[image: image5.wmf]

TD <>
DTR/TISPAN-01021-08 V.0.0.3 (2005-01)
Technical Report

Mapping of Parlay X Web Services to Parlay/OSA APIs;

Part 8: Terminal Status Mapping

[image: image1.png]V- Y

7/

el

Reference

DTR/TISPAN-01021-08-OSA

Keywords

API, OSA, SERVICE

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, send your comment to:
editor@etsi.org
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.

© The Parlay Group 2005.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Contents

5Intellectual Property Rights

Foreword
5
1
Scope
7
2
References
7
3
Definitions and abbreviations
7
3.1
Definitions
7
3.2
Abbreviations
7
4
Mapping Description
8
5
Sequence Diagrams
8
5.1
Single Address Query
8
5.2
Group Query
9
5.3
Notification
11
6
Detailed Mapping Information
12
6.1
Operations
12
6.1.1
getStatus
12
6.1.1.1
Mapping to IpUserStatus.statusReportReq
13
6.1.1.2
Mapping from IpAppUserStatus.statusReportRes
13
6.1.1.3
Mapping from IpAppUserStatus.statusReportErr
14
6.1.2
getStatusForGroup
14
6.1.2.1
Mapping to IpUserStatus.statusReportReq
14
6.1.2.2
Mapping from IpAppUserStatus.statusReportRes
14
6.1.2.3
Mapping from IpAppUserStatus.statusReportErr
15
6.1.3
startNotification
15
6.1.3.1
Mapping to IpUserStatus.triggeredStatusReportingStartReq
16
6.1.3.2
Mapping to IpUserStatus.statusReportReq
16
6.1.4
endNotification
17
6.1.4.1
Mapping to IpUserStatus.triggeredStatusReportingStop
17
6.1.5
statusNotification
17
6.1.5.1
Mapping from IpAppUserStatus.triggeredStatusReport
17
6.1.5.2
Mapping from IpAppUserStatus.statusReportRes
18
6.1.6
statusError
18
6.1.6.1
Mapping from IpAppUserStatus.triggeredStatusReportErr
19
6.1.7
statusEnd
19
6.2
Exceptions
19
6.2.1
Mapping from TpMobilityError
19
6.2.2
Mapping from Parlay/OSA Method Exceptions
19
7
Additional Notes
19
Annex A (informative): Change history
20

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Technical Report (TR) has been produced by ETSI Technical Committee TISPAN.

The present document is part 8 of a multi-part deliverable providing an informative mapping of Parlay X Web Services to the Parlay Open Service Access (OSA) APIs and, where applicable, to IMS, as identified below.

· Part 1 “Common Mapping”

· Part 2 “Third Party Call Mapping”
· Sub-part 1 “Mapping to Generic Call Control”
· Sub-part 2 “Mapping to Multi-Party Call Control”
· Part 3 “Call Notification Mapping"
· Sub-part 1 “Mapping to Generic Call Control”
· Sub-part 2 “Mapping to Multi-Party Call Control”
· Part 4 “Short Messaging Mapping”
· Sub-part 1 “Mapping to User Interaction”
· Sub-part 2 “Mapping to Multi-Media Messaging”
· Part 5 “Multimedia Messaging Mapping”
· Sub-part 1 “Mapping to User Interaction”
· Sub-part 2 “Mapping to Multi-Media Messaging”
· Part 6 “Payment Mapping”
· Part 7 “Account Management Mapping”
· Part 8 “Terminal Status Mapping”
· Part 9 “Terminal Location Mapping”
· Sub-part 1 “Mapping to Mobility User Location”
· Sub-part 2 “Mapping to Mobility User Location CAMEL”
· Part 10 “Call Handling Mapping”
· Sub-part 1 “Mapping to Generic Call Control and User Interaction”
· Sub-part 2 “Mapping to Multi-Party Call Control and User Interaction”
· Sub-part 3 “Mapping to Policy Management”
· Part 11 “Audio Call Mapping”

· Sub-part 1 “Mapping to Generic Call Control and User Interaction”
· Sub-part 2 “Mapping to Multi-Party Call Control and User Interaction”
· Part 12 “Multimedia Conference Mapping”
· Part 13 “Address List Management Mapping”
· Null part: no mapping to Parlay/OSA APIs
· Part 14 “Presence Mapping”

· Sub-part 1 “Mapping to PAM”
· Sub-part 2 “Mapping to SIP/IMS Networks”
The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP.

1
Scope

Should start:

The Parlay X Web Services provide powerful yet simple, highly abstracted, imaginative, telecommunications functions that application developers and the IT community can both quickly comprehend and use to generate new, innovative applications.
One of the following paragraphs should start with:

The Open Service Access (OSA) specifications define an architecture that enables application developers to make use of network functionality through an open standardised interface, i.e. the Parlay/OSA APIs.

The present document is part 8 of an informative mapping of Parlay X Web Services to Parlay/OSA APIs.

The present document specifies the mapping of the Parlay X Terminal Status Web Service to the Mobility User Status Service Capability Feature (SCF).

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication and/or edition number or version number) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

[1]
ETSI TR 121 905: "Universal Mobile Telecommunications System (UMTS); Vocabulary for 3GPP Specifications (3GPP TR 21.905)".

[2]
W3C Recommendation (2 May 2001): "XML Schema Part 2: Datatypes".

NOTE:
Available at http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

[3]
DTR-TISPAN-01021-01: "Mapping of Parlay X Web Services to Parlay/OSA APIs; Part 1: Common Mapping".

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in DTR-TISPAN-01021-01 [3] apply.

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in DTR-TISPAN-01021-01 [3] apply.

4
Mapping Description

The Terminal Status capability can be implemented with Parlay/OSA Mobility User Status.

It is applicable to ETSI OSA 1.x/2.x/3.x, Parlay/OSA 3.x/4.x/5.x and 3GPP Releases 4.x/5.x/6.x..
5
Sequence Diagrams

5.1 Single Address Query

To query the terminal status for a single address, the synchronous request results in an asynchronous request being made to the User Status SCF to retrieve the status, and the result translated to return to the Enterprise Application.
[image: image5.wmf]

5.2 Group Query

A query of the terminal status for a group of addresses (using either application or network managed groups) requires the service to create the set of terminals for which the request applies, then interacting with the User Status SCF to retrieve the information for the set of terminals.

5.3 Notification

Notifications of change in terminal status may be made by setting up a notification with the User Status SCF and managing those notifications to provide the appropriate notifications and content to the Enterprise Application. In the following sequence diagram, the yellow highlighted sub-sequence represents optional actions initiated by the Terminal Status web service, if the checkImmediate flag in the startNotificationRequest message is enabled.

6 Detailed Mapping Information

6.1
Operations

6.1.1 getStatus
The sequence diagram in 5.1 illustrates the flow for the getStatus operation.

The getStatus operation is synchronous from the Parlay X client’s point of view. It is mapped to the following Parlay/OSA methods:

· IpUserStatus.statusReportReq
· IpAppUserStatus.statusReportRes
· IpAppUserStatus.statusReportErr

6.1.1.1 Mapping to IpUserStatus.statusReportReq
The IpUserStatus.statusReportReq operation is invoked with the following parameters:

Name
Type
Comment

appStatus
IpAppUserStatusRef
Reference to callback (internal)

users
TpAddressSet
Populated with one TpAddress element, constructed based on the URI provided in address part of getStatusRequest, mapped as described in in DTR-TISPAN-01021-01 [3].

The result from IpUserStatus.statusReportReq is used internally to correlate the callbacks.

Parlay exceptions thrown by IpUserStatus.statusReportReq are mapped to Parlay X exceptions as defined in section 6.2.2.

6.1.1.2 Mapping from IpAppUserStatus.statusReportRes

When status information is available, the IpAppUserStatus.statusReportRes callback is invoked. It is expected to contain a TpUserStatus element whose UserID field matches the TpAddress passed to the status request operation. The fields of the TpUserStatus element are mapped to the result part of the getStatusResponse message as follows:

Name
Type
Comment

UserID
TpAddress
Matches the TpAddress element passed to the status request operation.

StatusCode
TpMobilityError
If the value is P_M_OK, a result is returned, otherwise an exception is thrown by getStatus using the mapping from TpMobilityError values to Parlay X Exceptions as defined in section 6.2.1.

Status
TpUserStatusIndicator
If the StatusCode value (above) is P_M_OK, then the Status value is mapped to the Status enumeration as follows:

P_US_REACHABLE -> Reachable
P_US_NOT_REACHABLE -> Unreachable

P_US_BUSY -> Busy

TerminalType
TpTerminalType
Not mapped

6.1.1.3
Mapping from IpAppUserStatus.statusReportErr
If an error prevents the status information from being reported, the IpAppUserStatus.statusReportErr callback is invoked. If this occurs, an exception will be thrown by getStatus based on the value of the cause parameter. Refer to the TpMobilityError to Parlay X exception mapping as defined in section 6.2.1.

6.1.2
getStatusForGroup
The sequence diagram in 5.2 illustrates the flow for the getStatusForGroup operation.

The getStatusForGroup operation is synchronous from the Parlay X client’s point of view. It is mapped to the following Parlay/OSA methods:
· IpUserStatus.statusReportReq
· IpAppUserStatus.statusReportRes
· IpAppUserStatus.statusReportErr

6.1.2.1
Mapping to IpUserStatus.statusReportReq
The IpUserStatus.statusReportReq operation is invoked with the following parameters:

Name
Type
Comment

appStatus
IpAppUserStatusRef
Reference to callback (internal)

users
TpAddressSet
Populated with TpAddress elements, constructed based on:

· The individual address URIs passed in the addresses part of getStatusForGroupRequest
· The address URIs obtained by resolving group URIs in the addresses part into individual address URIs.

URI to TpAddress mapping is described in DTR-TISPAN-01021-01 [3]

The result from IpUserStatus.statusReportReq is used internally to correlate the callbacks.

Parlay exceptions thrown by IpUserStatus.statusReportReq are mapped to Parlay X exceptions as defined in section 6.2.2.

6.1.2.2
Mapping from IpAppUserStatus.statusReportRes
When status information is available, the IpAppUserStatus.statusReportRes callback is invoked. It is expected to contain a TpUserStatus element for each requested TpAddress in the original request. The TpUserStatus elements are used to create an array of StatusData elements comprising the result part of the getStatusForGroupResponse message. The mapping between TpUserStatus and StatusData is as follows:

TpUserStatus element
StatusData element

Name
Type
Name
Type
Comment

UserID
TpAddress
address
anyURI
TpAddress to URI mapping is described in DTR-TISPAN-01021-01 [3].

StatusCode
TpMobilityError
reportStatus
Retrieval
Status
StatusCode value is mapped to reportStatus as follows:

P_M_OK -> Retrieved
P-M-xxx (i.e. all other values) -> Error

Status
TpUserStatus
Indicator
currentStatus
Status
If the StatusCode value (above) is P_M_OK, then the mapping is as follows:

P_US_REACHABLE -> Reachable
P_US_NOT_REACHABLE -> Unreachable

P_US_BUSY -> Busy REF _Ref84746452 \h

TerminalType
TpTerminalType

Not mapped

error
Information
common:
ServiceError
If the StatusCode value (above) is NOT P_M_OK, then the value of this element is defined in section 6.2.1.

In the event that a a TpUserStatus element is missing for a requested address in the original request, then a StatusData element (with a reportStatus value = NotRetrieved) is included in the result part of the getStatusForGroupResponse message.

6.1.2.3
Mapping from IpAppUserStatus.statusReportErr
If an error prevents the status information from being reported, the IpAppUserStatus.statusReportErr callback is invoked. If this occurs, an exception will be thrown by getStatusForGroup based on the value of the cause parameter. Refer to the TpMobilityError to Parlay X exception mapping as defined in section 6.2.1.

6.1.3
startNotification
The sequence diagram in 5.3 illustrates the flow of events when a client establishes a triggered status notification request.

The startNotification operation is mapped to the following Parlay/OSA methods:

· IpUserStatus.triggeredStatusReportingStartReq
· IpUserStatus.statusReportReq

6.1.3.1 Mapping to IpUserStatus.triggeredStatusReportingStartReq

The Endpoint reference provided by the client in the reference part of the startNotificationRequest message will be used by the Parlay X implementation to locate the client’s statusNotification, statusError and statusEnd operations when network events occur that trigger notifications.

The string passed by the client in the Correlator element of the reference part will be passed back to the client when the client’s statusNotification, statusError and statusEnd operations are invoked as a result of status changes in the network that match this notification request.

The IpUserStatus.triggeredStatusReportingStartReq operation is invoked with the following parameters:

Name
Type
Comment

appStatus
IpAppUserStatusRef
Reference to callback (internal)

users
TpAddressSet
Populated with TpAddress elements. These are constructed based on:

· The individual address URIs passed in the addresses part
· The address URIs obtained by resolving group URIs in the addresses part into individual address URIs

URI to TpAddress mapping is described in DTR-TISPAN-01021-01 [3].

The result from IpUserStatus.triggeredStatusReportingStartReq is stored internally and associated with the string passed by the client in the Correlator element of the reference part.

Exceptions thrown by IpUserStatus.triggeredStatusReportingStartReq are mapped to Parlay X exceptions as defined in section 6.2.2.
6.1.3.2 Mapping to IpUserStatus.statusReportReq
If the checkImmediate part of the startNotificationRequest message is set to a value of “True”, then the IpUserStatus.statusReportReq operation is invoked with the following parameters:

Name
Type
Comment

appStatus
IpAppUserStatusRef
Reference to callback (internal)

users
TpAddressSet
Populated with TpAddress elements, constructed based on:

· The individual address URIs passed in the addresses part

· The address URIs obtained by resolving group URIs in the addresses part into individual address URIs.

URI to TpAddress mapping is described in DTR-TISPAN-01021-01 [3]

The result from IpUserStatus.statusReportReq is used internally to correlate the callback: i.e. IpAppUserStatus.statusReportRes/Err.

Parlay exceptions thrown by IpUserStatus.statusReportReq are ignored and not reported to the application over the Parlay X interface. Similarly, if the IpAppUserStatus.statusReportErr method callback is invoked, the Parlay X application is not notified.

· Note that, although the secondary “checkImmediate” feature of the startNotification operation has failed, the primary feature may be operational.
6.1.4
endNotification

The sequence diagram in 5.3 illustrates the flow of events when a client establishes a triggered status notification request (and subsequently ends it).

The endNotification operation is mapped to the following Parlay/OSA methods:

· IpUserStatus.triggeredStatusReportingStop

6.1.4.1
Mapping to IpUserStatus.triggeredStatusReportingStop
The IpUserStatus.triggeredStatusReportingStop operation is invoked with the following parameters:

Name
Type
Comment

stopRequest
TpMobilityStopAssignmentData

The fields of this structure are populated as follows:

stopRequest.AssignmentId
TpSessionID
Set to the TpSessionID value associated with the string passed by the client in the correlator part of endNotificationRequest.

stopRequest.StopScope
TpMobilityStopScope
Set to P_M_ALL_IN_ASSIGNMENT

stopRequest.Users
TpAddressSet
Not populated

Exceptions thrown by IpUserStatus.triggeredStatusReportingStop are mapped to Parlay X exceptions as defined in section 6.2.2.

6.1.5 statusNotification

The sequence diagram in 5.3 illustrates the flow of events when a client establishes a triggered status notification request (and an event subsequently occurs to trigger a status notification).

The statusNotification operation is mapped from the following Parlay/OSA methods:

· IpAppUserStatus.triggeredStatusReport
· IpAppUserStatus.statusReportRes
6.1.5.1
Mapping from IpAppUserStatus.triggeredStatusReport

The statusNotification operation is invoked by the Parlay X implementation when a status change occurs in the network that matches a client’s request for triggered status. It is invoked in direct response to a Parlay IpAppUserStatus.triggeredStatusReport invocation. The parameter mapping is as follows:

IpAppUserStatus.triggeredStatus
Report
statusNotification

Name
Type
Name
Type
Comment

assignmentID
TpSessionID
correlator
string
Parlay X implementation may use the assignmentID to determine the correlator value to return

status
TpUserStatus
Elements are mapped as follows:

status.UserID
TpAddress
address
anyURI
address URI constructed as described in DTR-TISPAN-01021-01 [3]

status.Status
Code
TpMobilityError

Not mapped. If TpMobilityError is any value other than P_M_OK, then the statusError operation is invoked instead, as described in section 6.1.6.

status.Status
TpUserStatus
Indicator
current
Status
Status
The mapping is as follows:

P_US_REACHABLE -> Reachable
P_US_NOT_REACHABLE -> Unreachable

P_US_BUSY -> Busy

status.TerminalType
TpTerminalType

Not mapped.

6.1.5.2 Mapping from IpAppUserStatus.statusReportRes
If the checkImmediate part of a startNotificationRequest message was set to a value of “True” (reference 6.1.3.2) then, when status information is available, the IpAppUserStatus.statusReportRes callback is invoked. It is expected to contain a TpUserStatus element for each requested TpAddress. Each TpUserStatus element is mapped to a separate statusNotificationRequest message. The parameter mapping is as follows:

IpAppUserStatus.
StatusReportRes
statusNotificationRequest message part

Name
Type
Name
Type
Comment

assignmentID
TpSessionID
correlator
string
Parlay X implementation may use the assignmentID to determine the correlator value to return

status
TpUserStatus
Elements of status are mapped as follows:

status.UserID
TpAddress
address
anyURI
address URI constructed as described in DTR-TISPAN-01021-01 [3]

status.Status
Code
TpMobilityError

Not mapped. If TpMobilityError is any value other than P_M_OK, then the TpUserStatus element is ignored: no statusNotificationRequest message is sent for this address.

status.Status
TpUserStatus
Indicator
current
Status
Status
The mapping is as follows:

P_US_REACHABLE -> Reachable
P_US_NOT_REACHABLE -> Unreachable

P_US_BUSY -> Busy REF _Ref84746452 \h

status.TerminalType
TpTerminal
Type

Not mapped.

6.1.6 statusError
The sequence diagram in 5.3 illustrates the flow of events associated with the triggered status notification capability.

The statusError operation is mapped from the following Parlay/OSA methods:

· IpAppUserStatus.triggeredStatusReportErr
6.1.6.1
Mapping from IpAppUserStatus.triggeredStatusReportErr
The statusError operation is invoked by the Parlay X implementation when an error condition occurs that results in the termination of the entire notification request by the Parlay X implementation. It is invoked in response to a Parlay IpAppUserStatus.triggeredStatusReportErr invocation. The parameter mapping is as follows:

IpAppStatus.triggeredStatus
ReportErr
statusError

Name
Type
Name
Type
Comment

assignmentID
TpSessionID
correlator
string
Parlay X implementation may use the assignmentID to determine the correlator value to return

cause
TpMobilityError
reason
string
reason string is constructed based on the value of the cause and/or diagnostic parameter(s)

diagnostic
TpMobility
Diagnostic

6.1.7
statusEnd

The statusEnd notification is called when the notification ends due to the end of the duration being met, or when the count of notifications has been delivered. The statusEnd notification does not occur when the notification is deliberately ended or in the case of an error. There is no mapping from Parlay/OSA for this capability.

6.2 Exceptions

6.2.1 Mapping from TpMobilityError
The following table indicates how TpMobilityError values are mapped to Parlay X exceptions:

Value
Service
Exception
Notes

P_M_SYSTEM_FAILURE
SVC0001
With error number

P_M_UNAUTHORIZED_NETWORK
SVC0001
With error number

P_M_UNAUTHORIZED_APPLICATION
SVC0001
With error number

P_M_UNKNOWN_SUBSCRIBER
SVC0002

P_M_ABSENT_SUBSCRIBER
SVC0002

P_M_POSITION_METHOD_FAILURE
SVC0001
With error number

6.2.2 Mapping from Parlay/OSA Method Exceptions

For this mapping document, the mapping of Parlay/OSA API method exceptions to Parlay X Web Service exceptions is common and defined in DTR-TISPAN-01021-01 [3]. There are no service-specific exception mappings.

7
Additional Notes

No additional notes.

Annex A (informative):
Change history

Document history

v.0.0.1
October 2004
1st draft of DTR-TISPAN-01021-08. Derived from PX WG contribution: “PX-IBM-2004-0003r6-Terminal-Status”

v.0.0.2
November 2004
2nd draft of DTR-TISPAN-01021-08. Revised based on discussion and action items recorded at JWG Meeting #29 in Barcelona, Spain.

v.0.0.3
January 2005
3rd draft of DTR-TISPAN-01021-08. Revised following email review period. In particular, replaced the sequence diagrams, added mappings for the CheckImmediate behavior and adjusted the document layout to be consistent with other mapping documents.

getStatusResponse

statusReportRes()

statusReportReq()

 “new”

 “forward event”

getStatusRequest

IpUser�Status

IpApp�UserStatus

Terminal Status	

Application

getStatusForGroupResponse

statusReportRes()

statusReportReq()

 “new”

 “forward event”

getStatusForGroupRequest

IpUser�Status

IpApp�UserStatus

Terminal Status	

Application

triggeredStatusReport ()

 “forward event”

statusReportReq ()

endNotificationResponse

triggeredStatusReportingStop ()

endNotificationRequest

statusNotificationResponse

statusNotificationRequest

triggeredStatusReport ()

 “forward event”

statusNotificationResponse

startNotificationResponse

statusNotificationRequest

statusReportRes ()

triggeredStatusReportingStartReq ()

 “new”

startNotificationRequest

IpUser�Status

IpApp�UserStatus

Terminal Status	

Application

statusNotificationRequest

statusNotificationResponse

 “forward event”

statusNotificationResponse

statusNotificationRequest

_1065009619.doc

