Page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030648

Meeting #25, Bangkok, THAILAND, 27 - 31 October 2003

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-13
	CR
	006
	(

rev
	-
	(

Current version:
	5.2.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	x

	

	Title:
(

	Correction of standard datatypes supported by TpPolicy - Align with 29.198-02

	
	

	Source:
(

	CN5 (Telcordia, jlbakker@research.telcordia.com; Lucent, squtub@lucent.com)

	
	

	Work item code:
(

	OSA2
	
	Date: (

	19/11/2003

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	In order to prevent increasing the number of types in OSA common types have been defined. A companion CR corrects the list types specified by TpAttributeType. This CR proposes to use common type TpAttributeType rather than a custom copy for reasons of clarity to application developers, flexibility and ease of maintenance.

	
	

	Summary of change:
(

	TpAttributeType is extended with the CORBA standard primitive types, CORBA complex types, and an XML datatype, allowing any IDL or XML-expressable and verifiable datatype to be passed, including Boolean, Digit and Date. The original TpAttributeType only allows 3 types.

	
	

	Consequences if
(

not approved:
	Limited applicability of the Policy Management API; Policy Management API cannot manage, e.g., currency amount based policies such that such policies are portable. Policy typing system not rigourously defined.

	
	

	Clauses affected:
(

	5.2-3, 5.5, 8.12.1, 8.14.1, 10

	
	

	
	Y
	N
	
	

	Other specs
(

	x
	
	 Other core specifications
(

	Rel-6 29.198-13

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	Child CR to Rel-5 29.198-02 CR in N5-030643.

Rel-6 Mirror CR in N5-030647.

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
5.2 Introduce condition & action into rule

This sequence diagram describes how a specific policy rule is managed. A rule consists generally of conditions and of actions, the latter being evaluated if all conditions evaluate to true.

This sequence includes:

- creation of a condition and introduction of it into the rule.

- retrieval of an already defined action object from a repository and introduction into the rule.

- establishing a transaction bracket

Presumption: The Application got a reference to the group, e.g. by having performed the sequence "create&modify" domain.

[image: image1.wmf] : (Logical

View::Application)

 :

IpPolicyGroup

 : IpPolicyRule

 :

IpPolicyManager

 :

IpPolicyRepository

2: createRule()

5: createCondition()

7: getRepository()

8: getAction()

10: setActionList()

11: setConditionList()

1: startTransaction()

3: commitTransaction()

4: startTransaction()

6: commitTransaction()

9: startTransaction()

12: commitTransaction()

1:
Opens the transaction bracket.

2:
creates a rule object in the group by passing the name as parameter. The method returns the reference to the new rule object.

3:
Closes the transaction bracket.

4:
Opens the transaction bracket.

5:
After having created the rule object one can "fill" it with actions and conditions. Here a condition is created on the rule object, thus becoming a part of the rule. Conditions defined in such a way cannot be reused in other rules. For this the repository approach should be used.

Parameters passed are the condition name and the condition type.

Returns a reference to this condition object.

Note that: the type of condition object that is to be created must be one of those specified in TpPolicyConditionType, section 11.1.4.

The method createCondition() is used to create a new instance of a condition type in the repository or rule. This method passes the name of the condition, the type of the condition and an approriate set of attribute-value pairs. Note that it is necessary to include, within the conditionAttributes argument of createCondition(), all those attribute-value pairs that are not inherited from IpPolicyCondition - if the inherited attribute-value pairs are included in this argument then their assigned values will override the values assigned prior to this assignment. Thus, for example, if the new condition type to be created is TpPolicyExpressionCondition, then the attribute named "Expression" and its value must be included in conditionAttributes (also see section 8.1.12). Note that this call may throw an exception if the value of "Expression" is not parsable.

The steps to create an action object instance are similar to those taken to create a condition object instance. We use the method createAction() to create a new action instance. Note that an action object must be one of those specified in TpPolicyActionType, section 11.1.7. It is necessary to include all the attribute-value pairs that are not inherited from IpPolicyAction, in the actionAttributes argument of createAction() .

6:
Closes the transaction bracket.

7:
Now we're using the repository approach, i.e. reusable condition or action objects. In this example we reuse an action.

For that purpose we ask at the IpPolicyManager interface for a reference to a named repository.

The repository name is passed.

Returns the reference to the repository.

8:
If we know already the name of the action object one retrieves the action directly by passing the name as parameter. Otherwise one has to retrieve the name first by using an action iterator.

Returns a reference to the action object.

9:
Opens the transaction bracket.

10:
Now, the action(s) must be assigned to the rule. Furthermore and different to the conditions, one has to assign an ordering number to the action.

Passed parameter is the action list, which is a list of action reference/ sequence pairs.

11:
After having created or retrieved all needed conditions they must be assigned to the rule. This is done by passing the list of condition to that method.

This is explicitly done by passing TpPolicyConditionList again consisting of TpPolicyConditionListElements which contains the reference the IpPolicyRule object created with message 2.

If the rule is active, this will then cause the expression defined in the condition to be evaluated (as often as necessary). Note that the binding between the variables referenced in the expression and the instances of the variable available is done each time the expression is evaluated. That is, when evaluating a variable reference, each enclosing domain is searched in order (from closest to farthest) for a matching variable. If one is found, it is used. If no matching variable is set, the expression condition fails (evaluates to FALSE).

Activation of actions is done similarly.

12:
Closes the transaction bracket.

5.3 Create & receive an event

This sequence shows how policy events are used.

For clarification we list the different policy related objects used:

- IpPolicyEventDefinition: The "template" used to define allowable events. The template is used to define formally a distinct type of rule condition and rule action, namely, IpPolicyEventCondition and IpPolicyEventAction.

- IpPolicyEventCondition: A special instance of a policy condition used in a rule. The condition evaluates to "True" on the occurrence of the event instance that is formally associated with it.- IpPolicyEventAction: A special instance of a policy action used in a rule. The action results in the generation of an instance of the formal event associated with it.

- TpPolicyEvent: This data type is passed as a parameter in the formal notification (to a client) of the occurrence of an instance of an event.

Presumption: The reference to a rule has been somehow retrieved.

[image: image2.wmf] : (Logical

View::Application)

 : IpPolicyRule

 : (Logical

View::PolicyEng...

 :

IpPolicyManager

 :

IpPolicyEventDefinition

 :

IpPolicyDomain

 :

IpAppPolicyDomain

8: createAction()

11: createNotification()

12: reportNotification()

2: createEventDefinition()

3: setRequiredAttributes()

4: setOptionalAttributes()

5: generateEvent()

6: createCondition()

7: setValidityPeriodCondition()

9: setActionList()

1: startTransaction()

10: commitTransaction()

1:
All changes of policy objects must be performed in a transaction bracket. This method opens the bracket.

2:
This method creates a new event type. Event definitions describe the attributes of a specific event class, which can than be instantiated as policy condition or policy event. Returns the reference to the newly created EventDefinition instance which then can be modified according to ones needs.

3:
Now, after having created a new instance of a policy event definition, one can set the required attributes by passing the respective attribute set ...

4:
... and the optional attributes. Such attributes may be (...).

5:
This method can be used to test the newly created event by passing a attribute set and checking whether the expected event is generated.

6:
This createCondition() method creates locally an instance of PolicyTimePeriodCondition defining the validity period of this rule.

Returns a reference to the new instance of IpPolicyTimePeriodCondition object.

Using createCondition() assign the appropriate values to relevant attributes of this new instance of IpPolicyTimePeriodCondition. For example,

TpAttribute.AttributeName = "TimePeriod"

TpAttribute.AttributeValue.SimpleValue.StringValue = "20000101T080000/20000131T120000"

the latter indicating the time period "January 1, 2000, 0800 through January 31, 2000, noon".

7:
Using the reference got with createCondition() the validity period is set to rule. Before this created condition will not become valid.

8:
The assignment of a policy event is made as for other actions. The difference is the action type passed as parameter: it MUST be of type IpPolicyEventAction.

Passed parameters are the name of the created action, the action type and the attributes of the action; one of these attributes refers by name to the event definition as created before in this sequence.

Returns the reference to the newly created action object.

9:
This method activates the action (here the action event) for this rule. After creation this action is not yet active.

The name of the action object is passed.

10:
This closes the transaction bracket.

11:
Now -- independently of the activities before -- the application can register with the policy domain for events of a certain type. If such an event occurs (as a result of rule's action) the application is notified.

Passed parameters are the callback interface reference and the list of event types the application is interested in.

Returns a sessionID.

12:
In the policy engine complex, a certain event action is performed leading to an event the application registered for. In that case, the application is notified via the callback interface whose reference has been sent with enablePolicyNotification().

Parameters are the sessionID relating the this notification to the specific enablePolicyNotification()-call and the policyEvent arising.

5.5 ASP offering services to prepaid subscribers

The example shown here is based on an Application Service Provider (ASP) offering services to the prepaid subscribers of a certain Network Operator. The ASP discovers that, as part of the business logic of the applications it offers, the prepaid credit of the subscriber needs to be verified with regards to the current charge for the service in order to determine whether the purchase should be allowed or not. Rather than including this credit check in the business logic of each and every application that the ASP has in its service portfolio, the ASP may decide to enable a Policy Rule to be hosted in the Policy Engine of the Network Operator.

[image: image3.wmf]AppLogic

 : IpPolicyManager

 : IpPolicyDomain

 : IpPolicyGroup

 : IpPolicyRule

 : IpPolicyExpressionCondition

 : IpPolicyExpressionAction

1: startTransaction()

2: createDomain()

3: new()

4: createGroup()

5: new()

6: createRule()

7: new()

8: createCondition()

9: new()

10: createAction()

11: new()

12: setConditionList()

13: setActionList()

14: commitTransaction()

1:
For the sake of this example, all activities to create a Domain, a Group, and the Rule are contained within a single transaction. The method startTransaction is used by the application to open the transaction.

2:
The rule in this simplistic example is part of a single group, which in turn is contained within a single domain. The application creates that domain by invoking the method createDomain. The value of the parameter domainName is "eCommerceDomain".

3:
As a result of the createDomain method a new instance of the IpPolicyDomain interface is created. Its interface reference is returned as return parameter of the createDomain method.

4:
Once the domain is created a group is created within that domain. The application invokes the createGroup method, where the parameter groupName has value "PrePaidGroup".

5:
As a result of the createGroup method a new instance of the IpPolicyGroup interface is created. Its interface reference is returned as return parameter of the createGroup method.

6:
At this point in time there exists the "PrePaidGroup" group within the "eCommerceDomain" domain. The actual rule can be created, using the method createRule. The parameter ruleName has value "SufficientCreditRule". The new rule SufficientCreditRule has the following attributes:

-
Enabled == TRUE; the policy rule is currently enabled.

-
RuleUsage == NULL; no free-format usage recommendation is provided.

-
Priority == 0; default value, as there is only one rule.

-
Mandatory == TRUE; mandatory rule, evaluation of the expression must be attempted

-
PolicyRoles == NULL; no roles defined

-
ConditionListType == P_PM_DNF; disjunctive normal form (DNF)

-
SequencedActions == 3; don't care, as there is only one rule.

7:
A new instance of the IpPolicyRule interface is created. createRule returns the reference to this newly created interface.

8:
Once an instance of IpPolicyRule exists, the actual policy rule can be constructed by means of conditions and actions. Invoking the method createCondition creates the condition. The parameter conditionName has value "SufficientCredit". The parameter conditionType has value "P_PM_EXPRESSION_CONDITION", to indicate that the condition must satisfy certain expressional syntax. The parameter conditionAttributes is a set of structures. For this example the set contains of only one attribute structure.

-
ConditionAttribute.AttributeName = "SufficientCreditExpression"

-
ConditionAttribute.AttributeValue.SimpleValue.StringValue = "PrePaidCredit > CurrentCharge"

Note that the variables "PrePaidCredit" and "CurrentCharge" in the expression of AttributeValue are assumed to be defined a priori. The value of the expression is derived from the core grammar expressed in the PM information model.

9:
A new instance of the IpPolicyExpressionCondition interface is created.

10:
The construction of the rule is completed by creating the action that is to be performed when the condition expression evaluates to TRUE. The parameter actionName has value "PurchaseAllowed". The parameter actionType has value "P_PM_EXPRESSION_ACTION" to indicate that the action must satisfy certain expressional syntax. The actionAttributes are again a set containing of only one structure.

-
ActionAttribute.AttributeName = "PurchaseAllowedExpression"

-
ActionAttribute.AttributeValue.SimpleValue.StringValue = "AllowedPurchase == TRUE".

11:
A new instance of the IpPolicyExpressionAction interface is created.

12:
The attributes for the condition are set by invoking the method setConditionList. The conditionList is a list consisting of one structure:

-
conditionList.Condition == <reference to the IpPolicyCondition interface returned by 9>

-
conditionList.GroupNumber == 1; indicates how the conditions need to be grouped in DNF or CNF in case more groups of rules exist.

-
conditionList.Negated == FALSE.

13:
The attributes for the action are set by invoking the method setActionList. The actionList is a list consisting of only one structure:

-
actionList.Action == <reference to the IpPolicyAction interface returned by step 10>

-
actionList.SequenceNumber == 1;

14:
The "SufficientCreditRule" now exists in the "PrePaidGroup" of the "eCommerceDomain". The rules is as follows:

IF " PrePaidCredit > CurrentCharge " THEN "AllowedPurchase == TRUE". This policy rule is enabled upon creation and it is mandatory for the policy engine to evaluate the rule.

The class IpPolicyDomain is defined as a generalized aggregation container, enabling PolicyDomains, PolicyGroups, and PolicyRules to be aggregated in a single container. The following figure shows how this container looks for the example.

 +---+

 |PolicyDomain "eCommerceDomain" |

 | |

 | +---+ |

 | |PolicyGroup "PrePaidGroup" | |

 | | | |

 | | +--+ | |

 | | |PolicyRule "SufficientCreditRule" | | |

 | | | | | |

 | | | +-------------------+ +-------------------+ | | |

 | | | |PolicyCondition | |PolicyAction | | | |

 | | | | "SufficientCredit"| | "PurchaseAllowed" | | | |

 | | | +-------------------+ +-------------------+ | | |

 | | +--+ | |

 | +---+ |

 +---+

8.12.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or categorizing a policy object. Keywords are of one of two types:

o Keywords defined in this document, or in documents that define subinterfaces of the interfaces defined in this document. These keywords provide a vendor-independent, installation-independent way of characterizing policy objects.

o Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and "Review in December 2000".

This document defines the following keywords: "P_PM_KEYWORD_UNKNOWN", " P_PM_KEYWORD_CONFIGURATION", " P_PM_KEYWORD_USAGE", " P_PM_KEYWORD_SECURITY", " P_PM_KEYWORD_SERVICE", " P_PM_KEYWORD_MOTIVATIONAL", " P_PM_KEYWORD_INSTALLATION", and " P_PM_KEYWORD_EVENT". These concepts were originally defined in [PCIM].

One additional keyword is defined: " P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

Expression : TpString

The expression to be evaluated as the condition.
In case this SCF supports both BNF and XML, then the TpAttributeTagInfo of the TpAttribute that populated this expression is used to distinguish between XML and BNF string contents. A TpAttributeTagInfo value of P_XML_TYPE indicates XML as contents of the Expression attribute and a TpAttributeTagInfo value of P_SIMPLE_TYPE indicates BNF as contents of Expression attribute.
The BNF describing the expression is defined as follows:

Expression:= VariableName <Comparison Operator> Constant or VariableName | VariableName <Arithmetic Operator> Constant or VariableName <Comparison Operator> Constant or VariableName | (VariableName<ArithmeticOperator>Constant or VariableName) <ArithmeticOperator> Constant or VariableName <Comparison Operator> Constant or VariableName

It is assumed that the Policy Engine is able to parse an expression defined in the above BNF. The BNF may be extended as appropriate.

Note that:

1.
Variable is assumed to be one of type {P_INT32, P_FLOAT or P_STRING} and consistency of type is assumed when an expression is being defined.

2.
Comparison Operator is one of: {==, !=, <=, >=}, and, Arithmetic Operator is one of {*, +, -, /}. These are reserved symbols. Note that when Variable is of type P_INT32 or P_FLOAT the Comparison and Arithmetic operators have the 'usual' meanings. When Variable is of type string, the comparison operators are the 'standard' string comparison operators. However, the only applicable Arithmetic operators are:

'*' := string concatenation, e.g., abc*cde12 is the string abccde12

'-' := string (positional) difference, e.g., ABCD - ABCD is the null string but abcdef-abc is the string 'def'

'/' := string (positional) overlap, e.g., acbcd/acBCd is the string 'acd'

3.
Example showing an expression formed using Variables of type P_FLOAT (or P_INT32): (bandwidth.allocated - bandwidth.used)/100 >= 36

Note that 'bandwidth' is assumed to be the name of a set of variables and 'allocated' & 'used' are variables (attributes) included in that set.

8.14.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or categorizing a policy object. Keywords are of one of two types:

o Keywords defined in this document, or in documents that define subinterfaces of the interfaces defined in this document. These keywords provide a vendor-independent, installation-independent way of characterizing policy objects.

o Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and "Review in December 2000".

This document defines the following keywords: "P_PM_KEYWORD_UNKNOWN", " P_PM_KEYWORD_CONFIGURATION", " P_PM_KEYWORD_USAGE", " P_PM_KEYWORD_SECURITY", " P_PM_KEYWORD_SERVICE", " P_PM_KEYWORD_MOTIVATIONAL", " P_PM_KEYWORD_INSTALLATION", and " P_PM_KEYWORD_EVENT". These concepts were originally defined in [PCIM].

One additional keyword is defined: " P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

Expression : TpString

The expression that should evaluated.

In case this SCF supports both BNF and XML, then the TpAttributeTagInfo of the TpAttribute that populated this expression is used to distinguish between XML and BNF string contents. A TpAttributeTagInfo value of P_XML_TYPE indicates XML as contents of the Expression attribute and a TpAttributeTagInfo value of P_SIMPLE_TYPE indicates BNF as contents of Expression attribute.
 The BNF describing the expression is defined as follows:

Expression:= VariableName<AssignmentOperator>Constant or VariableName<ArithmeticOperator> Constant or VariableName | VariableName<AssignmentOperator>Constant

It is assumed that the Policy Engine is able to parse an expression defined in the above BNF. The BNF may be extended as appropriate.

Note that:

1.
Variable is assumed to be one of type {TpInt32 P_INT32, P_FLOAT or P_STRING } and consistency of type is assumed when an expression is being defined.

2.
Assignment Operator is denoted by the symbol (within quotes) '='. The assignment operator assigns the value of the 'right hand side' to the variable on the 'left hand side' -- see example below. Arithmetic Operator is one of {*, +, -, /}. All the above mentioned symbols are reserved symbols. Note that when Variable is of type P_INT32 or P_FLOAT the Arithmetic operators have the 'usual' meanings. When Variable is of type string the only applicable operators are the operators (within quotes) '*' (concatenation), '-' (string difference) and '/' (string overlap).

3.
Example showing an assignment expression formed using Variables of type P_FLOAT (or P_INT32): content.charge = content.charge - 30

Note that 'content' is assumed to be the name of a set of variables and 'charge' is a variable (attribute) included in that set. In the above example, the value of content.charge is decremented by 30.

10 PM Service Properties

The following table lists properties relevant to all the PM SCFs

	Property
	Type
	Description

	P_SUPPORTED_ATTRIBUTE_TAGS
	STRING_SET
	Lists the supported attribute tags defined by TpAttributeTagInfo

	P_SUPPORTED_SIMPLE_ATTRIBUTE_TYPES
	STRING_SET
	Lists the supported attribute types defined by TpSimpleAttributeTypeInfo

	P_SUPPORTED_STRUCTURED_ATTRIBUTE_TYPES
	STRING_SET
	Lists the supported attribute types defined by TpStructuredAttributeType, e.g. P_org/csapi/TpAddress.

	P_SUPPORTED_XML
	STRING_SET
	Lists the supported versions of XML specifications such as XML schema specifications (e.g. through URLs), XML versions (e.g. version 1.0) or XPath (e.g. version 1.0)

Implementations of the PM APIs shall have the Service Properties set to the indicated values at a minimum:

P_SUPPORTED_ATTRIBUTE_TAGS = {

P_SIMPLE_TYPE

}

P_SUPPORTED_SIMPLE_ATTRIBUTE_TYPES = {

P_STRING,

P_FLOAT,

P_INT32,

}

Annex C (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	April 2002
	--
	--
	--
	--
	Draft v100 submitted to TSG CN email list for Information
	--
	1.0.0

	June 2002
	CN_16
	NP-020195
	--
	--
	Draft v200 submitted to TSG CN#16 for Approval
	2.0.0
	5.0.0

	Sep 2002
	CN_17
	NP-020439
	001
	--
	Add text to clarify requirements on support of methods
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020395
	002
	--
	Add text to clarify relationship between 3GPP and ETSI/Parlay OSA specifications
	5.0.0
	5.1.0

	Sep 2003
	CN_21
	NP-030352
	004
	--
	Correction to Java Realisation Annex
	5.1.0
	5.2.0

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

CR page 1

