
3GPP TSG-CN Meeting #24 NP-040255
02 – 04 June 2004, Seoul, KOREA

Source: CN5 (OSA)

Title: 3 Rel-4 CRs 29.198-04 OSA API Part 4: Call control (Correction of
continueProcessing method for Generic Call Control Service)

Agenda item: 7.10 (OSA Enhancements [OSA1])

Document for: APPROVAL

Doc-1st- Spec CR Rev Phase Subject Cat Version Doc-2nd- Workite
NP-040255 29.198-04 067 - Rel-4 Correction of continueProcessing method for

Generic Call Control Service (GCCS)
F 4.8.0 N5-040098 OSA1

NP-040255 29.198-04-2 012 - Rel-5 Correction of continueProcessing method for
Generic Call Control Service (GCCS)

A 5.6.0 N5-040099 OSA1

NP-040255 29.198-04-2 013 - Rel-6 Correction of continueProcessing method for
Generic Call Control Service (GCCS)

A 6.0.1 N5-040101 OSA1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040099
Meeting #26, Atlanta, GA, USA, 16-20 February 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-04-2 CR 012 ! rev - ! Current version: 5.6.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction of continueProcessing method for Generic Call Control Service (GCCS)

Source: ! CN5 NTT (Atsushi Iwasaki), Fujitsu (Yumi Suzuki), Incomit (Niklas Modin)

Work item code: ! OSA1 Date: ! 20/02/2004

Category: ! A Release: ! REL-5
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Currently it is not clear in the GCCS specification how the application resumes the

call processing after receiving the notification or event of interrupt mode. In
addition to that, there are some problems in the following cases:-

- The application specifies the interrupt mode to the answer event of the
routeReq() method to transfer the incoming call, and the applicatoin may just
want to continue the call processing after some application’s processes at the
answer event without calling such as another routeReq() or deassignCall().
However the current specification does not allowed.

- The enableCallNotification() can be set both
P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT and
P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT as intterupt mode. Even
if the application request both events as intterupt mode and the gateway can
detect both trigger, the application can only receive one or other of two events
since the application have to call routeReq() method to continue the
processing.

Summary of change: ! To solve the above problem, we therefore propose to introduce

continueProcessing() method to GCCS as well as MPCCS, and add some text to
the Active State of State Transition Diagrams for IpCall for clarification of the way
to resume the call processing from the interrupted status.
We believe that there is no difference in the idea about interrupt mode between
GCCS and MPCCS. In order to further clearify the usage of continueProcessing,
methods that implicitly continues processing, i.e routeReq, releaseCall and
deassignCall, should state this.

Consequences if !
not approved:

Can not support above cases.

Clauses affected: ! 6.3, New 6.3.9, 7.2, 7.2.4

 Y N
Other specs ! X Other core specifications ! Rel-6 29.198-04-2

affected: X Test specifications
 X O&M Specifications

Other comments: ! Rel-5 Mirror CR of N5-040098.

Rel-6 Mirror CR in N5-040101.

6.3 Interface Class IpCall

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
: in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

continueProcessing (callSessionID : in TpSessionID) : void

Method
routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for 'successful' (e.g. 'answer' event) and 'failure' events at
invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegSessionID: Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call
control service.

This operation continues processing of the call implicitly.

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

This operation continues processing of the call implicitly.

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

This operation continues processing of the call implicitly.

6.3.9 Method continueProcessing()

This operation continues processing of the call explicitly. Applications can invoke this operation after call processing
was interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation is invoked and call processing is not interrupted the exception P_INVALID_NETWORK_STATE
will be raised.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

7.2 State Transition Diagrams for IpCall
The state transition diagram shows the application view on the Call object for 3GPP.

Figure : Application view on the IpCall object for 3GPP

7.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq()
and / or superviseCallReq(). The information will be returned to the application by invoking the methods
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used. In case the application has not requested additional call related information immediately a transition is made to
state Finished.

Network Released

Finished

Application
Released

release
deassignCall

timeout ^callFaultDetected("timeout on release")

In state No Parties and Finished, a timer
should prevent the object from occupuing
resources.
Upon expiry of this timer, callEnded() should
be invoked with a release cause of 102
(Recovery on timer expiry). In case when no
IpAppCall is available on which to invoke
callEnded(), callAborted() shall be invoked
on the IpAppCallControlManager as this is
an abnormal termination

Active

2 Parties in
Call

1 Party in
Call

2 Parties in
Call

1 Party in
Call

superviseCallReq

setAdviceOfCharge

deassignCall

release

"call ends : calling party disconnects" ^callEnded

"call ends: calling party abandoned" ^callEnded
"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: calling party disconnects"[no monitor for this event] ^callEnded

"requested information ready"
^getCallInfoRes, superviseCallRes

[no reports requested with
getCallInfoReq AND
superviseCallReq]

"fault in retrieval of information" ^getCallInfoErr,
superviseCallErr

deassignCall

[no reports requested with getCallInfoReq AND
superviseCallReq]

"requested information ready" ^getCallInfoRes,
superviseCallRes

release

"fault in retrieval of information" ^getCallInfoErr,
superviseCallErr

"call supervision event"^superviseCallRes
"network event received for which was monitored[routeRes]

getCallInfoReq

"answer"
"connection to called party

unsuccessful"[monitor mode = interrupt]
^routeRes

"routing aborted or invalid address" ^routeErr

"disconnect from called party"[monitor mode =
interrupt] ^routeRes, getCallInfoRes,

superviseCallRes

routeReq

IpAppCallControlManager.callEventNotify setCallChargePlan

continueProcessing

7.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

7.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possible call
information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

7.2.4 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan.

Call processing is suspended when a network event is met for the call, which was requested to be monitored in the
P_CALL_MONITOR_MODE_INTERRUPT. In order to resume of the suspended call processing, the application
invokes continueProcessing(), or routeReq(), release() or deassignCall() method.

7.2.5 1 Party in Call State

When the Call is in this state a calling party is present. The application can now request that a connection to a called
party be established by calling the method routeReq().

In this state the application can also request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The
setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a called party by means of
routeReq().

When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway
informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the
calling party abandons the call after the application has invoked routeReq() but before the call has actually been
established, the gateway informs the application by invoking callEnded().

When the called party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be
established because the application supplied an invalid address or the connection to the called party was unsuccessful
while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state

In this state user interaction is possible unless there is an outstanding routing request.

7.2.6 2 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().

When the called party disconnects different situations apply:

1. the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the
application is informed with routeRes with indication that the called party has disconnected and all requested reports are
sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the
Network Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().

3. the application is not monitoring for this event. In this case the application is informed by the gateway invoking
the callEnded() operation and a transition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040101
Meeting #26, Atlanta, GA, USA, 16-20 February 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-04-2 CR 013 ! rev - ! Current version: 6.0.1
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction of continueProcessing method for Generic Call Control Service (GCCS)

Source: ! CN5 NTT (Atsushi Iwasaki), Fujitsu (Yumi Suzuki), Incomit (Niklas Modin)

Work item code: ! OSA1 Date: ! 20/02/2004

Category: ! A Release: ! REL-6
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Currently it is not clear in the GCCS specification how the application resumes the

call processing after receiving the notification or event of interrupt mode. In
addition to that, there are some problems in the following cases:-

- The application specifies the interrupt mode to the answer event of the
routeReq() method to transfer the incoming call, and the applicatoin may just
want to continue the call processing after some application’s processes at the
answer event without calling such as another routeReq() or deassignCall().
However the current specification does not allowed.

- The enableCallNotification() can be set both
P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT and
P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT as intterupt mode. Even
if the application request both events as intterupt mode and the gateway can
detect both trigger, the application can only receive one or other of two events
since the application have to call routeReq() method to continue the
processing.

Summary of change: ! To solve the above problem, we therefore propose to introduce

continueProcessing() method to GCCS as well as MPCCS, and add some text to
the Active State of State Transition Diagrams for IpCall for clarification of the way
to resume the call processing from the interrupted status.
We believe that there is no difference in the idea about interrupt mode between
GCCS and MPCCS. In order to further clearify the usage of continueProcessing,
methods that implicitly continues processing, i.e routeReq, releaseCall and
deassignCall, should state this.

Consequences if !
not approved:

Can not support above cases.

Clauses affected: ! 6.3, New 6.3.9, 7.2, 7.2.4

 Y N
Other specs ! X Other core specifications !

affected: X Test specifications
 X O&M Specifications

Other comments: ! Rel-6 Mirror CR of N5-040098.

How to create CRs using this form:

6.3 Interface Class IpCall

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
: in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

continueProcessing (callSessionID : in TpSessionID) : void

Method
routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for 'successful' (e.g. 'answer' event) and 'failure' events at
invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegSessionID: Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

 This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call
control service.

This operation continues processing of the call implicitly.

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

This operation continues processing of the call implicitly.

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

This operation continues processing of the call implicitly.

6.3.9 Method continueProcessing()

This operation continues processing of the call explicitly. Applications can invoke this operation after call processing
was interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation is invoked and call processing is not interrupted the exception P_INVALID_NETWORK_STATE
will be raised.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

7.2 State Transition Diagrams for IpCall
The state transition diagram shows the application view on the Call object for 3GPP.

Figure : Application view on the IpCall object for 3GPP

7.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq()
and / or superviseCallReq(). The information will be returned to the application by invoking the methods
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used. In case the application has not requested additional call related information immediately a transition is made to
state Finished.

Network Released

Finished

Application
Released

release
deassignCall

timeout ^callFaultDetected("timeout on release")

In state No Parties and Finished, a timer
should prevent the object from occupuing
resources.
Upon expiry of this timer, callEnded() should
be invoked with a release cause of 102
(Recovery on timer expiry). In case when no
IpAppCall is available on which to invoke
callEnded(), callAborted() shall be invoked
on the IpAppCallControlManager as this is
an abnormal termination

Active

2 Parties in
Call

1 Party in
Call

2 Parties in
Call

1 Party in
Call

superviseCallReq

setAdviceOfCharge

deassignCall

release

"call ends : calling party disconnects" ^callEnded

"call ends: calling party abandoned" ^callEnded
"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: calling party disconnects"[no monitor for this event] ^callEnded

"requested information ready"
^getCallInfoRes, superviseCallRes

[no reports requested with
getCallInfoReq AND
superviseCallReq]

"fault in retrieval of information" ^getCallInfoErr,
superviseCallErr

deassignCall

[no reports requested with getCallInfoReq AND
superviseCallReq]

"requested information ready" ^getCallInfoRes,
superviseCallRes

release

"fault in retrieval of information" ^getCallInfoErr,
superviseCallErr

"call supervision event"^superviseCallRes
"network event received for which was monitored[routeRes]

getCallInfoReq

"answer"
"connection to called party

unsuccessful"[monitor mode = interrupt]
^routeRes

"routing aborted or invalid address" ^routeErr

"disconnect from called party"[monitor mode =
interrupt] ^routeRes, getCallInfoRes,

superviseCallRes

routeReq

IpAppCallControlManager.callEventNotify setCallChargePlan

continueProcessing

7.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

7.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possible call
information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

7.2.4 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan.

Call processing is suspended when a network event is met for the call, which was requested to be monitored in the
P_CALL_MONITOR_MODE_INTERRUPT. In order to resume of the suspended call processing, the application
invokes continueProcessing(), or routeReq(), release() or deassignCall() method.

7.2.5 1 Party in Call State

When the Call is in this state a calling party is present. The application can now request that a connection to a called
party be established by calling the method routeReq().

In this state the application can also request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The
setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a called party by means of
routeReq().

When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway
informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the
calling party abandons the call after the application has invoked routeReq() but before the call has actually been
established, the gateway informs the application by invoking callEnded().

When the called party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be
established because the application supplied an invalid address or the connection to the called party was unsuccessful
while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state

In this state user interaction is possible unless there is an outstanding routing request.

7.2.6 2 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().

When the called party disconnects different situations apply:

1. the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the
application is informed with routeRes with indication that the called party has disconnected and all requested reports are
sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the
Network Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().

3. the application is not monitoring for this event. In this case the application is informed by the gateway invoking
the callEnded() operation and a transition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5) N5-040098
Meeting #26, Atlanta, GA, USA, 16-20 February 2004

CR-Form-v7

CHANGE REQUEST

! 29.198-04 CR 067 ! rev - ! Current version: 4.8.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network X

Title: ! Correction of continueProcessing method for Generic Call Control Service (GCCS)

Source: ! CN5 NTT (Atsushi Iwasaki), Fujitsu (Yumi Suzuki), Incomit (Niklas Modin)

Work item code: ! OSA1 Date: ! 20/02/2004

Category: ! F Release: ! REL-4
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Currently it is not clear in the GCCS specification how the application resumes the

call processing after receiving the notification or event of interrupt mode. In
addition to that, there are some problems in the following cases:-

- The application specifies the interrupt mode to the answer event of the
routeReq() method to transfer the incoming call, and the applicatoin may just
want to continue the call processing after some application’s processes at the
answer event without calling such as another routeReq() or deassignCall().
However the current specification does not allowed.

- The enableCallNotification() can be set both
P_EVENT_GCCS_ADDRESS_COLLECTED_EVENT and
P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT as intterupt mode. Even
if the application request both events as intterupt mode and the gateway can
detect both trigger, the application can only receive one or other of two events
since the application have to call routeReq() method to continue the
processing.

Summary of change: ! To solve the above problem, we therefore propose to introduce

continueProcessing() method to GCCS as well as MPCCS, and add some text to
the Active State of State Transition Diagrams for IpCall for clarification of the way
to resume the call processing from the interrupted status.
We believe that there is no difference in the idea about interrupt mode between
GCCS and MPCCS. In order to further clearify the usage of continueProcessing,
methods that implicitly continues processing, i.e routeReq, releaseCall and
deassignCall, should state this.

Consequences if !
not approved:

Can not support above cases.

Clauses affected: ! 4.1.1, 4.2.2.4

 Y N
Other specs ! X Other core specifications ! Rel-5/6 29.198-04-2

affected: X Test specifications
 X O&M Specifications

Other comments: ! Rel-5/6 Mirror CRs 29.198-04-2 in N5-040099/101.

4.1.1 Interface Class IpCall

Inherits from: IpService

The generic Call provides the possibility to control the call routing, to request information from the call, control the
charging of the call, to release the call and to supervise the call. It does not give the possibility to control the legs
directly and it does not allow control over the media. The first capability is provided by the multi-party call and the
latter as well by the multi-media call. The call is limited to two party calls, although it is possible to provide 'follow-on'
calls, meaning that the call can be rerouted after the terminating party has disconnected or routing to the terminating
party has failed. Basically, this means that at most two legs can be in connected or routing state at any time.
 This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement, the routeReq (),
release() and deassignCall() methods shall be implemented.

<<Interface>>

IpCall

routeReq (callSessionID : in TpSessionID, responseRequested : in TpCallReportRequestSet, targetAddress
: in TpAddress, originatingAddress : in TpAddress, originalDestinationAddress : in TpAddress,
redirectingAddress : in TpAddress, appInfo : in TpCallAppInfoSet) : TpSessionID

release (callSessionID : in TpSessionID, cause : in TpCallReleaseCause) : void

deassignCall (callSessionID : in TpSessionID) : void

getCallInfoReq (callSessionID : in TpSessionID, callInfoRequested : in TpCallInfoType) : void

setCallChargePlan (callSessionID : in TpSessionID, callChargePlan : in TpCallChargePlan) : void

setAdviceOfCharge (callSessionID : in TpSessionID, aOCInfo : in TpAoCInfo, tariffSwitch : in TpDuration) :
void

getMoreDialledDigitsReq (callSessionID : in TpSessionID, length : in TpInt32) : void

superviseCallReq (callSessionID : in TpSessionID, time : in TpDuration, treatment : in
TpCallSuperviseTreatment) : void

continueProcessing (callSessionID : in TpSessionID) : void

Method
routeReq()

This asynchronous method requests routing of the call to the remote party indicated by the targetAddress.

Note that in case of routeReq() it is recommended to request for 'successful' (e.g. 'answer' event) and 'failure' events at
invocation, because those are needed for the application to keep track of the state of the call.

The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to
P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used,
otherwise the network or gateway provided numbers will be used.

If this method in invoked, and call reports have been requested, yet no IpAppCall interface has been provided, this
method shall throw the P_NO_CALLBACK_ADDRESS_SET exception.

Returns callLegSessionID: Specifies the sessionID assigned by the gateway. This is the sessionID of the implicitly
created call leg. The same ID will be returned in the routeRes or Err. This allows the application to correlate the request
and the result.

This parameter is only relevant when multiple routeReq() calls are executed in parallel, e.g., in the multi-party call
control service.

This operation continues processing of the call implicitly.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

responseRequested : in TpCallReportRequestSet

Specifies the set of observed events that will result in zero or more routeRes() being generated.

E.g., when both answer and disconnect is monitored the result can be received two times.

If the application wants to control the call (in whatever sense) it shall enable event reports

targetAddress : in TpAddress

Specifies the destination party to which the call leg should be routed.

originatingAddress : in TpAddress

Specifies the address of the originating (calling) party.

originalDestinationAddress : in TpAddress

Specifies the original destination address of the call.

redirectingAddress : in TpAddress

Specifies the address from which the call was last redirected.

appInfo : in TpCallAppInfoSet

Specifies application-related information pertinent to the call (such as alerting method, tele-service type, service
identities and interaction indicators).

Returns

TpSessionID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_ADDRESS,
P_UNSUPPORTED_ADDRESS_PLAN, P_INVALID_NETWORK_STATE, P_INVALID_CRITERIA,
P_INVALID_EVENT_TYPE

Method
release()

This method requests the release of the call object and associated objects. The call will also be terminated in the
network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these
reports will still be sent to the application.

The application should always either release or deassign the call when it is finished with the call, unless a
callFaultDetected is received by the application.

This operation continues processing of the call implicitly.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

cause : in TpCallReleaseCause

Specifies the cause of the release.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

Method
deassignCall()

This method requests that the relationship between the application and the call and associated objects be de-assigned. It
leaves the call in progress, however, it purges the specified call object so that the application has no further control of
call processing. If a call is de-assigned that has event reports, call information reports or call Leg information reports
requested, then these reports will be disabled and any related information discarded.

The application should always either release or deassign the call when it is finished with the call, unless
callFaultDetected is received by the application.

This operation continues processing of the call implicitly.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for
example, to calculate charging). This method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will exist after
the call is ended if information is required to be sent to the application at the end of the call. In case the originating party
is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setCallChargePlan()

Set an operator specific charge plan for the call.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callChargePlan : in TpCallChargePlan

Specifies the charge plan to use.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
setAdviceOfCharge()

This method allows for advice of charge (AOC) information to be sent to terminals that are capable of receiving this
information.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

aOCInfo : in TpAoCInfo

Specifies two sets of Advice of Charge parameter.

tariffSwitch : in TpDuration

Specifies the tariff switch interval that signifies when the second set of AoC parameters becomes valid.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
getMoreDialledDigitsReq()

This asynchronous method requests the call control service to collect further digits and return them to the application.
Depending on the administered data, the network may indicate a new call to the gateway if a caller goes off-hook or
dialled only a few digits. The application then gets a new call event which contains no digits or only the few dialled
digits in the event data.

The application should use this method if it requires more dialled digits, e.g. to perform screening.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

length : in TpInt32

Specifies the maximum number of digits to collect.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
superviseCallReq()

The application calls this method to supervise a call. The application can set a granted connection time for this call. If
an application calls this function before it calls a routeReq() or a user interaction function the time measurement will
start as soon as the call is answered by the B-party or the user interaction system.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

time : in TpDuration

Specifies the granted time in milliseconds for the connection.

treatment : in TpCallSuperviseTreatment

Specifies how the network should react after the granted connection time expired.

Raises

TpCommonExceptions, P_INVALID_SESSION_ID

Method
continueProcessing()

This operation continues processing of the call explicitly. Applications can invoke this operation after call processing
was interrupted due to detection of a notification or event the application subscribed its interest in.

In case the operation is invoked and call processing is not interrupted the exception P_INVALID_NETWORK_STATE
will be raised.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

Raises
TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

4.1.2 Interface Class IpAppCall

Inherits from: IpInterface

The generic call application interface is implemented by the client application developer and is used to handle call
request responses and state reports.

<<Interface>>

IpAppCall

routeRes (callSessionID : in TpSessionID, eventReport : in TpCallReport, callLegSessionID : in
TpSessionID) : void

routeErr (callSessionID : in TpSessionID, errorIndication : in TpCallError, callLegSessionID : in
TpSessionID) : void

getCallInfoRes (callSessionID : in TpSessionID, callInfoReport : in TpCallInfoReport) : void

getCallInfoErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

superviseCallRes (callSessionID : in TpSessionID, report : in TpCallSuperviseReport, usedTime : in
TpDuration) : void

superviseCallErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callFaultDetected (callSessionID : in TpSessionID, fault : in TpCallFault) : void

getMoreDialledDigitsRes (callSessionID : in TpSessionID, digits : in TpString) : void

getMoreDialledDigitsErr (callSessionID : in TpSessionID, errorIndication : in TpCallError) : void

callEnded (callSessionID : in TpSessionID, report : in TpCallEndedReport) : void

Method
routeRes()

This asynchronous method indicates that the request to route the call to the destination was successful, and indicates the
response of the destination party (for example, the call was answered, not answered, refused due to busy, etc.).

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT,

then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a
specified time period (the duration of which forms a part of the service level agreement), then the call in the network
shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

eventReport : in TpCallReport

Specifies the result of the request to route the call to the destination party. It also includes the network event, date and
time, monitoring mode and event specific information such as release cause.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can
be used to correlate the response with the request.

Method
routeErr()

This asynchronous method indicates that the request to route the call to the destination party was unsuccessful - the call
could not be routed to the destination party (for example, the network was unable to route the call, the parameters were
incorrect, the request was refused, etc.).

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

callLegSessionID : in TpSessionID

Specifies the sessionID of the associated call leg. This corresponds to the sessionID returned at the routeReq() and can
be used to correlate the error with the request.

Method
getCallInfoRes()

This asynchronous method reports time information of the finished call or call attempt as well as release cause
depending on which information has been requested by getCallInfoReq. This information may be used e.g. for charging
purposes. The call information will possibly be sent after routeRes in all cases where the call or a leg of the call has
been disconnected or a routing failure has been encountered.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

callInfoReport : in TpCallInfoReport

Specifies the call information requested.

Method
getCallInfoErr()

This asynchronous method reports that the original request was erroneous, or resulted in an error condition.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
superviseCallRes()

This asynchronous method reports a call supervision event to the application when it has indicated its interest in these
kind of events.

It is also called when the connection is terminated before the supervision event occurs.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call

report : in TpCallSuperviseReport

Specifies the situation which triggered the sending of the call supervision response.

usedTime : in TpDuration

Specifies the used time for the call supervision (in milliseconds).

Method
superviseCallErr()

This asynchronous method reports a call supervision error to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callFaultDetected()

This method indicates to the application that a fault in the network has been detected. The call may or may not have
been terminated.

The system deletes the call object. Therefore, the application has no further control of call processing. No report will be
forwarded to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call in which the fault has been detected.

fault : in TpCallFault

Specifies the fault that has been detected.

Method
getMoreDialledDigitsRes()

This asynchronous method returns the collected digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

digits : in TpString

Specifies the additional dialled digits if the string length is greater than zero.

Method
getMoreDialledDigitsErr()

This asynchronous method reports an error in collecting digits to the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.

errorIndication : in TpCallError

Specifies the error which led to the original request failing.

Method
callEnded()

This method indicates to the application that the call has terminated in the network. However, the application may still
receive some results (e.g., getCallInfoRes) related to the call. The application is expected to deassign the call object
after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.

report : in TpCallEndedReport

Specifies the reason the call is terminated.

4.2 Generic Call Control Service State Transition Diagrams

4.2.1 State Transition Diagrams for IpCallControlManager

The state transition diagram shows the application view on the Call Control Manager object.

Active

Creation of
CallControlManager
by Service Instance
Lifecycle Manager

Notifi cati on te rminated

"new"

ena bleCallNotificati on

disableCallNotif icat ion

"a call obje ct has terminated abnormally" ^IpAppCa llControlManager.callAborted

"arrival of call related event"[notification active for this call event] /
create a Call object Î pAppCall Control Manager.cal lEventNoti fy

disableCallNotification

"a call object has terminated abnormally"
^IpAppCallControlManager.callAborted

IpAccess.te rminateServ iceA greement

"notifications possible again"
 ^IpAppCallControlManager.callNotificationContinued

IpAccess.terminateServiceAgreement

"notifications not possible"
 IpAppCa ll Co ntrol Manager.cal lNot if icat ionInterrupted

createCall / create a Call obj...

Figure : Application view on the Call Control Manager

4.2.1.1 Active State

In this state a relation between the Application and the Generic Call Control Service has been established. The state
allows the application to indicate that it is interested in call related events. In case such an event occurs, the Call Control
Manager will create a Call object and inform the application by invoking the operation callEventNotify() on the
IpAppCallControlManager interface. The application can also indicate it is no longer interested in certain call related
events by calling disableCallNotification().

4.2.1.2 Notification terminated State

When the Call Control Manager is in the Notification terminated state, events requested with enableCallNotification()
will not be forwarded to the application. There can be multiple reasons for this: for instance it might be that the
application receives more notifications from the network than defined in the Service Level Agreement. Another
example is that the Service has detected it receives no notifications from the network due to e.g. a link failure. In this
state no requests for new notifications will be accepted.

4.2.2 State Transition Diagrams for IpCall

The state transition diagram shows the application view on the Call object for 3GPP.

Network R eleased

Finished

Application
Released

release
deassignCall

timeout ĉallFaultDetected("timeout on release")

In state No Parties and Finished, a timer
should prev ent the object f rom occupuing
resources.
Upon expiry of this timer, callEnded() should
be inv oked with a release cause of 102
(Recov ery on timer expiry). In case when no
IpAppCall is av ailable on which to inv oke
callEnded(), callAborted() shall be inv oked
on the IpAppCallControlManager as this is
an abnormal termination

Activ e

2 Parties in
Call

1 Party in
Call

2 Parties in
Call

1 Party in
Call

superv iseCallReq

setAdv iceOf Charge

deassignC all

release

"call ends : calling party disconnects" ĉallEnded

"call ends: calling party abandoned" ĉallEnded
"call ends : called party disconnects"[monitor f or this ev ent] ĉallEnded, routeRes(party disconnect)

"f ault detected"[f ault cannot be communicated with network ev ent] ĉallFaultDetected

"ca ll ends: calling party dis connect s"[no m onito r f or th is ev ent] ĉallEnded

"requested inf ormation ready "
ĝetCallInf oRes, superv iseCallRes

[no reports requested with
getCallInf oReq AND
superv iseCallReq]

"fau lt in ret riev al of information" ĝetCal lInf oErr,
superv iseCallErr

deassignC al l

[no reports reques ted with getCall Inf oReq AND
superv iseCallReq]

"requested inf ormation ready " ĝetCallInf oRes,
superv iseCallRes

release

"f ault in retriev al of inf ormation" ĝetCallInf oErr,
superv iseCallErr

"call superv ision ev ent" ŝuperv iseCallRes

"network ev ent receiv ed f or which was monitored[routeRes]

getCallInf oReq

"answer"

"connection to called party
unsuccessf ul"[monitor mode = interrupt]

^routeRes

"routing aborted or inv alid address" r̂outeErr

"disconnect f rom called party "[monitor mode =
interrupt] r̂outeRes, getCallInf oRes,

superv iseCallRes

routeReq

IpAppCallControlManager.callEv entNotif y s etCal lChargePlan

Figure : Application view on the IpCall object for 3GPP

4.2.2.1 Network Released State

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq()
and / or superviseCallReq(). The information will be returned to the application by invoking the methods
getCallInfoRes() and / or superviseCallRes() on the application. Also when a call was unsuccessful these methods are
used. In case the application has not requested additional call related information immediately a transition is made to
state Finished.

4.2.2.2 Finished State

In this state the call has ended and no call related information is to be send to the application. The application can only
release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release
the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is
also responsible for destroying it when the object is no longer needed.

4.2.2.3 Application Released State

In this state the application has requested to release the Call object and the Gateway collects the possible call
information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested
additional call related information the Call object is destroyed immediately.

4.2.2.4 Active State

In this state a call between two parties is being setup or present. Refer to the substates for more details. The application
can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge
information by calling setAdviceOfCharge() as well as to define the charging by invoking setCallChargePlan..

Call processing is suspended when a network event is met for the call, which was requested to be monitored in the
P_CALL_MONITOR_MODE_INTERRUPT. In order to resume of the suspended call processing, the application
invokes continueProcessing(), or routeReq(), release() or deassignCall() method.

4.2.2.5 1 Party in Call State

When the Call is in this state a calling party is present. The application can now request that a connection to a called
party be established by calling the method routeReq().

In this state the application can also request the gateway for a certain type of charging of the call by calling
setCallChargePlan(). The application can also request for charging related information by calling getCallInfoReq(). The
setCallChargePlan() and getCallInfoReq() should be issued before requesting a connection to a called party by means of
routeReq().

When the calling party abandons the call before the application has invoked the routeReq() operation, the gateway
informs the application by invoking callFaultDetected() and also the operation callEnded() will be invoked. When the
calling party abandons the call after the application has invoked routeReq() but before the call has actually been
established, the gateway informs the application by invoking callEnded().

When the called party answers the call, a transition will be made to the 2 Parties in Call state. In case the call can not be
established because the application supplied an invalid address or the connection to the called party was unsuccessful
while the application was monitoring for the latter in interrupt mode, the Call object will stay in this state

In this state user interaction is possible unless there is an outstanding routing request.

4.2.2.6 2 Parties in Call State

A connection between two parties has been established.

In case the calling party disconnects, the gateway informs the application by invoking callEnded().

When the called party disconnects different situations apply:

1. the application is monitoring for this event in interrupt mode: a transition is made to the 1 Party in Call state, the
application is informed with routeRes with indication that the called party has disconnected and all requested reports are
sent to the application. The application now again has control of the call.

2. the application is monitoring for this event but not in interrupt mode. In this case a transition is made to the Network
Released state and the gateway informs the application by invoking the operation routeRes() and callEnded().

3. the application is not monitoring for this event. In this case the application is informed by the gateway invoking the
callEnded() operation and a transition is made to the Network Released state.

In this state user interaction is possible, depending on the underlying network.

Annex B (informative):
Change history

Change history
Date TSG # TSG Doc. CR Rev Subject/Comment Old New
Mar 2001 CN_11 NP-010134 047 - CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158) 3.2.0 1.0.0
June 2001 CN_12 NP-010327 -- -- Approved at TSG CN#12 and placed under Change Control 2.0.0 4.0.0
Sep 2001 CN_13 NP-010467 001 -- Changing references to JAIN 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 002 -- Correction of text descriptions for methods enableCallNotification and

createNotification
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 003 -- Specify the behaviour when a call leg times out 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 004 -- Removal of Faulty state in MPCCS Call State Transition Diagram and

method callFaultDetected in MPCCS in OSA R4
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 005 -- Missing TpCallAppInfoSet description in OSA R4 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 006 -- Redirecting a call leg vs. creating a call leg clarification in OSA R4 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 007 -- Introduction of MPCC Originating and Terminating Call Leg STDs for

IpCallLeg
4.0.0 4.1.0

Sep 2001 CN_13 NP-010467 008 -- Corrections to SetChargePlan() Addition of PartyToCharge parmeter 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 009 -- Corrections to SetChargePlan() 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 010 -- Remove distinction between final- and intermediate-report 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 011 -- Inclusion of TpMediaType 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 012 -- Corrections to GCC STD 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 013 -- Introduction of sequence diagrams for MPCC services 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 014 -- The use of the REDIRECT event needs to be illustrated 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 015 -- Corrections to SetCallChargePlan() 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 016 -- Add one additional error indication 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 017 -- Corrections to Call Control – GCCS Exception handling 4.0.0 4.1.0
Sep 2001 CN_13 NP-010467 018 -- Corrections to Call Control – Errors in Exceptions 4.0.0 4.1.0
Dec 2001 CN_14 NP-010597 019 -- Replace Out Parameters with Return Types 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 020 -- Removal of time based charging property 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 021 -- Make attachMedia() and detachMedia() asynchronous 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 022 -- Correction of treatment datatype in superviseReq on call leg 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 023 -- Corrections to Call Control Data Types 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 024 -- Correction to Call Control (CC) 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 025 -- Amend the Generic Call Control introductory part 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 026 -- Correction in TpCallEventType 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 027 -- Addition of missing description of RouteErr() 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 028 -- Misleading description of createAndRouteCallLegErr() 4.1.0 4.2.0
Dec 2001 CN_14 NP-010597 029 -- Correction to values of TpCallNotificationType,

TpCallLoadControlMechanismType
4.1.0 4.2.0

Dec 2001 CN_14 NP-010695 030 -- Correction of method getLastRedirectionAddress 4.1.0 4.2.0
Mar 2002 CN_15 NP-020106 031 -- Add P_INVALID_INTERFACE_TYPE exception to

IpService.setCallback() and IpService.setCallbackWithSessionID()
4.2.0 4.3.0

Mar 2002 CN_15 NP-020106 032 -- Correction of Event Subscription/Notification Data Type 4.2.0 4.3.0
Mar 2002 CN_15 NP-020106 033 -- Correction of parameter name in IpCallLeg.routeReq() and in

IpCallLeg.setAdviceOfCharge()
4.2.0 4.3.0

Mar 2002 CN_15 NP-020106 034 -- Clarification of ambiguous Event handling rules 4.2.0 4.3.0
Jun 2002 CN_16 NP-020180 035 -- Correction to TpCallChargePlan 4.3.0 4.4.0
Jun 2002 CN_16 NP-020180 036 -- Correction to CAMEL Service Property values 4.3.0 4.4.0
Sep 2002 CN_17 NP-020424 057 -- Correction on use of NULL in Call Control API 4.4.0 4.5.0
Mar 2003 CN_19 NP-030020 058 -- Correction of status of methods to interfaces in clause 6.3 4.5.0 4.6.0
Mar 2003 CN_19 NP-030020 059 -- Correction to TpReleaseCauseSet in Multi Party Call Control 4.5.0 4.6.0
Mar 2003 CN_19 NP-030020 060 -- Correction to Sequence Diagrams to remove incorrect Framework

references
4.5.0 4.6.0

Mar 2003 CN_19 NP-030020 061 -- Correction to User Interaction Prepaid Sequence Diagrams 4.5.0 4.6.0
Mar 2003 CN_19 NP-030020 062 -- Correction to remove unused TpCallChargeOrder 4.5.0 4.6.0
Mar 2003 CN_19 NP-030020 063 -- Correction to TpCallEventCriteriaResult in Generic Call Control 4.5.0 4.6.0
Mar 2003 CN_19 NP-030020 064 -- Correction of status of methods to interfaces in clause 7.3 4.5.0 4.6.0
Jun 2003 CN_20 NP-030238 065 -- Correction of the description for callEventNotify & reportNotification 4.6.0 4.7.0
Dec 2003 CN_22 NP-030544 066 -- Correction of description in superviseRes and superviseCallRes 4.7.0 4.8.0

	NP-040255.doc
	29198-04-2CR012.doc
	29198-04-2CR013.doc
	29198-04CR067.doc

