is required. When the client is no longer interested in using the interfaces it calls the terminateAccess method. This results in the destruction of all interface objects used by the client. In case the network operator decides that the client has no longer access to the interfaces the same will happen.
	Next Modified Section

7.2
Class Diagrams

[image: image9.wmf]IpAppEventNotification

reportNotification()

notificationTerminated()

(from App Interfaces)

<<Interface>>

IpEventNotification

createNotification()

destroyNotification()

(from Framework Interfaces)

<<Interface>>

<<uses>>

Figure: Event Notification Class Diagram
[image: image10.wmf]IpAppFaultManager

activityTestRes()

appActivityTestReq()

<<deprecated>> fwFaultReportInd()

<<deprecated>> fwFaultRecoveryInd()

<<deprecated>> svcUnavailableInd()

<<deprecated>> genFaultStatsRecordRes()

<<deprecated>> fwUnavailableInd()

activityTestErr()

<<deprecated>> genFaultStatsRecordErr()

appUnavailableInd()

<<deprecated>> genFaultStatsRecordReq()

svcAvailStatusInd()

<<new>> generateFaultStatisticsRecordRes()

<<new>> generateFaultStatisticsRecordErr()

<<new>> generateFaultStatisticsRecordReq()

<<new>> fwAvailStatusInd()

<<Interface>>

IpFaultManager

activityTestReq()

appActivityTestRes()

svcUnavailableInd()

<<deprecated>> genFaultStatsRecordReq()

appActivityTestErr()

<<deprecated>> appUnavailableInd()

<<deprecated>> genFaultStatsRecordRes()

<<deprecated>> genFaultStatsRecordErr()

appAvailStatusInd()

<<new>> generateFaultStatisticsRecordReq()

<<new>> generateFaultStatisticsRecordRes()

<<new>> generateFaultStatisticsRecordErr()

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeInterval()

<<Interface>>

IpHeartBeat

pulse()

<<Interface>>

1

0..n

1

0..n

IpAppHeartBeat

pulse()

<<Interface>>

<<uses>>

IpAppHeartBeatMgmt

enableAppHeartBeat()

disableAppHeartBeat()

changeInterval()

<<Interface>>

<<uses>>

0..n

1

0..n

1

IpAppLoadManager

<<deprecated>> queryAppLoadReq()

<<deprecated>> queryLoadRes()

<<deprecated>> queryLoadErr()

loadLevelNotification()

resumeNotification()

suspendNotification()

createLoadLevelNotification()

destroyLoadLevelNotification()

<<new>> queryAppLoadStatsReq()

<<new>> queryLoadStatsRes()

<<new>> queryLoadStatsErr()

<<Interface>>

IpLoadManager

reportLoad()

<<deprecated>> queryLoadReq()

<<deprecated>> queryAppLoadRes()

<<deprecated>> queryAppLoadErr()

createLoadLevelNotification()

destroyLoadLevelNotification()

resumeNotification()

suspendNotification()

<<new>> queryLoadStatsReq()

<<new>> queryAppLoadStatsRes()

<<new>> queryAppLoadStatsErr()

<<Interface>>

IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

<<uses>>

Figure: Integrity Management Package Overview
[image: image11.wmf]IpServiceDiscovery

listServiceTypes()

describeServiceType()

discoverService()

listSubscribedServices()

(from Framework interfaces)

<<Interface>>

Figure: Service Discovery Package Overview

[image: image12]

Figure: Trust and Security Management Package Overview
[image: image13.wmf]IpAppServiceAgreementManagement

signServiceAgreement()

terminateServiceAgreement()

(from App Interfaces)

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement()

terminateServiceAgreement()

selectService()

initiateSignServiceAgreement()

(from Framework Interfaces)

<<Interface>>

<<uses>>

Figure: Service Agreement Management Package Overview
	Next Modified Section

7.3.2.2
Interface Class IpServiceAgreementManagement

Inherits from: IpInterface.
This interface and the signServiceAgreement(), terminateServiceAgreement(), selectService() and initiateSignServiceAgreement() methods shall be implemented by a Framework.

	<<Interface>>

IpServiceAgreementManagement

	

	signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

selectService (serviceID : in TpServiceID) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

7.3.2.2.1
Method signServiceAgreement()

After the framework has called signServiceAgreement() on the application's IpAppServiceAgreementManagement interface, this method is used by the client application to request that the framework sign the service agreement, which allows the client application to use the service. A reference to the service manager interface of the service is returned to the client application. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned. If the client application invokes this method before the processing (i.e. digital signature verification) of the response of signServiceAgreement() on the application's IpAppServiceAgreementManagement interface has completed, a TpCommonExceptions with ExceptionType P_INVALID_STATE may be raised to indicate that this method is currently unable to complete the method due to a race condition. In this case, the TpCommonExceptions with ExceptionType P_INVALID_STATE suggests the application to retry the method invocation after a reasonable amount of time has passed.

There must be only one service instance per client application. Therefore, in case the client attempts to select a service for which it has already signed a service agreement and this service agreement has not been terminated, a reference to the already existing service manager will be returned.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement, and a reference to the service manager interface of the service.

structure TpSignatureAndServiceMgr {

digitalSignature:
TpOctetSet;

serviceMgrInterface:
 IpServiceRef;

};

The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement text given by the client application. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

The serviceMgrInterface is a reference to the service manager interface for the selected service.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one used by the framework when invoking signServiceAgreement() on the client. If the signingAlgorithm is not the same one, is invalid, or unknown to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned. The list of possible algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).
Returns

TpSignatureAndServiceMgr

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_AGREEMENT_TEXT, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNING_ALGORITHM, P_SERVICE_ACCESS_DENIED
7.3.2.2.2
Method terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630 using the same signing algorithm as was used to initially sign the service agreement. The content is the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement(). The framework uses this to check that the terminationText has been signed by the client application. If a match is made, the service agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNATURE
7.3.2.2.3
Method selectService()

This method is used by the client application to identify the service that the client application wishes to use. If the client application is not allowed to access the service, then the P_SERVICE_ACCESS_DENIED exception is thrown.

Returns <serviceToken> : This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain operator specific information relating to the service level agreement. The serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client application or framework invokes the terminateAccess method on the other's corresponding access interface.

Parameters

serviceID : in TpServiceID

This identifies the service required. If the serviceID is not recognised by the framework, an error code (P_INVALID_SERVICE_ID) is returned.
Returns

TpServiceToken

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_ID, P_SERVICE_ACCESS_DENIED
7.3.2.2.4
Method initiateSignServiceAgreement()

This method is used by the client application to initiate the sign service agreement process. This method shall be invoked following the application's call to selectService(), and before the signing of the service agreement can take place. If the client application is not allowed to initiate the sign service agreement process, the exception (P_SERVICE_ACCESS_DENIED) is thrown.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application. If the serviceToken is invalid, or has expired, the exception (P_INVALID_SERVICE_TOKEN) is thrown.
Raises

TpCommonExceptions, P_INVALID_SERVICE_TOKEN, P_SERVICE_ACCESS_DENIED

	Next Modified Section

8.2
Class Diagrams

[image: image14.wmf]IpFwServiceDiscovery

listServiceTypes()

describeServiceType()

discoverService()

listRegisteredServices()

(from Framework interfaces)

<<Interface>>

Figure: Service Discovery Package Overview
[image: image15.wmf]IpFwServiceRegistration

registerService()

announceServiceAvailability()

unregisterService()

describeService()

unannounceService()

<<new>> registerServiceSubType()

(from Framework interfaces)

<<Interface>>

Figure: Service Registration Package Overview

[image: image16]

Figure: Trust and Security Management Package Overview
[image: image17.wmf]IpServiceInstanceLifecycleManager

createServiceManager()

destroyServiceManager()

(from Service Interfaces)

<<Interface>>

Figure: Service Instance Lifecycle Manager Package Overview
[image: image18.wmf]IpSvcHeartBeatMgmt

enableSvcHeartBeat()

disableSvcHeartBeat()

changeInterval()

<<Interface>>

IpSvcHeartBeat

pulse()

<<Interface>>

1

0..n

1

0..n

IpFwHeartBeat

pulse()

<<Interface>>

<<uses>>

IpFwHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeInterval()

<<Interface>>

<<uses>>

0..n

1

0..n

1

IpFwLoadManager

reportLoad()

<<deprecated>> queryLoadReq()

<<deprecated>> querySvcLoadRes()

<<deprecated>> querySvcLoadErr()

createLoadLevelNotification()

destroyLoadLevelNotification()

suspendNotification()

resumeNotification()

<<new>> queryLoadStatsReq()

<<new>> querySvcLoadStatsRes()

<<new>> querySvcLoadStatsErr()

<<Interface>>

IpSvcLoadManager

<<deprecated>> querySvcLoadReq()

<<deprecated>> queryLoadRes()

<<deprecated>> queryLoadErr()

loadLevelNotification()

suspendNotification()

resumeNotification()

createLoadLevelNotification()

destroyLoadLevelNotification()

<<new>> querySvcLoadStatsReq()

<<new>> queryLoadStatsRes()

<<new>> queryLoadStatsErr()

<<Interface>>

<<uses>>

IpSvcFaultManager

activityTestRes()

svcActivityTestReq()

<<deprecated>> fwFaultReportInd()

<<deprecated>> fwFaultRecoveryInd()

<<deprecated>> fwUnavailableInd()

svcUnavailableInd()

<<deprecated>> appUnavailableInd()

<<deprecated>> genFaultStatsRecordRes()

activityTestErr()

<<deprecated>> genFaultStatsRecordErr()

<<deprecated>> genFaultStatsRecordReq()

<<deprecated>> generateFaultStatsRecordReq()

appAvailStatusInd()

<<new>> generateFaultStatisticsRecordRes()

<<new>> generateFaultStatisticsRecordErr()

<<new>> generateFaultStatisticsRecordReq()

<<new>> fwAvailStatusInd()

<<Interface>>

IpFwFaultManager

activityTestReq()

svcActivityTestRes()

appUnavailableInd()

<<deprecated>> genFaultStatsRecordReq()

<<deprecated>> svcUnavailableInd()

svcActivityTestErr()

<<deprecated>> genFaultStatsRecordRes()

<<deprecated>> genFaultStatsRecordErr()

<<deprecated>> generateFaultStatsRecordRes()

<<deprecated>> generateFaultStatsRecordErr()

svcAvailStatusInd()

<<new>> generateFaultStatisticsRecordReq()

<<new>> generateFaultStatisticsRecordRes()

<<new>> generateFaultStatisticsRecordErr()

<<Interface>>

<<uses>>

IpFwOAM

systemDateTimeQuery()

<<Interface>>

IpSvcOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

Figure: Integrity Management Package Overview
[image: image19.wmf]IpFwEventNotification

createNotification()

destroyNotification()

(from Framework Interfaces)

<<Interface>>

IpSvcEventNotification

reportNotification()

notificationTerminated()

(from Service Interfaces)

<<Interface>>

<<uses>>

Figure: Event Notification Package Overview
	Next Modified Section

9.3
General Service Properties

Each service instance has the following general properties:

· Service Name
· Service Version
· Service ID
· Service Description
· Product Name
· Product Version
·
· Operation Set
· Compatible Service

· Backward Compatibility Level

· Migration Required

· Data Migrated

· Migration Date and Time

The following sections describe these general service properties in more detail. The values for the mode are defined in the type TpServiceTypePropertyMode.

9.3.1
Service Name

	Property
	Type
	Mode
	Description

	P_SERVICE_NAME
	STRING_SET
	MANDATORY_READONLY
	This property contains the name of the service, e.g. “UserLocation”, “UserLocationCamel”, “UserLocationEmergency” or “UserStatus”.

9.3.2
Service Version

	Property
	Type
	Mode
	Description

	P_SERVICE_VERSION
	STRING_SET
	MANDATORY
	This property contains the version of the APIs, to which the service is compliant. It is a set of strings as specified in the TpVersion type.

9.3.3
Service ID

	Property
	Type
	Mode
	Description

	P_SERVICE_ID
	STRING_INTERVAL
	READONLY
	This property uniquely identifies a specific service. Note that the Framework generates this property value when the Service Supplier registers the service. This property should not be confused with the serviceInstanceID generated by the Framework when a Client Application signs a Service Agreement to obtain the Service Manager

9.3.4
Service Description

	Property
	Type
	Mode
	Description

	P_SERVICE_DESCRIPTION
	STRING_SET
	MANDATORY_READONLY
	This property contains a textual description of the service. It should not be interpreted as a description of a Service Instance (as identified by a serviceInstanceID generated by the Framework when a Client Application signs a Service Agreement to obtain the Service Manager).

9.3.5
Product Name

	Property
	Type
	Mode
	Description

	P_PRODUCT_NAME
	STRING_SET
	READONLY
	This property contains the name of the product that provides the service, e.g. “Find It”, “Locate.com”.

9.3.6
Product Version

	Property
	Type
	Mode
	Description

	P_PRODUCT_VERSION
	STRING_SET
	READONLY
	This property contains the version of the product that provides the service, e.g. “3.1.11”.

9.3.8
Operation Set

	Property
	Type
	Mode
	Description

	P_OPERATION_SET
	STRING_SET
	MANDATORY
	Specifies set of the operations the SCS supports.

The notation to be used is : {“Interface1.operation1”,”Interface1.operation2”, “Interface2.operation1”}, e.g.:

{“IpCall.createCall”,”IpCall.routeReq”}.

9.3.9
Compatible Service

	Property
	Type
	Mode
	Description

	P_COMPATIBLE_WITH_SERVICE
	STRING_SET
	READONLY
	Specifies the Set of Services, identified by their ServiceIDs, with which this new service is compatible.

This property should at least be accompanied with the properties P_BACKWARD_COMPATIBILITY_LEVEL, P_MIGRATION_REQUIRED.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties like Migration Required, Data Migrated, etc.

For all these properties the order of the Services shall be identical.

9.3.10
Backward Compatibility Level

	Property
	Type
	Mode
	Description

	P_BACKWARD_COMPATIBILITY_LEVEL
	BOOLEAN_SET
	READONLY
	Specifies if the new service is completely backwards compatible with each service identified in the P_COMPATIBLE_WITH_SERVICE property:

Value = TRUE: Service is completely backwards compatible

Value = FALSE: SCS is not completely backwards compatible.

This property requires the presence of P_COMPATIBLE_WITH_SERVICE property.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties.

For each service identified in P_COMPATIBLE_WITH_SERVICE, one value of this property shall be present in the value set of this property at service registration.

For all these properties the order of the Services shall be identical.

9.3.11
Migration Required

	Property
	Type
	Mode
	Description

	P_MIGRATION_REQUIRED
	BOOLEAN_SET
	READONLY
	Specifies if the new service is replacing the service identified in the P_COMPATIBLE_WITH_SERVICE property:

Value = TRUE: new service is replacing the existing one – migration is required before the date/time indicated in P_MIGRATION_DATE_AND_TIME property.

Value = FALSE: new service is not replacing the existing one – migration not required, the existing service is retained.

This property requires the presence of P_COMPATIBLE_WITH_SERVICE property. If the value set of P_MIGRATION_REQUIRED contains TRUE, P_DATA_MIGRATED and P_MIGRATION_DATE_AND_TIME properties shall also to be present.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties.

For each service identified in P_COMPATIBLE_WITH_SERVICE, one value of this property shall be present in the value set of this property at service registration.

For all these properties the order of the Services shall be identical.

9.3.12
Data Migrated

	Property
	Type
	Mode
	Description

	P_DATA_MIGRATED
	BOOLEAN_SET
	READONLY
	Indicates if the data (e.g. notifications) from the existing service identified in the P_COMPATIBLE_WITH_SERVICE property is also available in this Service.

Value = TRUE: all data is migrated

Value = FALSE: no data is migrated

This property requires the presence of P_COMPATIBLE_WITH_SERVICE and the P_MIGRATION_REQUIRED properties.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties.

For each service identified in P_COMPATIBLE_WITH_SERVICE, one value of this property shall be present in the value set of this property at service registration.

For all these properties the order of the Services shall be identical.

9.3.13
Migration Date And Time

	Property
	Type
	Mode
	Description

	P_MIGRATION_DATE_AND_TIME
	STRING_SET
	READONLY
	This property contains the date and time, in the format described in TpDateAndTime, by which point applications shall have migrated from existing services to this new service.

Migration to the new service requires the application to terminate the existing service agreement, and sign a new one.

Failure to do this by the migration date and time indicated in this property may result in the service agreement being terminated by the Framework, since the service supplier may choose to unregister the service following this date and time.

Only one value of TpDateAndTime is permitted to be present in this property at service registration.

This property requires the presence of P_COMPATIBLE_WITH_SERVICE, P_MIGRATION_REQUIRED and P_DATA_MIGRATED properties.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties.

For each service identified in P_COMPATIBLE_WITH_SERVICE, one value of this property shall be present in the value set of this property at service registration.

For all these properties the order of the Services shall be identical. For those services for which migration is not required (P_MIGRATION_REQUIRED set to FALSE), the corresponding value of this property shall be ignored.

	Next Modified Section

10.3.2
TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the string “SP_”. The following values are defined:

	String Value
	Description

	P_OSA_AUTHENTICATION
	Authenticate using the OSA API Level Authentication Interfaces: IpAPILevelAuthentication and IpClientAPILevelAuthentication

	P_AUTHENTICATION
	Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

	
	

	
	

	
	

	
	

	
	

	
	

	
	

10.3.6
TpAuthDomain

This is Sequence of Data Elements containing all the data necessary to identify a domain: the domain identifier, and a reference to the authentication interface of the domain.

	Sequence Element

Name
	Sequence Element

Type
	Description

	DomainID
	TpDomainID
	Identifies the domain for authentication. This identifier is assigned to the domain during the initial contractual agreements, and is valid during the lifetime of the contract.

	AuthInterface
	IpInterfaceRef
	Identifies the authentication interface of the specific entity. This data element has the same lifetime as the domain authentication process, i.e. in principle a new interface reference can be provided each time a domain intends to access another.

10.3.7
TpInterfaceName

This data type is identical to a TpString, and is defined as a string of characters that identify the names of the Framework SCFs that are to be supported by the OSA API. Other Network operator specific SCFs may also be used, but should be preceded by the string "SP_". The following values are defined.

	Character String Value
	Description

	P_DISCOVERY
	The name for the Discovery interface.

	P_EVENT_NOTIFICATION
	The name for the Event Notification interface.

	P_OAM
	The name for the OA&M interface.

	P_LOAD_MANAGER
	The name for the Load Manager interface.

	P_FAULT_MANAGER
	The name for the Fault Manager interface.

	P_HEARTBEAT_MANAGEMENT
	The name for the Heartbeat Management interface.

	P_SERVICE_AGREEMENT_MANAGEMENT
	The name of the Service Agreement Management interface.

	P_REGISTRATION
	The name for the Service Registration interface.

	P_ENT_OP_ACCOUNT_MANAGEMENT
	The name for the Service Subscription: Enterprise Operator Account Management interface.

	P_ENT_OP_ACCOUNT_INFO_QUERY
	The name for the Service Subscription: Enterprise Operator Account Information Query interface.

	P_SVC_CONTRACT_MANAGEMENT
	The name for the Service Subscription: Service Contract Management interface.

	P_SVC_CONTRACT_INFO_QUERY
	The name for the Service Subscription: Service Contract Information Query interface.

	P_CLIENT_APP_MANAGEMENT
	The name for the Service Subscription: Client Application Management interface.

	P_CLIENT_APP_INFO_QUERY
	The name for the Service Subscription: Client Application Information Query interface.

	P_SVC_PROFILE_MANAGEMENT
	The name for the Service Subscription: Service Profile Management interface.

	P_SVC_PROFILE_INFO_QUERY
	The name for the Service Subscription: Service Profile Information Query interface.

10.3.8
TpInterfaceNameList

This data type defines a Numbered Set of Data Elements of type TpInterfaceName.

10.3.9
TpServiceToken

This data type is identical to a TpString, and identifies a selected SCF. This is a free format text token returned by the Framework, which can be signed as part of a service agreement. This will contain Network operator specific information relating to the service level agreement. The serviceToken has a limited lifetime, which is the same as the lifetime of the service agreement in normal conditions. If something goes wrong the serviceToken expires, and any method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client or Framework invokes the terminateAccess method on the other's corresponding access interface.

10.3.10
TpSignatureAndServiceMgr

This is a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a reference to the SCF manager interface of the SCF.

	Sequence Element

Name
	Sequence Element

Type

	DigitalSignature
	TpOctetSet

	ServiceMgrInterface
	IpServiceRef

The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement text given by the client application. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

The ServiceMgrInterface is a reference to the SCF manager interface for the selected SCF.

10.3.11
TpSigningAlgorithm

This data type is identical to a TpString, and is defined as a string of characters that identify the signing algorithm that shall be used. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". The following values are defined.

	String Value
	Description

	NULL
	An empty (NULL) string indicates no signing algorithm is required

	P_MD5_RSA_512
	MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public-key cryptography system using a 512-bit modulus. The signature generation follows the process and format defined in RFC 2313 (PKCS#1 v1.5). The use of this signing method is deprecated.

	P_MD5_RSA_1024
	MD5 takes an input message of arbitrary length and produces as output a 128-bit message digest of the input. This is then encrypted with the private key under the RSA public- key cryptography system using a 1024-bit modulus. .The signature generation follows the process and format defined in RFC 2313 (PKCS#1 v1.5). The use of this signing method is deprecated.

	P_RSASSA_PKCS1_v1_5_SHA1_1024
	SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. RSA is then used to generate the signature value, following the process defined in section 8 of RFC 2437 and format defined in section 9.2.1 of RFC 2437. The RSA private/public key pair is using a 1024-bit modulus.

	P_SHA1_DSA
	SHA-1 is used to produce a 160-bit message digest based on the input message to be signed. DSA is then used to generate the signature value. The signature generation follows the process and format defined in section 7.2.2 of RFC 2459.

	End of Modifications

Annex E (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Mar 2001
	CN_11
	NP-010134
	047
	--
	CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158)
	3.2.0
	4.0.0

	Jun 2001
	CN_12
	NP-010330
	001
	--
	Corrections to OSA API Rel4
	4.0.0
	4.0.1

	Sep 2001
	CN_13
	NP-010466
	002
	--
	Changing references to JAIN
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	003
	--
	Update to the definitions of method svcUnavailableInd
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	004
	--
	Only one subject per method invocation for fault and load management
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	005
	--
	Fault management is missing some *Err methods
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	006
	--
	Method balance on Fault management interfaces
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	007
	--
	Change "TpString" into "TpOctetSets" in authentication and access
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	008
	--
	Replacement of register/unregisterLoadController
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	009
	--
	Redundant Framework Heartbeat Mechanism
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	010
	--
	Add a releaseInterface() method to IpAccess
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	011
	--
	Removal of serviceID from queryAppLoadReq()
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	012
	--
	Addition of listInterfaces() method
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	013
	--
	Introduction and use of new Service Instance ID
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	014
	--
	P_UNAUTHORISED_PARAMETER_VALUE thrown if non-accessible serviceID is provided
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	015
	--
	Introduction of Service Instance Lifecycle Management
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	016
	--
	Add support for multi-vendorship
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	017
	--
	Removal of P_SERVICE_ACCESS_TYPE
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	018
	--
	Confusing meaning of prescribedMethod
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	019
	--
	A client should only have one instance of a given service
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	020
	--
	Some methods on the IpApp interfaces should throw exceptions
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010596
	021
	--
	Replace Out Parameters with Return Types
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010596
	022
	--
	Correctionto Framework (FW)
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020105
	023
	--
	Add P_INVALID_INTERFACE_TYPE exception to IpService.setCallback() and IpService.setCallbackWithSessionID()
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	024
	--
	Replace erroneous mention of P_OSA_ACCESS by the correct value P_OSA_AUTHENTICATION
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	025
	--
	Add missing inheritance in service agreement management interfaces
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	026
	--
	Include Operation Set as part of General Service Properties
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	027
	--
	Improved description of activityTestReq with respect to ServiceInstanceID
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	028
	--
	OSA Framework - Generate statistics records on behalf of another entity using genFaultStatsRecordReq
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	029
	--
	Update the interface names for alignment between 3GPP and ETSI/Parlay
	4.3.0
	4.4.0

	Jun 2002
	CN_16
	NP-020179
	030
	--
	Solving the problem in the OSA Framework with method appUnavailableInd() in a scenario with multiple service sessions per access session
	4.4.0
	4.5.0

	Jun 2002
	CN_16
	NP-020179
	031
	--
	Adding missing mandatory method (authenticationSucceeded) to sequence flow
	4.4.0
	4.5.0

	Jun 2002
	CN_16
	NP-020186
	032
	--
	Remove redundant data type definition TpServiceSpecString
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020181
	033
	--
	Addition of support for Java API technology realisation
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020182
	035
	--
	Addition of support for WSDL realisation
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	036
	--
	Clarify semantics of service properties of type BOOLEAN_SET
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	037
	--
	Addition of version management support to the Framework (29.198-03) in run-time
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	038
	--
	Enhancements on subscription management error information
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	039
	--
	Delete conflicting description of P_APPLICATION_NOT_ACTIVATED
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	040
	--
	Note added for P_SERVICE_INSTANCE Choice Element Name
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	041
	--
	Correcting the method descriptions for abortAuthentication and for initiateAuthentication
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	042
	--
	Correcting the description of heartbeat failure
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	043
	--
	Correcting erroneous FW<->Service instance sequence diagrams
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	044
	--
	Correcting the scope of TpFwID, which currently is giving it false limitations
	4.5.0
	5.0.0

	Sep 2002
	CN_17
	NP-020428
	046
	
	Correction to description of TpServicePropertyTypeName
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	047
	
	Remove undefined exception in registerService
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	048
	
	Remove ServiceIDs from IpFwFaultManager.genFaultStatsRecordReq()
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	049
	
	Correct appUnavailableInd and related methods
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	050
	
	Remove unusable exception from IpFaultManager.appActivityTestRes()
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	051
	
	Clarify the sequence of events in signing the service agreement
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	052
	
	Correct use of electronic signatures
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	053
	
	Addition of Sequence Diagrams for terminateAccess
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	054
	
	Add indication what part of service agreement must be signed
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	055
	
	Add text to clarify requirements on support of methods
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	056
	
	Introduce types and modes for generic properties
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	057
	
	Correction on use of NULL in Framework API
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	058
	
	Add Negotiation of Authentication Mechanism for OSA level Authentication
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020395
	058
	
	Add text to clarify relationship between 3GPP and ETSI/Parlay OSA specifications
	5.0.0
	5.1.0

	Mar 2003
	CN_19
	NP-030019
	063
	-
	Correction to Initial Access Sequence Diagram
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	065
	-
	Enable creation/destruction of load level notifications at the request of Framework
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	067
	-
	Correction of Sequence for Framework – Service load management
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	074
	-
	Add Initial Load Notification report for Framework Integrity Management Load Notification model
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	068
	--
	Correction to Application's requirements for supporting methods
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	069
	--
	Correction of status of methods to interfaces in clause 7.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	070
	--
	Correction of status of methods to interfaces in clause 8.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	071
	--
	Correction of status of methods to interfaces in clause 6.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	075
	--
	Adding the appAvailStatusInd() and svcAvailStatusInd() methods
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	076
	--
	Remove race condition in signServiceAgreement
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	077
	--
	Change reference to deprecated method "authenticate" in TpAuthMechanism to "challenge"
	5.1.0
	5.2.0

	Jun 2003
	CN_20
	NP-030237
	079
	--
	Correction to TpEncryptionCapability to correct support for Triple-DES
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030237
	081
	--
	Correction of the Framework Service Instance Lifecycle Manager Sequence Diagram
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030237
	083
	--
	Correction of the use of TpDomainID in Framework initiateAuthentication method
	5.2.0
	5.3.0

	Sep 2003
	CN_21
	NP-030352
	085
	--
	Correction to Java Realisation Annex
	5.3.0
	5.4.0

	Dec 2003
	CN_22
	NP-030549
	086
	--
	Correction of the sequence diagram for Fault Management
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	087
	--
	Correction of State Transition Diagram for IpAccess
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	088
	--
	Correction of Correlation Behaviour in Load Management
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	089
	--
	Correction of Correlation Behaviour in Fault Management
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	090
	--
	Correction and Clarification of Framework Access Session Behaviour
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030553
	091
	--
	Add OSA API support for 3GPP2 networks
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	092
	--
	Add description for service super and sub types
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	093
	--
	Add support for registration of additional service property types and modes
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	094
	--
	Improve User Interaction message management functions
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	095
	--
	Add new values for TpServiceTypeName for Policy Management
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	096
	--
	Allow for applications to re-obtain the reference to the service manager
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	097
	--
	Add support in OSA to inform applications about new SCSs and their level of Backward compatibility – Align with SA1's 22.127
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	098
	--
	Add “Extended User Status” as service type name - Align with 29.198-06
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	099
	--
	Add P_USER_BINDING to TpServiceTypeName
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	100
	--
	Modify Framework Availability Indication in Fault Management
	5.5.0
	6.0.0

	Feb 2004
	--
	--
	--
	--
	Added Java code attachment 2919803J2EE.zip which was delivered late by outside developers. See Annex C.
	6.0.0
	6.0.1

	Jun 2004
	CN_24
	NP-040261
	103
	--
	Add ability to identify when a client app/service contract/service profile is being used - Align between ETSI/Parlay and 3GPP
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040265
	104
	--
	Add events to allow an entop to identify when a client app/service contract/service profile is being used
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040253
	106
	--
	Correct alignment between ETSI/Parlay version of OSA and the 3GPP OSA, by clarifying erroneous field in TpServiceProfileDescription
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040261
	108
	--
	Introduce a ServiceID field to TpServiceProfileDescription
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040254
	112
	--
	Correct the service property type used for address ranges
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040273
	113
	--
	Remove the <> stereotype from methods which are no longer new
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040261
	115
	--
	Correct description of availStatusReason codes
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040261
	117
	--
	Correct description for the use of selectSigningAlgorithm
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040261
	119
	--
	Correct the description of the usage of CHAP within authentication
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040261
	121
	--
	Correct TpSignatureAndServiceMgr to align with description in signServiceAgreement
	6.0.1
	6.1.0

	Sep 2004
	CN_25
	NP-040355
	124
	--
	Correct J2EE source
	6.1.0
	6.2.0

	Sep 2004
	CN_25
	NP-040356
	125
	--
	Remove unused Deprecated items
	6.1.0
	6.2.0

	Sep 2004
	CN_25
	NP-040358
	126
	--
	Support High Availability at API Level
	6.1.0
	6.2.0

	Dec 2004
	CN_26
	NP-040485
	128
	--
	Removal of OSA API SCFs description in W3C WSDL
	6.2.0
	6.3.0

	Dec 2004
	--
	--
	--
	--
	Added missing code attachments
	6.3.0
	6.3.1

	Mar 2005
	CN_27
	NP-050020
	129
	--
	Add TpServiceTypeName for Multimedia Messaging SCF
	6.3.1
	6.4.0

	Dec 2005
	CT-30
	CP-050564
	0130
	--
	Definition of floating point service property types
	6.4.0
	6.5.0

	
	
	
	
	
	
	
	

IpInitial

<<deprecated>> initiateAuthentication()

initiateAuthenticationWithVersion()

(from Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

<<deprecated>> endAccess()

listInterfaces()

<<deprecated>> releaseInterface()

selectSigningAlgorithm()

terminateAccess()

relinquishInterface()

(from Framework interfaces)

<<Interface>>

IpAPILevelAuthentication

<<deprecated>> selectEncryptionMethod()

<<deprecated>> authenticate()

abortAuthentication()

authenticationSucceeded()

selectAuthenticationMechanism()

challenge()

(from Framework interfaces)

<<Interface>>

IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpClientAPILevelAuthentication

<<deprecated>> authenticate()

abortAuthentication()

authenticationSucceeded()

challenge()

(from Client interfaces)

<<Interface>>

<<uses>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

Active

initiateAuthentication / return new IpAuthentication

initiateAuthenticationWithVersion / return new

IpAuthentication

IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpClientAPILevelAuthentication

<<deprecated>> authenticate()

abortAuthentication()

authenticationSucceeded()

challenge()

(from Client interfaces)

<<Interface>>

IpInitial

<<deprecated>> initiateAuthentication()

initiateAuthenticationWithVersion()

(from Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

<<deprecated>> endAccess()

listInterfaces()

<<deprecated>> releaseInterface()

selectSigningAlgorithm()

terminateAccess()

relinquishInterface()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAPILevelAuthentication

<<deprecated>> selectEncryptionMethod()

<<deprecated>> authenticate()

abortAuthentication()

authenticationSucceeded()

selectAuthenticationMechanism()

challenge()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

IpInitial

<<deprecated>> initiateAuthentication()

initiateAuthenticationWithVersion()

(from Framework interfaces)

<<Interface>>

IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

<<deprecated>> endAccess()

listInterfaces()

<<deprecated>> releaseInterface()

selectSigningAlgorithm()

terminateAccess()

relinquishInterface()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpClientAPILevelAuthentication

<<deprecated>> authenticate()

abortAuthentication()

authenticationSucceeded()

challenge()

(from Client interfaces)

<<Interface>>

IpAPILevelAuthentication

<<deprecated>> selectEncryptionMethod()

<<deprecated>> authenticate()

abortAuthentication()

authenticationSucceeded()

selectAuthenticationMechanism()

challenge()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

�PAGE \# "'Page: '#'�'" �� Document number

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

CR page 1

[image: image20.emf][image: image21.emf][image: image22.emf][image: image23.emf][image: image24.emf][image: image25.emf]