
3GPP TSG-CN Meeting #24 NP-040257
02 – 04 June 2004, Seoul, KOREA

Source: CN5 (OSA)

Title: 5 Rel-4 CRs 29.198-xy OSA API: correct P_TRIGGERING_ADDRESSES service
property

Agenda item: 7.10 (OSA Enhancements [OSA1])

Document for: APPROVAL

Doc-1st- Spec CR Rev Phase Subject Cat Version Doc-2nd- Workite
NP-040257 29.198-04 069 - Rel-4 Correction of callbacks sequence and timing

conditions in GCCS and MPCCS
F 4.8.0 N5-040338 OSA1

NP-040257 29.198-04-2 016 - Rel-5 Correction of callbacks sequence and timing
conditions in GCCS

A 5.6.0 N5-040339 OSA1

NP-040257 29.198-04-2 017 - Rel-6 Correction of callbacks sequence and timing
conditions in GCCS

A 6.0.1 N5-040341 OSA1

NP-040257 29.198-04-3 025 - Rel-5 Correction of callbacks sequence and timing
conditions in MPCCS

A 5.6.0 N5-040340 OSA1

NP-040257 29.198-04-3 026 - Rel-6 Correction of callbacks sequence and timing
conditions in MPCCS

A 6.1.0 N5-040342 OSA1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040339
Meeting #27, Miami, FL, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-04-2 CR 016 ! rev -
! Current version: 5.6.0

!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction of callbacks sequence and timing conditions in GCCS

Source: ! CN5 Parlay Appium

Work item code: ! OSA1 Date: ! 14/05/2004

Category: ! A Release: ! REL-5
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Misunderstandings in how to treat call backs has been reported from the second

OSA/Parlay PLUGTEST event (N5-040077). The result of OSA/Parlay interoperability
test reports major misunderstandings of how call back references were passed to Gateway
for GCCS.
Especially the sequence and timing conditions for sending call backs are subject for
different interpretations among vendors. This has been recognised as a major problem at
the second OSA/Parlay Interoperability test

Summary of change: ! To solve the above problem, we therefore propose to introduce clarifying text for

the sequence and timing of event for the sending of call backs for GCCS.

Consequences if !
not approved:

Interoperability problems

Clauses affected: ! 6.1, 6.2

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: ! This is a Rel-5 mirror to the CR in N5-040338

Change in Clause 6.1

6.1 Interface Class IpCallControlManager

Inherits from: IpService
This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use this
interface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.
 This interface shall be
implemented by a Generic Call Control SCF. As a minimum requirement either the createCall() method shall be
implemented, or the enableCallNotification() and disableCallNotification() methods shall be implemented.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallIdentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

6.1.1 Method createCall()

This method is used to create a new call object.
Call back reference:
An IpAppCallControlManager should already have been passed to the IpCallControlManager, otherwise the call control
will not be able to report a callAborted() to the application. T (he application should invoke setCallback() prior to
createCall() if it wishes to ensure this).
Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

6.1.2 Method enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an

application has to do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application is interested in other events during the context
of a particular call session it has to use the routeReq() method on the call object. The application will get access to the
call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is
setup by the application).
The enableCallNotification method is purely intended for applications to indicate their interest to be notified when
certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishes to be informed when a call is made to any number starting with 800.
If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges
overlap and the same number plan is used and the same CallNotificationType is used.
If a notification is requested by an application with the monitor mode set to notify, then there is no need to check the rest
of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.
Set of the callback reference:
The call back reference can be registered either in a) enableCallNotification() or b) explicit with a separate setCallback()
method depending on how the application provides it’s callback reference.
Case a:
From an efficiency point of view the enableCallNotification() with explicit immediate registration (no “Null” value) of
call back reference may be the preferred method.
Case b::
The enableCallNotfication() with no call back reference (“Null” value) is used where (e.g. due to distributed application
logic) the call back reference is provided subsequently in a setCallback().
In case the enableCallNotification() contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback(). See example in 4.6

Set additional callback:
If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().See example in 4.1

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

End of Change in Clause 6.1

Change in Clause 6.2

6.2 Interface Class IpAppCallControlManager

Inherits from: IpInterface
The generic call control manager application interface provides the application call control management functions to the
generic call control service.

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID) : IpAppCallRef

callNotificationInterrupted () : void

callNotificationContinued () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

6.2.1 Method callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

6.2.2 Method callEventNotify()

This method notifies the application of the arrival of a call-related event.
If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).
Set of the callback reference:
A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back reference is only applicable if the notification is in INTERRUPT mode. When theis
callEventNotify() method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the
application writer should ensure that no continue processing e.g. routeReq() is performed until an IpAppCall has been
passed to the gateway, either through an explicit setCallbackWithSessionID() invocation on the supplied IpCall, or via
the return of the callEventNotify() method.

The call back reference can be registered either in a) callEventNotify() or b) explicit with a setCallbackWithSessionID()
method e.g. depending on how the application provides it’s call reference.
Case a:
From an efficiency point of view the callEventNotify() with explicit pass of registration may be the preferred method.
The callEventNotify() method rReturns appCall: Specifies a reference to the application interface which implements the
callback interface for the new call. If the application has previously explicitly passed a reference to the IpAppCall
interface using a setCallbackWithSessionID() invocation, this parameter may be null, or if supplied must be the same as

that provided during the setCallbackWithSessionID().
This parameterwill be null if the notification is in NOTIFY mode and in case b).
Case b::
The callEventNotify with no call back reference (“Null” value) is used where (e.g. due to distributed application logic)
the callback reference is provided subsequently in a setCallbackWithSessionID().
 In case the callEventNotify() contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallbackWithSessionID(). See example in 4.6

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is in NOTIFY mode, this
parameter shall be ignored by the application client implementation, and consequently the implementation of the SCS
entity invoking callEventNotify may populate this parameter as it chooses.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableCallNotification() method. The application can use
assignment id to associate events with event specific criteria and to act accordingly.

Returns

IpAppCallRef

End of Change in Clause 6.2

Annex D (informative):
Change history

Change history
Date TSG # TSG Doc. CR Rev Subject/Comment Old New
Mar 2001 CN_11 NP-010134 047 - CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.2.0 1.0.0
June 2001 CN_12 NP-010327 -- -- Approved at TSG CN#12 and placed under Change Control 2.0.0 4.0.0
Sep 2001 CN_13 NP-010467 001 -- Changing references to JAIN 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 002 -- Correction of text descriptions for methods enableCallNotification and

createNotification
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 003 -- Specify the behaviour when a call leg times out 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 004 -- Removal of Faulty state in MPCCS Call State Transition Diagram and

method callFaultDetected in MPCCS in OSA R4
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 005 -- Missing TpCallAppInfoSet description in OSA R4 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 006 -- Redirecting a call leg vs. creating a call leg clarification in OSA R4 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 007 -- Introduction of MPCC Originating and Terminating Call Leg STDs for

IpCallLeg
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 008 -- Corrections to SetChargePlan() Addition of PartyToCharge parmeter 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 009 -- Corrections to SetChargePlan() 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 010 -- Remove distinction between final- and intermediate-report 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 011 -- Inclusion of TpMediaType 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 012 -- Corrections to GCC STD 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 013 -- Introduction of sequence diagrams for MPCC services 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 014 -- The use of the REDIRECT event needs to be illustrated 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 015 -- Corrections to SetCallChargePlan() 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 016 -- Add one additional error indication 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 017 -- Corrections to Call Control – GCCS Exception handling 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 018 -- Corrections to Call Control – Errors in Exceptions 4.0.0 4.1.0
Dec 2001 CN_14 NP-010597 019 -- Replace Out Parameters with Return Types 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 020 -- Removal of time based charging property 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 021 -- Make attachMedia() and detachMedia() asynchronous 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 022 -- Correction of treatment datatype in superviseReq on call leg 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 023 -- Corrections to Call Control Data Types 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 024 -- Correction to Call Control (CC) 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 025 -- Amend the Generic Call Control introductory part 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 026 -- Correction in TpCallEventType 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 027 -- Addition of missing description of RouteErr() 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 028 -- Misleading description of createAndRouteCallLegErr() 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 029 -- Correction to values of TpCallNotificationType,

TpCallLoadControlMechanismType
4.1.0 4.2.0

Dec 2001 CN_14 NP-010695 030 -- Correction of method getLastRedirectionAddress 4.1.0 4.2.0
Mar 2002 CN_15 NP-020106 031 -- Add P_INVALID_INTERFACE_TYPE exception to

IpService.setCallback() and IpService.setCallbackWithSessionID()
4.2.0 4.3.0

Mar 2002 CN_15 NP-020106 032 -- Correction of Event Subscription/Notification Data Type 4.2.0 4.3.0
Mar 2002 CN_15 NP-020106 033 -- Correction of parameter name in IpCallLeg.routeReq() and in

IpCallLeg.setAdviceOfCharge()
4.2.0 4.3.0

Mar 2002 CN_15 NP-020106 034 -- Clarification of ambiguous Event handling rules 4.2.0 4.3.0
Jun 2002 CN_16 NP-020180 035 -- Correction to TpCallChargePlan 4.3.0 4.4.0
Jun 2002 CN_16 NP-020180 036 -- Correction to CAMEL Service Property values 4.3.0 4.4.0
Jun 2002 CN_16 NP-020181 037 - Addition of support for Java API technology realisation 4.4.0 5.0.0
Jun 2002 CN_16 NP-020182 038 - Addition of support for WSDL realisation 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 039 - Addition of support for Emergency Telecommunications Service 4.4.0 5.0.0
Jun 2002 CN_16 NP-020183 040 - Addition of support for Network Controlled Notifications MPCC 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 041 - Changes to getNotification() 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 042 - Addition of P_UNSUPPORTED_MEDIA release cause to

TpReleaseCause
4.4.0 5.0.0

Jun 2002 CN_16 NP-020187 043 - Addition of CAMEL Phase 4 Service Property values 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 044 - Addition of indication whether SCS supports initially multiple

routeReqs in parallel
4.4.0 5.0.0

Jun 2002 CN_16 NP-020187 045 - Explicit exception for continueProcessing when not in interrupted
mode

4.4.0 5.0.0

Jun 2002 CN_16 NP-020187 046 - Indication needed that supervision will be ended when call or callLeg
is deassigned

4.4.0 5.0.0

Jun 2002 CN_16 NP-020187 047 - Clarify ambiguous Supervision duration 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 048 - Detach/Attach request illegal during pending Attach/Detach request 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 049 - Correction of Multi-Party Call Control properties 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 050 - Correcting the sequence diagram descriptions in GCC and MPCC 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 051 - Correcting erroneous description of UI behaviour in call control 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 052 - Correcting the descriptions of sequence diagrams that don't match 4.4.0 5.0.0

the diagram
Jun 2002 CN_16 NP-020187 053 - Correcting erroneous references to GCC in MPCC 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 054 - Addition of the Multi-media APIs to Call control SCF (29.198-4) 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 055 - Updating Clause 4 for Release 5 4.4.0 5.0.0
Jun 2002 CN_16 NP-020188 056 - Spliting of 29.198-04 into 4 separate TSs (sub-parts) 4.4.0 5.0.0
Sep 2002 CN_17 NP-020430 001 -- 29.198-04-2 Correction on use of NULL in Call Control API 5.0.0 5.1.0
Sep 2002 CN_17 NP-020395 002 -- Add text to clarify relationship between 3GPP and ETSI/Parlay OSA

specifications
5.0.0 5.1.0

Mar 2003 CN_19 NP-030020 003 - Correction of status of GCC methods 5.1.0 5.2.0
Mar 2003 CN_19 NP-030020 004 - Correction to Prepaid Sequence Diagram 5.1.0 5.2.0
Mar 2003 CN_19 NP-030020 005 - Correction to TpCallEventCriteriaResult in Generic Call Control 5.1.0 5.2.0
Jun 2003 CN_20 NP-030238 007 -- Correction of the description for callEventNotify & reportNotification 5.2.0 5.3.0
Sep 2003 CN_21 NP-030352 008 -- Correction to Java Realisation Annex 5.3.0 5.4.0
Dec 2003 CN_22 NP-030544 009 -- Correction of description in superviseCallRes 5.4.0 5.5.0
Apr 2004 CN_23bis NP-040155 011 -- Correct Java Code to conform with Java Rulebook in TS 29.198-01

and to remove errors
5.5.0 5.6.0

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040341
Meeting #27, Miami, FL, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-04-2 CR 017 ! rev -
! Current version: 6.0.1

!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction of callbacks sequence and timing conditions in GCCS

Source: ! CN5 Parlay Appium

Work item code: ! OSA1 Date: ! 14/05/2004

Category: ! A Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Misunderstandings in how to treat call backs has been reported from the second

OSA/Parlay PLUGTEST event (N5-040077). The result of OSA/Parlay interoperability
test reports major misunderstandings of how call back references were passed to Gateway
for GCCS.
-Especially the sequence and timing conditions for sending call backs are subject for
different interpretations among vendors. This has been recognised as a major problem at
the second OSA/Parlay Interoperability test

Summary of change: ! To solve the above problem, we therefore propose to introduce clarifying text for

the sequence and timing of event for the sending of call backs for GCCS.

Consequences if !
not approved:

Interoperability problems

Clauses affected: ! 6.1, 6.2

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: ! This is a Rel-6 mirror to the CR in N5-040338

Change in Clause 6.1

6.1 Interface Class IpCallControlManager

Inherits from: IpService
This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use this
interface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.

 This interface shall be implemented by a Generic Call Control SCF. As a
minimum requirement either the createCall() method shall be implemented, or the enableCallNotification() and
disableCallNotification() methods shall be implemented.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallIdentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

6.1.1 Method createCall()

This method is used to create a new call object.
Callback reference:
An IpAppCallControlManager should already have been passed to the IpCallControlManager, otherwise the call control
will not be able to report a callAborted() to the application. (Tthe application should invoke setCallback() prior to
createCall() if it wishes to ensure this).
Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

6.1.2 Method enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an

application has to do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application is interested in other events during the context
of a particular call session it has to use the routeReq() method on the call object. The application will get access to the
call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is
setup by the application).
The enableCallNotification method is purely intended for applications to indicate their interest to be notified when
certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishes to be informed when a call is made to any number starting with 800.
If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges
overlap and the same number plan is used and the same CallNotificationType is used.
If a notification is requested by an application with the monitor mode set to notify, then there is no need to check the rest
of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.
Set of the callback reference:
The call back reference can be registered either in a) enableCallNotification() or b) explicit with a separate setCallback()
method depending on how the application provides it’s callback reference.
Case a:
From an efficiency point of view the enableCallNotification() with explicit immediate registration (no “Null” value) of
call back reference may be the preferred method.
Case b:
The enableCallNotfication() with no call back reference (“Null” value) is used where (e.g. due to distributed application
logic) the call back reference is provided subsequently in a setCallback().
In case the enableCallNotification() contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback(). See example in 4.6

Set additional callback:
If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
See example in 4.1

In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().
Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

6.1.3 Method disableCallNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous
enableCallNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

6.1.4 Method setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the generic call control
service. The address matching mechanism is similar as defined for TpCallEventCriteria.
Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.
A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e., until disabled by the application)
A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

6.1.5 Method changeCallNotification()

This method is used by the application to change the event criteria introduced with enableCallNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic call control manager interface for the event notification. If two call backs have
been registered under this assignment ID both of them will be changed.

eventCriteria : in TpCallEventCriteria

Specifies the new set of event specific criteria used by the application to define the event required. Only events that meet
these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

6.1.6 Method getCriteria()

This method is used by the application to query the event criteria set with enableCallNotification or
changeCallNotification.
Returns eventCriteria: Specifies the event specific criteria used by the application to define the event required. Only
events that meet these criteria are reported.

Parameters
No Parameters were identified for this method

Returns

TpCallEventCriteriaResultSet

Raises

TpCommonExceptions

End of Change in Clause 6.1

Change in Clause 6.2

6.2 Interface Class IpAppCallControlManager

Inherits from: IpInterface
The generic call control manager application interface provides the application call control management functions to the
generic call control service.

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID) : IpAppCallRef

callNotificationInterrupted () : void

callNotificationContinued () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

6.2.1 Method callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No

further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

6.2.2 Method callEventNotify()

This method notifies the application of the arrival of a call-related event.
If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).
Set of the callback reference:
A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back reference is only applicable if the notification is in INTERRUPT mode. When theis
callEventNotify() method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the
application writer should ensure that no continue processing e.g. routeReq() is performed until an IpAppCall has been
passed to the gateway, either through an explicit setCallbackWithSessionID() invocation on the supplied IpCall, or via
the return of the callEventNotify() method.
The call back reference can be registered either in a) callEventNotify() or b) explicit with a setCallbackWithSessionID()
method e.g. depending on how the application provides it’s call reference.

Case a:
From an efficiency point of view the callEventNotify() with explicit pass of registration may be the preferred method.
The callEventNotify() method rReturns appCall: Specifies a reference to the application interface which implements the
callback interface for the new call. If the application has previously explicitly passed a reference to the IpAppCall
interface using a setCallbackWithSessionID() invocation, this parameter may be null, or if supplied must be the same as
that provided during the setCallbackWithSessionID().
This parameter will be null if the notification is in NOTIFY mode. and in case b)..
Case b:
The callEventNotify() with no call back reference (“Null” value) is used where (e.g. due to distributed application logic)
the callback reference is provided subsequently in a setCallbackWithSessionID().
In case the callEventNotify() contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallbackWithSessionID(). See example in 4.6

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is in NOTIFY mode, this
parameter shall be ignored by the application client implementation, and consequently the implementation of the SCS
entity invoking callEventNotify may populate this parameter as it chooses.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableCallNotification() method. The application can use
assignment id to associate events with event specific criteria and to act accordingly.

Returns

IpAppCallRef

6.2.3 Method callNotificationInterrupted()

This method indicates to the application that all event notifications have been temporarily interrupted (for example, due
to faults detected).
Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

6.2.4 Method callNotificationContinued()

This method indicates to the application that event notifications will again be possible.

Parameters
No Parameters were identified for this method

6.2.5 Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the address range for
within which the overload has been encountered.

6.2.6 Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the address range for
within which the overload has been ceased

End of Change in Clause 6.2

Annex E (informative):
Change history

Change history
Date TSG # TSG Doc. CR Rev Subject/Comment Old New
Mar 2001 CN_11 NP-010134 047 - CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.2.0 1.0.0
June 2001 CN_12 NP-010327 -- -- Approved at TSG CN#12 and placed under Change Control 2.0.0 4.0.0
Sep 2001 CN_13 NP-010467 001 -- Changing references to JAIN 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 002 -- Correction of text descriptions for methods enableCallNotification and

createNotification
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 003 -- Specify the behaviour when a call leg times out 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 004 -- Removal of Faulty state in MPCCS Call State Transition Diagram and

method callFaultDetected in MPCCS in OSA R4
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 005 -- Missing TpCallAppInfoSet description in OSA R4 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 006 -- Redirecting a call leg vs. creating a call leg clarification in OSA R4 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 007 -- Introduction of MPCC Originating and Terminating Call Leg STDs for

IpCallLeg
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 008 -- Corrections to SetChargePlan() Addition of PartyToCharge parmeter 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 009 -- Corrections to SetChargePlan() 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 010 -- Remove distinction between final- and intermediate-report 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 011 -- Inclusion of TpMediaType 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 012 -- Corrections to GCC STD 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 013 -- Introduction of sequence diagrams for MPCC services 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 014 -- The use of the REDIRECT event needs to be illustrated 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 015 -- Corrections to SetCallChargePlan() 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 016 -- Add one additional error indication 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 017 -- Corrections to Call Control – GCCS Exception handling 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 018 -- Corrections to Call Control – Errors in Exceptions 4.0.0 4.1.0
Dec 2001 CN_14 NP-010597 019 -- Replace Out Parameters with Return Types 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 020 -- Removal of time based charging property 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 021 -- Make attachMedia() and detachMedia() asynchronous 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 022 -- Correction of treatment datatype in superviseReq on call leg 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 023 -- Corrections to Call Control Data Types 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 024 -- Correction to Call Control (CC) 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 025 -- Amend the Generic Call Control introductory part 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 026 -- Correction in TpCallEventType 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 027 -- Addition of missing description of RouteErr() 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 028 -- Misleading description of createAndRouteCallLegErr() 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 029 -- Correction to values of TpCallNotificationType,

TpCallLoadControlMechanismType
4.1.0 4.2.0

Dec 2001 CN_14 NP-010695 030 -- Correction of method getLastRedirectionAddress 4.1.0 4.2.0
Mar 2002 CN_15 NP-020106 031 -- Add P_INVALID_INTERFACE_TYPE exception to

IpService.setCallback() and IpService.setCallbackWithSessionID()
4.2.0 4.3.0

Mar 2002 CN_15 NP-020106 032 -- Correction of Event Subscription/Notification Data Type 4.2.0 4.3.0
Mar 2002 CN_15 NP-020106 033 -- Correction of parameter name in IpCallLeg.routeReq() and in

IpCallLeg.setAdviceOfCharge()
4.2.0 4.3.0

Mar 2002 CN_15 NP-020106 034 -- Clarification of ambiguous Event handling rules 4.2.0 4.3.0
Jun 2002 CN_16 NP-020180 035 -- Correction to TpCallChargePlan 4.3.0 4.4.0
Jun 2002 CN_16 NP-020180 036 -- Correction to CAMEL Service Property values 4.3.0 4.4.0
Jun 2002 CN_16 NP-020181 037 - Addition of support for Java API technology realisation 4.4.0 5.0.0
Jun 2002 CN_16 NP-020182 038 - Addition of support for WSDL realisation 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 039 - Addition of support for Emergency Telecommunications Service 4.4.0 5.0.0
Jun 2002 CN_16 NP-020183 040 - Addition of support for Network Controlled Notifications MPCC 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 041 - Changes to getNotification() 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 042 - Addition of P_UNSUPPORTED_MEDIA release cause to

TpReleaseCause
4.4.0 5.0.0

Jun 2002 CN_16 NP-020187 043 - Addition of CAMEL Phase 4 Service Property values 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 044 - Addition of indication whether SCS supports initially multiple

routeReqs in parallel
4.4.0 5.0.0

Jun 2002 CN_16 NP-020187 045 - Explicit exception for continueProcessing when not in interrupted
mode

4.4.0 5.0.0

Jun 2002 CN_16 NP-020187 046 - Indication needed that supervision will be ended when call or callLeg
is deassigned

4.4.0 5.0.0

Jun 2002 CN_16 NP-020187 047 - Clarify ambiguous Supervision duration 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 048 - Detach/Attach request illegal during pending Attach/Detach request 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 049 - Correction of Multi-Party Call Control properties 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 050 - Correcting the sequence diagram descriptions in GCC and MPCC 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 051 - Correcting erroneous description of UI behaviour in call control 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 052 - Correcting the descriptions of sequence diagrams that don't match 4.4.0 5.0.0

the diagram
Jun 2002 CN_16 NP-020187 053 - Correcting erroneous references to GCC in MPCC 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 054 - Addition of the Multi-media APIs to Call control SCF (29.198-4) 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 055 - Updating Clause 4 for Release 5 4.4.0 5.0.0
Jun 2002 CN_16 NP-020188 056 - Spliting of 29.198-04 into 4 separate TSs (sub-parts) 4.4.0 5.0.0
Sep 2002 CN_17 NP-020430 001 -- 29.198-04-2 Correction on use of NULL in Call Control API 5.0.0 5.1.0
Sep 2002 CN_17 NP-020395 002 -- Add text to clarify relationship between 3GPP and ETSI/Parlay OSA

specifications
5.0.0 5.1.0

Mar 2003 CN_19 NP-030020 003 - Correction of status of GCC methods 5.1.0 5.2.0
Mar 2003 CN_19 NP-030020 004 - Correction to Prepaid Sequence Diagram 5.1.0 5.2.0
Mar 2003 CN_19 NP-030020 005 - Correction to TpCallEventCriteriaResult in Generic Call Control 5.1.0 5.2.0
Jun 2003 CN_20 NP-030238 007 -- Correction of the description for callEventNotify & reportNotification 5.2.0 5.3.0
Sep 2003 CN_21 NP-030352 008 -- Correction to Java Realisation Annex 5.3.0 5.4.0
Dec 2003 CN_22 NP-030544 009 -- Correction of description in superviseCallRes 5.4.0 5.5.0
Dec 2003 CN_22 NP-030553 010 -- Add OSA API support for 3GPP2 networks 5.5.0 6.0.0
Feb 2004 -- -- -- -- Added Java code attachment 2919804-2J2EE.zip which was

delivered late by outside developers. See Annex C.
6.0.0 6.0.1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040340
Meeting #27, Miami, FL, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-04-3 CR 025 ! rev -
! Current version: 5.6.0

!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction of callbacks sequence and timing conditions in MPCCS

Source: ! CN5 Parlay Appium

Work item code: ! OSA1 Date: ! 14/05/2004

Category: ! A Release: ! REL-5
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Misunderstandings in how to treat call backs has been reported from the second

OSA/Parlay PLUGTEST event (N5-040077). The result of OSA/Parlay interoperability
test reports major misunderstandings of how call back references were passed to Gateway
for MPCCS.
Especially the sequence and timing conditions for sending call backs are subject for
different interpretations among vendors. This has been recognised as a major problem at
the second OSA/Parlay Interoperability test

Summary of change: ! To solve the above problem, we therefore propose to introduce clarifying text for

the sequence and timing of event for the sending of call backs for MPCCS.

Consequences if !
not approved:

Interoperability problems

Clauses affected: ! 6.1, 6.2

 Y N
Other specs ! X Other core specifications ! Rel-4 29.198-04

Rel-6 29.198-04-3

affected: X Test specifications
 X O&M Specifications

Other comments: ! This is a Rel-5 mirror to the CR in N5-040338

Change in Clause 6.1

6.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService
This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the
IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.

This interface shall be implemented by a Multi Party Call Control SCF. As a minimum requirement either the
createCall() method shall be implemented, or the createNotification() and destroyNotification() methods shall be
implemented, or the enableNotifications() and disableNotifications() methods shall be implemented.

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest :
in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

<<deprecated>> getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

<<new>> enableNotifications (appCallControlManager : in IpAppMultiPartyCallControlManagerRef) :
TpAssignmentID

<<new>> disableNotifications () : void

<<new>> getNextNotification (reset : in TpBoolean) : TpNotificationRequestedSetEntry

6.1.1 Method createCall()

This method is used to create a new call object.
An IpAppMultiPartyCallControlManager should already have been passed to the IpMultiPartyCallControlManager,
otherwise the call control will not be able to report a callAborted() to the application. . (The application should invoke
setCallback() prior to createCall() if it wishes to ensure this).
Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

6.1.2 Method createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application is interested in other events during the
context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receives the
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).
The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.
If some application already requested notifications with criteria that overlap the specified criteria or the specified criteria
overlap with criteria already present in the network (when provisioned from within the network), the request is refused
with P_INVALID_CRITERIA. The criteria are said to overlap when it leads to more than one application controlling
the call or session at the same point in time during call or session processing.
If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

Set of the callback reference:
The call back reference can be registered either in a) createNotication() or b) explicit with a setCallback() method e.g.
depending on how the application provides it’s callback reference.
Case a:
From an efficiency point of view the createNotification() with explicit registration may be the preferred method.
Case b:
The createNotification() with no call back reference (“Null” value) is used where (e.g. due to distributed application
logic) the call back reference is provided subsequently in a setcallback().
In case the createNotification() contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Set additional callback:
If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the createNotification contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallback().
Returns assignmentID: Specifies the ID assigned by the call control manager interface for this newly-enabled event
notification.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

6.1.3 Method destroyNotification()

This method is used by the application to disable call notifications. This method only applies to notifications created
with createNotification().

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the multi party call control manager interface when the previous
createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

6.1.4 Method changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the multi party call control manager interface for the event notification. If two callbacks
have been registered under this assignment ID both of them will be changed.

notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that meet
these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

6.1.5 Method <<deprecated>> getNotification()

This method is deprecated and replaced by getNextNotification(). It will be removed in a later release.
This method is used by the application to query the event criteria set with createNotification or changeNotification.
Returns notificationsRequested: Specifies the notifications that have been requested by the application. An empty set is
returned when no notifications exist.

Parameters
No Parameters were identified for this method

Returns

TpNotificationRequestedSet

Raises

TpCommonExceptions

6.1.6 Method setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanism is similar as defined for TpCallEventCriteria.
Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.
A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e., until disabled by the application)
A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

6.1.7 Method <<new>> enableNotifications()

This method is used to indicate that the application is able to receive notifications which are provisioned from within the
network (i.e. these notifications are NOT set using createNotification() but via, for instance, a network management
system). If notifications provisioned for this application are created or changed, the application is unaware of this until
the notification is reported.
Set of the callback reference:
The call back reference can be registered either in a) enableNotications() or b) explicit with a setCallback() method e.g.
depending on how the application provides it’s callback reference.
Case a:
From an efficiency point of view the createNotification() with explicit registation may be the preferred method.
Case b::
The enableNotifications() with no call back reference (“Null” value) is used where (e.g. due to distributed application
logic) the call back reference is provided subsequently in a setCallback().
In case the createNotification() contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Set additional Call back:
If the same application requests to enable notifications for a second time with a different

IpAppMultiPartyCallControlManager reference (i.e. without first disabling them), the second callback will be treated as
an additional callback. The gateway will always use the most recent callback. In case this most recent callback fails the
second most recent is used.
When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on
the same interface as long as the criteria in the network and provided by createNotification() do not overlap. However, it
is NOT recommended to use both mechanisms on the same service manager.
The methods changeNotification(), getNotification(), and destroyNotification() do not apply to notifications provisioned
in the network and enabled using enableNotifications(). These only apply to notifications created using
createNotification().
Returns assignmentID: Specifies the ID assigned by the manager interface for this operation. This ID is contained in any
reportNotification() that relates to notifications provisioned from within the network. Repeated calls to
enableNotifications() return the same assignment ID.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

Returns

TpAssignmentID

Raises

TpCommonExceptions

6.1.8 Method <<new>> disableNotifications()

This method is used to indicate that the application is not able to receive notifications for which the provisioning has
been done from within the network. (i.e. these notifications that are NOT set using createNotification() but via, for
instance, a network management system). After this method is called, no such notifications are reported anymore.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

6.1.9 Method <<new>> getNextNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.
Since a lot of data can potentially be returned (which might cause problem in the middleware), this method must be used
in an iterative way. Each method invocation may return part of the total set of notifications if the set is too large to
return it at once. The reset parameter permits the application to indicate whether an invocation to getNextNotification is
requesting more notifications from the total set of notifications or is requesting that the total set of notifications shall be
returned from the beginning.
Returns notificationRequestedSetEntry: The set of notifications and an indication whether all off the notifications have
been obtained or if more notifications are available that have not yet been obtained by the application. If no
notifications exist, an empty set is returned and the final indication shall be set to TRUE.
Note that the (maximum) number of items provided to the application is determined by the gateway.

Parameters

reset : in TpBoolean

TRUE: indicates that the application is intended to obtain the set of notifications starting at the beginning.
FALSE: indicates that the application requests the next set of notifications that have not (yet) been obtained since the
last call to this method with this parameter set to TRUE.
The first time this method is invoked, reset shall be set to TRUE. Following the receipt of a final indication in
TpNotificationRequestedSetEntry, for the next call to this method reset shall be set to TRUE. P_TASK_REFUSED may

be thrown if these conditions are not met.

Returns

TpNotificationRequestedSetEntry

Raises

TpCommonExceptions

End of Change in Clause 6.1

Change in Clause 6.2

6.2 Interface Class IpAppMultiPartyCallControlManager

Inherits from: IpInterface
The Multi-Party call control manager application interface provides the application call control management functions to
the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in
TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void

managerInterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

6.2.1 Method reportNotification()

This method notifies the application of the arrival of a call-related event.
If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.
Set of the callback reference:
A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back reference is only applicable if the notification is in INTERRUPT mode.
The call back reference can be registered either in a) reportNotification() or b) explicit with a
setCallbackWithSessionID() method depending on how the application provides it’s callback reference.
Case a:
From an efficiency point of view the reportNotification() with explicit pass of registration may be the preferred method,
The reportNotification() method rReturns appCallBack: Specifies references to the application interface which
implements the callback interface for the new call and/or new call leg. If the application has previously explicitly passed
a reference to the callback interface using a setCallbackWithSessionID() invocation, this parameter may be set to
P_APP_CALLBACK_UNDEFINED, or if supplied must be the same as that provided during the

setCallbackWithSessionID().
This parameter will be set to P_APP_CALLBACK_UNDEFINED if the notification is in NOTIFY mode. and in case
b)..
Case b::
The reportNotification() with no call back reference (“Null” value) is used where (e.g. due to distributed application
logic) the call back reference is provided subsequently in a setCallbackWithSessionID().
In case reportNotification() contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallbackWithSessionID().

Parameters

callReference : in TpMultiPartyCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is being given in NOTIFY
mode, this parameter shall be ignored by the application client implementation, and consequently the implementation of
the SCS entity invoking reportNotification may populate this parameter as it chooses.

callLegReferenceSet : in TpCallLegIdentifierSet

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the
notificationInfo can be found on whose behalf the notification was sent.
However, if the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client
implementation, and consequently the implementation of the SCS entity invoking reportNotification may populate this
parameter as it chooses.

notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

Returns

TpAppMultiPartyCallBack

6.2.2 Method callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

6.2.3 Method managerInterrupted()

This method indicates to the application that event notifications and method invocations have been temporarily
interrupted (for example, due to network resources unavailable).
Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

6.2.4 Method managerResumed()

This method indicates to the application that event notifications are possible and method invocations are enabled.

Parameters
No Parameters were identified for this method

6.2.5 Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been encountered.

6.2.6 Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been ceased.

Annex D (informative):
Change history

Change history
Date TSG # TSG Doc. CR Rev Subject/Comment Old New
Mar 2001 CN_11 NP-010134 047 - CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.2.0 1.0.0
June 2001 CN_12 NP-010327 -- -- Approved at TSG CN#12 and placed under Change Control 2.0.0 4.0.0
Sep 2001 CN_13 NP-010467 001 -- Changing references to JAIN 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 002 -- Correction of text descriptions for methods enableCallNotification and

createNotification
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 003 -- Specify the behaviour when a call leg times out 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 004 -- Removal of Faulty state in MPCCS Call State Transition Diagram and

method callFaultDetected in MPCCS in OSA R4
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 005 -- Missing TpCallAppInfoSet description in OSA R4 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 006 -- Redirecting a call leg vs. creating a call leg clarification in OSA R4 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 007 -- Introduction of MPCC Originating and Terminating Call Leg STDs for

IpCallLeg
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 008 -- Corrections to SetChargePlan() Addition of PartyToCharge parmeter 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 009 -- Corrections to SetChargePlan() 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 010 -- Remove distinction between final- and intermediate-report 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 011 -- Inclusion of TpMediaType 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 012 -- Corrections to GCC STD 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 013 -- Introduction of sequence diagrams for MPCC services 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 014 -- The use of the REDIRECT event needs to be illustrated 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 015 -- Corrections to SetCallChargePlan() 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 016 -- Add one additional error indication 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 017 -- Corrections to Call Control – GCCS Exception handling 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 018 -- Corrections to Call Control – Errors in Exceptions 4.0.0 4.1.0
Dec 2001 CN_14 NP-010597 019 -- Replace Out Parameters with Return Types 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 020 -- Removal of time based charging property 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 021 -- Make attachMedia() and detachMedia() asynchronous 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 022 -- Correction of treatment datatype in superviseReq on call leg 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 023 -- Corrections to Call Control Data Types 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 024 -- Correction to Call Control (CC) 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 025 -- Amend the Generic Call Control introductory part 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 026 -- Correction in TpCallEventType 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 027 -- Addition of missing description of RouteErr() 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 028 -- Misleading description of createAndRouteCallLegErr() 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 029 -- Correction to values of TpCallNotificationType,

TpCallLoadControlMechanismType
4.1.0 4.2.0

Dec 2001 CN_14 NP-010695 030 -- Correction of method getLastRedirectionAddress 4.1.0 4.2.0
Mar 2002 CN_15 NP-020106 031 -- Add P_INVALID_INTERFACE_TYPE exception to

IpService.setCallback() and IpService.setCallbackWithSessionID()
4.2.0 4.3.0

Mar 2002 CN_15 NP-020106 032 -- Correction of Event Subscription/Notification Data Type 4.2.0 4.3.0
Mar 2002 CN_15 NP-020106 033 -- Correction of parameter name in IpCallLeg.routeReq() and in

IpCallLeg.setAdviceOfCharge()
4.2.0 4.3.0

Mar 2002 CN_15 NP-020106 034 -- Clarification of ambiguous Event handling rules 4.2.0 4.3.0
Jun 2002 CN_16 NP-020180 035 -- Correction to TpCallChargePlan 4.3.0 4.4.0
Jun 2002 CN_16 NP-020180 036 -- Correction to CAMEL Service Property values 4.3.0 4.4.0
Jun 2002 CN_16 NP-020181 037 - Addition of support for Java API technology realisation 4.4.0 5.0.0
Jun 2002 CN_16 NP-020182 038 - Addition of support for WSDL realisation 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 039 - Addition of support for Emergency Telecommunications Service 4.4.0 5.0.0
Jun 2002 CN_16 NP-020183 040 - Addition of support for Network Controlled Notifications MPCC 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 041 - Changes to getNotification() 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 042 - Addition of P_UNSUPPORTED_MEDIA release cause to

TpReleaseCause
4.4.0 5.0.0

Jun 2002 CN_16 NP-020187 043 - Addition of CAMEL Phase 4 Service Property values 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 044 - Addition of indication whether SCS supports initially multiple

routeReqs in parallel
4.4.0 5.0.0

Jun 2002 CN_16 NP-020187 045 - Explicit exception for continueProcessing when not in interrupted
mode

4.4.0 5.0.0

Jun 2002 CN_16 NP-020187 046 - Indication needed that supervision will be ended when call or callLeg
is deassigned

4.4.0 5.0.0

Jun 2002 CN_16 NP-020187 047 - Clarify ambiguous Supervision duration 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 048 - Detach/Attach request illegal during pending Attach/Detach request 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 049 - Correction of Multi-Party Call Control properties 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 050 - Correcting the sequence diagram descriptions in GCC and MPCC 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 051 - Correcting erroneous description of UI behaviour in call control 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 052 - Correcting the descriptions of sequence diagrams that don't match 4.4.0 5.0.0

the diagram
Jun 2002 CN_16 NP-020187 053 - Correcting erroneous references to GCC in MPCC 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 054 - Addition of the Multi-media APIs to Call control SCF (29.198-4) 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 055 - Updating Clause 4 for Release 5 4.4.0 5.0.0
Jun 2002 CN_16 NP-020188 056 - Spliting of 29.198-04 into 4 separate TSs (sub-parts) 4.4.0 5.0.0
Sep 2002 CN_17 NP-020431 001 29.198-04-3 Correction of error in Call Forward on Busy sequence

diagram
5.0.0 5.1.0

Sep 2002 CN_17 NP-020431 002 Correct inconsistencies in IpCallLeg state transition diagrams 5.0.0 5.1.0
Sep 2002 CN_17 NP-020431 003 Clarification of the overlapping criteria definition and eventType

mapping to IN TDPs
5.0.0 5.1.0

Sep 2002 CN_17 NP-020431 004 Add support for Carrier selection 5.0.0 5.1.0
Sep 2002 CN_17 NP-020431 005 Correction on use of NULL in Call Control API 5.0.0 5.1.0
Sep 2002 CN_17 NP-020395 006 Add text to clarify relationship between 3GPP and ETSI/Parlay OSA

specifications
5.0.0 5.1.0

Mar 2003 CN_19 NP-030031 007 -- Correction of status of MPCC methods 5.1.0 5.2.0
Mar 2003 CN_19 NP-030031 008 -- Inconsistent description of use of secondary callback 5.1.0 5.2.0
Mar 2003 CN_19 NP-030020 009 -- Correction to TpReleaseCauseSet in Multi Party Call Control IDL 5.1.0 5.2.0
Mar 2003 CN_19 NP-030130 010 -- Correction of definition of the P_MAX_CALLLEGS_PER_CALL 5.1.0 5.2.0
Jun 2003 CN_20 NP-030238 011 -- Correction of the description for callEventNotify & reportNotification 5.2.0 5.3.0
Sep 2003 CN_21 NP-030352 014 -- Correction to Java Realisation Annex 5.3.0 5.4.0
Dec 2003 CN_22 NP-030544 015 -- Correction of description in superviseRes 5.4.0 5.5.0
Dec 2003 CN_22 NP-030550 016 -- Correction of description of TpNotificationRequestedSetEntry 5.4.0 5.5.0
Apr 2004 CN_23bis NP-040155 020 -- Correct Java Code to conform with Java Rulebook in TS 29.198-01

and to remove errors
5.5.0 5.6.0

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040342
Meeting #27, Miami, FL, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-04-3 CR 026 ! rev -
! Current version: 6.1.0

!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction of callbacks sequence and timing conditions in MPCCS

Source: ! CN5 Parlay Appium

Work item code: ! OSA1 Date: ! 14/05/2004

Category: ! A Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Misunderstandings in how to treat call backs has been reported from the second

OSA/Parlay PLUGTEST event (N5-040077). The result of OSA/Parlay interoperability
test reports major misunderstandings of how call back references were passed to Gateway
for MPCCS.
Especially the sequence and timing conditions for sending call backs are subject for
different interpretations among vendors. This has been recognised as a major problem at
the second OSA/Parlay Interoperability test

Summary of change: ! To solve the above problem, we therefore propose to introduce clarifying text for

the sequence and timing of event for the sending of call backs for MPCCS.

Consequences if !
not approved:

Interoperability problems

Clauses affected: ! 6.1, 6.2

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: ! This is a Rel-6 mirror to the CR in N5-040340

Change in Clause 6.1

6.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService
This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the
IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.
 This interface shall be implemented by a Multi Party Call Control SCF. As a
minimum requirement either the createCall() method shall be implemented, or the createNotification() and
destroyNotification() methods shall be implemented, or the enableNotifications() and disableNotifications() methods
shall be implemented.

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest :
in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

<<deprecated>> getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

<<new>> enableNotifications (appCallControlManager : in IpAppMultiPartyCallControlManagerRef) :
TpAssignmentID

<<new>> disableNotifications () : void

<<new>> getNextNotification (reset : in TpBoolean) : TpNotificationRequestedSetEntry

6.1.1 Method createCall()

This method is used to create a new call object.
An IpAppMultiPartyCallControlManager should already have been passed to the IpMultiPartyCallControlManager,
otherwise the call control will not be able to report a callAborted() to the application. T (he application should invoke
setCallback() prior to createCall() if it wishes to ensure this.).
Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

6.1.2 Method createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application is interested in other events during the
context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receives the
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).
The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.
If some application already requested notifications with criteria that overlap the specified criteria or the specified criteria
overlap with criteria already present in the network (when provisioned from within the network), the request is refused
with P_INVALID_CRITERIA. The criteria are said to overlap when it leads to more than one application controlling
the call or session at the same point in time during call or session processing.
If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.
If a notification is requested by an application with an event type that is mutually exclusive compared to existing
requested event types, then there is no need to check against the rest of the criteria for overlap. An example could be one
application that trigger on "user busy" together with another application that trigger on "answer" - both requests should
be allowed as only one can occur on the same call or session.
The overlap criteria have been defined to prevent multiple points of control, leading to possible interaction problems in
networks that have no multi service support. Notice that dynamic aspects cannot be taken into account in the overlap
criteria check. Therefore where dynamic event arming from an application causes a persistent control relationship it can
prevent other applications to be invoked in the case single point of application control applies in the network.
However, the criteria check for overlap may as a network option be overruled by Multi Service networks allowing more
services or applications to gain control of the same call or session at the same point in time. Refer to Call Control
Common Definitions subpart of this specification (TS 29.198-4-1) for further details on application control over a call
or session.

Set of the callback reference:
The call back reference can be registered either in a) createNotication() or b) explicit with a setCallBack() method e.g.
depending on how the application provides it’s callback reference.
Case a:
From an efficiency point of view the createNotification() with explicit registration may be the preferred method.
Case b:
The createNotification() with no call back reference (“Null” value) is used where (e.g. due to distributed application
logic) the call back reference is provided subsequently in a setCallback().
In case the createNotification() contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Set additional callback:
If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the createNotification contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the call control manager interface for this newly-enabled event
notification.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

6.1.3 Method destroyNotification()

This method is used by the application to disable call notifications. This method only applies to notifications created
with createNotification().

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the multi party call control manager interface when the previous
createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the
exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment
ID both of them will be disabled.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID

6.1.4 Method changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored
criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the multi party call control manager interface for the event notification. If two callbacks
have been registered under this assignment ID both of them will be changed.

notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that meet
these criteria are reported.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

6.1.5 Method <<deprecated>> getNotification()

This method is deprecated and replaced by getNextNotification(). It will be removed in a later release.

This method is used by the application to query the event criteria set with createNotification or changeNotification.
Returns notificationsRequested: Specifies the notifications that have been requested by the application. An empty set is
returned when no notifications exist.

Parameters
No Parameters were identified for this method

Returns

TpNotificationRequestedSet

Raises

TpCommonExceptions

6.1.6 Method setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the call control service.
The address matching mechanism is similar as defined for TpCallEventCriteria.
Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be
used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.
A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e., until disabled by the application)
A duration of -2 indicates the network default duration.

mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters,
such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.

treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control
duration is set to zero.

addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN

6.1.7 Method <<new>> enableNotifications()

This method is used to indicate that the application is able to receive notifications which are provisioned from within the
network (i.e. these notifications are NOT set using createNotification() but via, for instance, a network management
system). If notifications provisioned for this application are created or changed, the application is unaware of this until
the notification is reported.

Set of the callback reference:
The call back reference can be registered either in a) enableNotications() or b) explicit with a setCallback() method e.g.
depending on how the application provides it’s callback reference.
Case a:
.For an efficiency point of view the createNotification() with explicit registration may be the preferred method.
Case b:

The enableNotifications() with no call back reference (“Null” value) is used where (e.g. due to distributed application
logic) the call back reference is provided subsequently in a setCallback().
In case the createNotification() contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Set additional Call back:
If the same application requests to enable notifications for a second time with a different
IpAppMultiPartyCallControlManager reference (i.e. without first disabling them), the second callback will be treated as
an additional callback. The gateway will always use the most recent callback. In case this most recent callback fails the
second most recent is used.
When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on
the same interface as long as the criteria in the network and provided by createNotification() do not overlap. However, it
is NOT recommended to use both mechanisms on the same service manager.
The methods changeNotification(), getNotification(), and destroyNotification() do not apply to notifications provisioned
in the network and enabled using enableNotifications(). These only apply to notifications created using
createNotification().

Returns assignmentID: Specifies the ID assigned by the manager interface for this operation. This ID is contained in any
reportNotification() that relates to notifications provisioned from within the network. Repeated calls to
enableNotifications() return the same assignment ID.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

Returns

TpAssignmentID

Raises

TpCommonExceptions

6.1.8 Method <<new>> disableNotifications()

This method is used to indicate that the application is not able to receive notifications for which the provisioning has
been done from within the network. (i.e. these notifications that are NOT set using createNotification() but via, for
instance, a network management system). After this method is called, no such notifications are reported anymore.

Parameters
No Parameters were identified for this method

Raises

TpCommonExceptions

6.1.9 Method <<new>> getNextNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification.
Since a lot of data can potentially be returned (which might cause problem in the middleware), this method must be used
in an iterative way. Each method invocation may return part of the total set of notifications if the set is too large to
return it at once. The reset parameter permits the application to indicate whether an invocation to getNextNotification is
requesting more notifications from the total set of notifications or is requesting that the total set of notifications shall be
returned from the beginning.
Returns notificationRequestedSetEntry: The set of notifications and an indication whether all off the notifications have
been obtained or if more notifications are available that have not yet been obtained by the application. If no
notifications exist, an empty set is returned and the final indication shall be set to TRUE.
Note that the (maximum) number of items provided to the application is determined by the gateway.

Parameters

reset : in TpBoolean

TRUE: indicates that the application is intended to obtain the set of notifications starting at the beginning.
FALSE: indicates that the application requests the next set of notifications that have not (yet) been obtained since the
last call to this method with this parameter set to TRUE.
The first time this method is invoked, reset shall be set to TRUE. Following the receipt of a final indication in
TpNotificationRequestedSetEntry, for the next call to this method reset shall be set to TRUE. P_TASK_REFUSED may
be thrown if these conditions are not met.

Returns

TpNotificationRequestedSetEntry

Raises

TpCommonExceptions

End of Change in Clause 6.1

Change in Clause 6.2

6.2 Interface Class IpAppMultiPartyCallControlManager

Inherits from: IpInterface
The Multi-Party call control manager application interface provides the application call control management functions to
the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in
TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void

managerInterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

6.2.1 Method reportNotification()

This method notifies the application of the arrival of a call-related event.
If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.
Set of the callback reference:

A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back reference is only applicable if the notification is in INTERRUPT mode.
The call back reference can be registered either in a) reportNotification() or b) explicit with a
setCallbackWithSessionID() method depending on how the application provides it’s callback reference.
Case a:
From an efficiency point of view the reportNotification() with explicit pass of registration may be the preferred method,
The reportNotification() method rReturns appCallBack: Specifies references to the application interface which
implements the callback interface for the new call and/or new call leg. If the application has previously explicitly passed
a reference to the callback interface using a setCallbackWithSessionID() invocation, this parameter may be set to
P_APP_CALLBACK_UNDEFINED, or if supplied must be the same as that provided during the
setCallbackWithSessionID().
This parameter will be set to P_APP_CALLBACK_UNDEFINED if the notification is in NOTIFY mode and in case b).
Case b:
The reportNotification() with no call back reference (“Null” value) is used where (e.g. due to distributed application
logic) the call back reference is provided subsequently in a setCallbackWithSessionID().
In case reportNotification() contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallbackWithSessionID().
.

Parameters

callReference : in TpMultiPartyCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is being given in NOTIFY
mode, this parameter shall be ignored by the application client implementation, and consequently the implementation of
the SCS entity invoking reportNotification may populate this parameter as it chooses.

callLegReferenceSet : in TpCallLegIdentifierSet

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the
notificationInfo can be found on whose behalf the notification was sent.
However, if the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client
implementation, and consequently the implementation of the SCS entity invoking reportNotification may populate this
parameter as it chooses.

notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

Returns

TpAppMultiPartyCallBack

6.2.2 Method callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

6.2.3 Method managerInterrupted()

This method indicates to the application that event notifications and method invocations have been temporarily
interrupted (for example, due to network resources unavailable).
Note that more permanent failures are reported via the Framework (integrity management).

Parameters
No Parameters were identified for this method

6.2.4 Method managerResumed()

This method indicates to the application that event notifications are possible and method invocations are enabled.

Parameters
No Parameters were identified for this method

6.2.5 Method callOverloadEncountered()

This method indicates that the network has detected overload and may have automatically imposed load control on calls
requested to a particular address range or calls made to a particular destination within the call control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been encountered.

6.2.6 Method callOverloadCeased()

This method indicates that the network has detected that the overload has ceased and has automatically removed any
load controls on calls requested to a particular address range or calls made to a particular destination within the call
control service.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignmentID corresponding to the associated setCallLoadControl. This implies the addressrange for
within which the overload has been ceased.

End of Change in Clause 6.2

Annex E (informative):
Change history

Change history
Date TSG # TSG Doc. CR Rev Subject/Comment Old New
Mar 2001 CN_11 NP-010134 047 - CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.2.0 1.0.0
June 2001 CN_12 NP-010327 -- -- Approved at TSG CN#12 and placed under Change Control 2.0.0 4.0.0
Sep 2001 CN_13 NP-010467 001 -- Changing references to JAIN 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 002 -- Correction of text descriptions for methods enableCallNotification and

createNotification
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 003 -- Specify the behaviour when a call leg times out 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 004 -- Removal of Faulty state in MPCCS Call State Transition Diagram and

method callFaultDetected in MPCCS in OSA R4
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 005 -- Missing TpCallAppInfoSet description in OSA R4 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 006 -- Redirecting a call leg vs. creating a call leg clarification in OSA R4 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 007 -- Introduction of MPCC Originating and Terminating Call Leg STDs for

IpCallLeg
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 008 -- Corrections to SetChargePlan() Addition of PartyToCharge parmeter 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 009 -- Corrections to SetChargePlan() 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 010 -- Remove distinction between final- and intermediate-report 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 011 -- Inclusion of TpMediaType 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 012 -- Corrections to GCC STD 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 013 -- Introduction of sequence diagrams for MPCC services 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 014 -- The use of the REDIRECT event needs to be illustrated 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 015 -- Corrections to SetCallChargePlan() 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 016 -- Add one additional error indication 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 017 -- Corrections to Call Control – GCCS Exception handling 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 018 -- Corrections to Call Control – Errors in Exceptions 4.0.0 4.1.0
Dec 2001 CN_14 NP-010597 019 -- Replace Out Parameters with Return Types 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 020 -- Removal of time based charging property 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 021 -- Make attachMedia() and detachMedia() asynchronous 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 022 -- Correction of treatment datatype in superviseReq on call leg 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 023 -- Corrections to Call Control Data Types 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 024 -- Correction to Call Control (CC) 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 025 -- Amend the Generic Call Control introductory part 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 026 -- Correction in TpCallEventType 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 027 -- Addition of missing description of RouteErr() 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 028 -- Misleading description of createAndRouteCallLegErr() 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 029 -- Correction to values of TpCallNotificationType,

TpCallLoadControlMechanismType
4.1.0 4.2.0

Dec 2001 CN_14 NP-010695 030 -- Correction of method getLastRedirectionAddress 4.1.0 4.2.0
Mar 2002 CN_15 NP-020106 031 -- Add P_INVALID_INTERFACE_TYPE exception to

IpService.setCallback() and IpService.setCallbackWithSessionID()
4.2.0 4.3.0

Mar 2002 CN_15 NP-020106 032 -- Correction of Event Subscription/Notification Data Type 4.2.0 4.3.0
Mar 2002 CN_15 NP-020106 033 -- Correction of parameter name in IpCallLeg.routeReq() and in

IpCallLeg.setAdviceOfCharge()
4.2.0 4.3.0

Mar 2002 CN_15 NP-020106 034 -- Clarification of ambiguous Event handling rules 4.2.0 4.3.0
Jun 2002 CN_16 NP-020180 035 -- Correction to TpCallChargePlan 4.3.0 4.4.0
Jun 2002 CN_16 NP-020180 036 -- Correction to CAMEL Service Property values 4.3.0 4.4.0
Jun 2002 CN_16 NP-020181 037 - Addition of support for Java API technology realisation 4.4.0 5.0.0
Jun 2002 CN_16 NP-020182 038 - Addition of support for WSDL realisation 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 039 - Addition of support for Emergency Telecommunications Service 4.4.0 5.0.0
Jun 2002 CN_16 NP-020183 040 - Addition of support for Network Controlled Notifications MPCC 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 041 - Changes to getNotification() 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 042 - Addition of P_UNSUPPORTED_MEDIA release cause to

TpReleaseCause
4.4.0 5.0.0

Jun 2002 CN_16 NP-020187 043 - Addition of CAMEL Phase 4 Service Property values 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 044 - Addition of indication whether SCS supports initially multiple

routeReqs in parallel
4.4.0 5.0.0

Jun 2002 CN_16 NP-020187 045 - Explicit exception for continueProcessing when not in interrupted
mode

4.4.0 5.0.0

Jun 2002 CN_16 NP-020187 046 - Indication needed that supervision will be ended when call or callLeg
is deassigned

4.4.0 5.0.0

Jun 2002 CN_16 NP-020187 047 - Clarify ambiguous Supervision duration 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 048 - Detach/Attach request illegal during pending Attach/Detach request 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 049 - Correction of Multi-Party Call Control properties 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 050 - Correcting the sequence diagram descriptions in GCC and MPCC 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 051 - Correcting erroneous description of UI behaviour in call control 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 052 - Correcting the descriptions of sequence diagrams that don't match 4.4.0 5.0.0

the diagram
Jun 2002 CN_16 NP-020187 053 - Correcting erroneous references to GCC in MPCC 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 054 - Addition of the Multi-media APIs to Call control SCF (29.198-4) 4.4.0 5.0.0
Jun 2002 CN_16 NP-020187 055 - Updating Clause 4 for Release 5 4.4.0 5.0.0
Jun 2002 CN_16 NP-020188 056 - Spliting of 29.198-04 into 4 separate TSs (sub-parts) 4.4.0 5.0.0
Sep 2002 CN_17 NP-020431 001 29.198-04-3 Correction of error in Call Forward on Busy sequence

diagram
5.0.0 5.1.0

Sep 2002 CN_17 NP-020431 002 Correct inconsistencies in IpCallLeg state transition diagrams 5.0.0 5.1.0
Sep 2002 CN_17 NP-020431 003 Clarification of the overlapping criteria definition and eventType

mapping to IN TDPs
5.0.0 5.1.0

Sep 2002 CN_17 NP-020431 004 Add support for Carrier selection 5.0.0 5.1.0
Sep 2002 CN_17 NP-020431 005 Correction on use of NULL in Call Control API 5.0.0 5.1.0
Sep 2002 CN_17 NP-020395 006 Add text to clarify relationship between 3GPP and ETSI/Parlay OSA

specifications
5.0.0 5.1.0

Mar 2003 CN_19 NP-030031 007 -- Correction of status of MPCC methods 5.1.0 5.2.0
Mar 2003 CN_19 NP-030031 008 -- Inconsistent description of use of secondary callback 5.1.0 5.2.0
Mar 2003 CN_19 NP-030020 009 -- Correction to TpReleaseCauseSet in Multi Party Call Control IDL 5.1.0 5.2.0
Mar 2003 CN_19 NP-030130 010 -- Correction of definition of the P_MAX_CALLLEGS_PER_CALL 5.1.0 5.2.0
Jun 2003 CN_20 NP-030238 011 -- Correction of the description for callEventNotify & reportNotification 5.2.0 5.3.0
Jun 2003 CN_20 NP-030305 012 1 Unclear overlap criteria for rejection of createNotification 5.3.0 6.0.0
Jun 2003 CN_20 NP-030247 013 -- Add support for advanced subscriber presentation 5.3.0 6.0.0
Dec 2003 CN_22 NP-030550 017 -- Correction of description of TpNotificationRequestedSetEntry 6.0.0 6.1.0
Dec 2003 CN_22 NP-030553 019 -- Add OSA API support for 3GPP2 networks 6.0.0 6.1.0

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040338
Meeting #27, Miami, FL, USA, 10-14 May 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-04 CR 069 ! rev -
! Current version: 4.8.0

!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction of callbacks sequence and timing conditions in GCCS and MPCCS

Source: ! CN5 Parlay Appium

Work item code: ! OSA1 Date: ! 14/05/2004

Category: ! F Release: ! REL-4
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Misunderstandings in how to treat call backs has been reported from the second

OSA/Parlay PLUGTEST event (N5-040077). The result of OSA/Parlay interoperability
test reports major misunderstandings of how call back references were passed to Gateway
for GCCS and MPCCS.
Especially the sequence and timing conditions for sending call backs are subject for
different interpretations among vendors. This has been recognised as a major problem at
the second OSA/Parlay Interoperability test

Summary of change: ! To solve the above problem, we therefore propose to introduce clarifying text for

the sequence and timing of event for the sending of call backs for GCCS as well
as MPCCS.

Consequences if !
not approved:

Interoperability problems

Clauses affected: ! 6.3.1, 6.3.2, 7.3.1 and 7.3.2

 Y N
Other specs ! X Other core specifications ! Rel-5/6 29.198-04-2

Rel-5/6 29.198-04-3

affected: X Test specifications
 X O&M Specifications

Other comments: ! Mirror CRs to this CR exist for Rel-5 and Rel-6 in N5-040339 to N5-040342.

Change in Clause 6.3

6.3.1 Interface Class IpCallControlManager

Inherits from: IpService
This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager
interface provides the management functions to the generic call control service. The application programmer can use this
interface to provide overload control functionality, create call objects and to enable or disable call-related event
notifications.

 This interface shall
be implemented by a Generic Call Control SCF. As a minimum requirement either the createCall() method shall be
implemented, or the enableCallNotification() and disableCallNotification() methods shall be implemented.

<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallIdentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in
TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

Method
createCall()

This method is used to create a new call object.
Call back reference:
 An IpAppCallControlManager should already have been passed to the IpCallControlManager, otherwise the call control
will not be able to report a callAborted()
 to the application. T (the application should invoke setCallback() prior to createCall if it wishes to ensure this.

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method
enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notification of calls happening in the network. When such an event happens, the
application will be informed by callEventNotify(). In case the application is interested in other events during the context
of a particular call session it has to use the routeReq() method on the call object. The application will get access to the
call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is
setup by the application).
The enableCallNotification method is purely intended for applications to indicate their interest to be notified when
certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the
application can indicate it wishes to be informed when a call is made to any number starting with 800.
If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges
overlap and the same number plan is used and the same CallNotificationType is used.
If a notification is requested by an application with the monitor mode set to notify, then there is no need to check the rest
of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.
Set of the callback reference:
The call back reference can be registered either in a) enableCallNotification() or b) explicit with a separate setCallback()
method depending on how the application provides it’s callback reference.
Case a:
From an efficiency point of view the enableCallNotification() with explicit immediate registration (no “Null” value) of
call back reference may be the preferred method.
Case b:
The enableCallNotfication() with no call back reference (“Null” value) is used where (e.g. due to distributed application
logic) the call back reference is provided subsequently in a setCallback().
In case the enableCallNotification() contains no callback, at the moment the application needs to be informed the
gateway will use as callback the callback that has been registered by setCallback(). See example in 6.1.6

Set additional callback reference:
If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
See examples in 6.1.1
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().
Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly-enabled
event notification.

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

6.3.2 Interface Class IpAppCallControlManager

Inherits from: IpInterface
The generic call control manager application interface provides the application call control management functions to the
generic call control service.

<<Interface>>

IpAppCallControlManager

callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in
TpAssignmentID) : IpAppCallRef

callNotificationInterrupted () : void

callNotificationContinued () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method
callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No
further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

Method
callEventNotify()

This method notifies the application of the arrival of a call-related event.
If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Set of the callback reference:
A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back reference is only applicable if the notification is in INTERRUPT mode.
When callEventNotify() this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT,
the application writer should ensure that no continue processing e.g. routeReq() is performed until an IpAppCall has

been passed to the gateway, either through an explicit setCallbackWithSessionID() invocation on the supplied IpCall, or
via the return of the callEventNotify() method.
The call back reference can be registered either in a) callEventNotify() or b) explicit with a setCallbackWithSessionID()
method e.g. depending on how the application provides it’s call reference.
Case a:
From an efficiency point of view the callEventNotify() with explicit pass of registration may be the preferred method.

The callEventNotify() methods Rreturns appCall: Specifies a reference to the application interface which implements the
callback interface for the new call. If the application has previously explicitly passed a reference to the IpAppCall
interface using a setCallbackWithSessionID() invocation, this parameter may be null, or if supplied must be the same as
that provided during the setCallbackWithSessionID().
This parameter will be null if the notification is in NOTIFY mode and in case b .
Case b::
The callEventNotify() with no call back reference (“Null” value) is used where (e.g. due to distributed application logic)
the callback reference is provided subsequently in a setCallbackWithSessionID().
 In case the callEventNotify() contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallbackWithSessionID(). See example in 6.1.6

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is in NOTIFY mode, this
parameter shall be ignored by the application client implementation, and consequently the implementation of the SCS
entity invoking callEventNotify may populate this parameter as it chooses.

eventInfo : in TpCallEventInfo

Specifies data associated with this event.

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableCallNotification() method. The application can use
assignment id to associate events with event specific criteria and to act accordingly.

Returns

IpAppCallRef

End of Change in Clause 6.3

Change in Clause 7.3

7.3.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService
This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control
manager interface provides the management functions to the multi-party call control service. The application
programmer can use this interface to provide overload control functionality, create call objects and to enable or disable
call-related event notifications. The action table associated with the STD shows in what state the
IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the
IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.
 This interface shall be implemented by a Multi Party Call Control SCF. As a minimum requirement
either the createCall() method shall be implemented, or the createNotification() and destroyNotification() methods shall
be implemented.

<<Interface>>

IpMultiPartyCallControlManager

createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest :
in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) :
void

getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in
TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

Method
createCall()

This method is used to create a new call object. An IpAppMultiPartyCallControlManager should already have been
passed to the IpMultiPartyCallControlManager,
 otherwise the call control will not be able to report a callAborted() to the application . (Tthe application should invoke
setCallback() prior to createCall() if it wishes to ensure this).
Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.

Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

Method
createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an
application has to do to get initial notifications of calls happening in the network. When such an event happens, the
application will be informed by reportNotification(). In case the application is interested in other events during the
context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the
eventReportReq() method on the call leg object. The application will get access to the call object when it receives the
reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).
The createNotification method is purely intended for applications to indicate their interest to be notified when certain
call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application
can indicate it wishes to be informed when a call is made to any number starting with 800.
If some application already requested notifications with criteria that overlap the specified criteria, the request is refused
with P_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and
the same number plan is used.
If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of
the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed
over. Only one application can place an interrupt request if the criteria overlaps.

Set of the callback reference:
The call back reference can be registered either in a) createNotication() or b) explicit with a setCallback() method e.g.
depending on how the application provides it’s callback reference.
Case a:
From an efficiency point of view the createNotification() with explicit registration may be the preferred method.
Case b:
The createNotification() with no call back reference (“Null” value) is used where (e.g. due to distributed application
logic) the call back reference is provided subsequently in a setCallback().
In case the createNotification() contains no callback, at the moment the application needs to be informed the gateway
will use as callback the callback that has been registered by setCallback().

Set additional Call back:
If the same application requests two notifications with exactly the same criteria but different callback references, the
second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The
gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.
In case the createNotification contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallback().
Returns assignmentID: Specifies the ID assigned by the call control manager interface for this newly-enabled event
notification.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If
set to NULL, the application interface defaults to the interface specified via the setCallback() method.

notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these
criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer",
"busy". Individual addresses or address ranges may be specified for destination and/or origination.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE,
P_INVALID_EVENT_TYPE

7.3.2 Interface Class IpAppMultiPartyCallControlManager

Inherits from: IpInterface
The Multi-Party call control manager application interface provides the application call control management functions to
the Multi-Party call control service.

<<Interface>>

IpAppMultiPartyCallControlManager

reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in
TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) :
TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void

managerInterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method
reportNotification()

This method notifies the application of the arrival of a call-related event.
If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has
control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period
(the duration of which forms a part of the service level agreement), then the call in the network shall be released and
callEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.
Set of the callback reference:
A reference to the application interface has to be passed back to the call interface to which the notification relates.
However, the setting of a call back reference is only applicable if the notification is in INTERRUPT mode.

The call back reference can be registered either in a) reportNotification() or b) explicit with a
setCallbackWithSessionID() method depending on how the application provides it’s callback reference.
Case a:
From an efficiency point of view the reportNotification() with explicit pass of registration may be the preferred method.

The reportNotification method() rReturns appCallBack: Specifies references to the application interface which
implements the callback interface for the new call and/or new call leg. If the application has previously explicitly passed
a reference to the callback interface using a setCallbackWithSessionID() invocation, this parameter may be set to
P_APP_CALLBACK_UNDEFINED, or if supplied must be the same as that provided during the
setCallbackWithSessionID().
This parameter will be set to P_APP_CALLBACK_UNDEFINED if the notification is in NOTIFY mode and in case
b)..
.

Case b:
The reportNotification() with no call back reference (“Null” value) is used where (e.g. due to distributed application
logic) the call back reference is provided subsequently in a setCallbackWithSessionID().
In case reportNotification() contains no callback, at the moment the application needs to be informed the gateway will
use as callback the callback that has been registered by setCallbackWithSessionID().

Parameters

callReference : in TpMultiPartyCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is being given in NOTIFY
mode, this parameter shall be ignored by the application client implementation, and consequently the implementation of
the SCS entity invoking reportNotification may populate this parameter as it chooses.

callLegReferenceSet : in TpCallLegIdentifierSet

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call
leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the
notificationInfo can be found on whose behalf the notification was sent.
However, if the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client
implementation, and consequently the implementation of the SCS entity invoking reportNotification may populate this
parameter as it chooses.

notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment
id to associate events with event specific criteria and to act accordingly.

Returns

TpAppMultiPartyCallBack

Method
callAborted()

This method indicates to the application that the call object has aborted or terminated abnormally. No further
communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.

End of Change in Clause 7.3

Annex B (informative):
Change history

Change history
Date TSG # TSG Doc. CR Rev Subject/Comment Old New
Mar 2001 CN_11 NP-010134 047 - CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.2.0 1.0.0
June 2001 CN_12 NP-010327 -- -- Approved at TSG CN#12 and placed under Change Control 2.0.0 4.0.0
Sep 2001 CN_13 NP-010467 001 -- Changing references to JAIN 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 002 -- Correction of text descriptions for methods enableCallNotification and

createNotification
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 003 -- Specify the behaviour when a call leg times out 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 004 -- Removal of Faulty state in MPCCS Call State Transition Diagram and

method callFaultDetected in MPCCS in OSA R4
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 005 -- Missing TpCallAppInfoSet description in OSA R4 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 006 -- Redirecting a call leg vs. creating a call leg clarification in OSA R4 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 007 -- Introduction of MPCC Originating and Terminating Call Leg STDs for

IpCallLeg
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 008 -- Corrections to SetChargePlan() Addition of PartyToCharge parmeter 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 009 -- Corrections to SetChargePlan() 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 010 -- Remove distinction between final- and intermediate-report 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 011 -- Inclusion of TpMediaType 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 012 -- Corrections to GCC STD 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 013 -- Introduction of sequence diagrams for MPCC services 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 014 -- The use of the REDIRECT event needs to be illustrated 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 015 -- Corrections to SetCallChargePlan() 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 016 -- Add one additional error indication 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 017 -- Corrections to Call Control – GCCS Exception handling 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 018 -- Corrections to Call Control – Errors in Exceptions 4.0.0 4.1.0
Dec 2001 CN_14 NP-010597 019 -- Replace Out Parameters with Return Types 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 020 -- Removal of time based charging property 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 021 -- Make attachMedia() and detachMedia() asynchronous 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 022 -- Correction of treatment datatype in superviseReq on call leg 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 023 -- Corrections to Call Control Data Types 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 024 -- Correction to Call Control (CC) 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 025 -- Amend the Generic Call Control introductory part 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 026 -- Correction in TpCallEventType 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 027 -- Addition of missing description of RouteErr() 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 028 -- Misleading description of createAndRouteCallLegErr() 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 029 -- Correction to values of TpCallNotificationType,

TpCallLoadControlMechanismType
4.1.0 4.2.0

Dec 2001 CN_14 NP-010695 030 -- Correction of method getLastRedirectionAddress 4.1.0 4.2.0
Mar 2002 CN_15 NP-020106 031 -- Add P_INVALID_INTERFACE_TYPE exception to

IpService.setCallback() and IpService.setCallbackWithSessionID()
4.2.0 4.3.0

Mar 2002 CN_15 NP-020106 032 -- Correction of Event Subscription/Notification Data Type 4.2.0 4.3.0
Mar 2002 CN_15 NP-020106 033 -- Correction of parameter name in IpCallLeg.routeReq() and in

IpCallLeg.setAdviceOfCharge()
4.2.0 4.3.0

Mar 2002 CN_15 NP-020106 034 -- Clarification of ambiguous Event handling rules 4.2.0 4.3.0
Jun 2002 CN_16 NP-020180 035 -- Correction to TpCallChargePlan 4.3.0 4.4.0
Jun 2002 CN_16 NP-020180 036 -- Correction to CAMEL Service Property values 4.3.0 4.4.0
Sep 2002 CN_17 NP-020424 057 -- Correction on use of NULL in Call Control API 4.4.0 4.5.0
Mar 2003 CN_19 NP-030020 058 -- Correction of status of methods to interfaces in clause 6.3 4.5.0 4.6.0
Mar 2003 CN_19 NP-030020 059 -- Correction to TpReleaseCauseSet in Multi Party Call Control 4.5.0 4.6.0
Mar 2003 CN_19 NP-030020 060 -- Correction to Sequence Diagrams to remove incorrect Framework

references
4.5.0 4.6.0

Mar 2003 CN_19 NP-030020 061 -- Correction to User Interaction Prepaid Sequence Diagrams 4.5.0 4.6.0
Mar 2003 CN_19 NP-030020 062 -- Correction to remove unused TpCallChargeOrder 4.5.0 4.6.0
Mar 2003 CN_19 NP-030020 063 -- Correction to TpCallEventCriteriaResult in Generic Call Control 4.5.0 4.6.0
Mar 2003 CN_19 NP-030020 064 -- Correction of status of methods to interfaces in clause 7.3 4.5.0 4.6.0
Jun 2003 CN_20 NP-030238 065 -- Correction of the description for callEventNotify & reportNotification 4.6.0 4.7.0
Dec 2003 CN_22 NP-030544 066 -- Correction of description in superviseRes and superviseCallRes 4.7.0 4.8.0

	NP-040257.doc
	29198-04-2CR016.doc
	29198-04-2CR017.doc
	29198-04-3CR025.doc
	29198-04-3CR026.doc
	29198-04CR069.doc

