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ABSTRACT
This paper reports an analysis of the security of the Trust and Security Management (TSM) protocol, an authentication protocol which is part of the Parlay/OSA Application Program Interfaces (APIs). Parlay/OSA APIs allow third party service providers to develop new services that can access, in a controlled and secure way, the network capabilities offered by the network operator. The role of the TSM protocol, run by network gateways, is to authenticate the client applications trying to access and to use the services offered. For this reason, potential security flaws in the authentication protocol can lead to unauthorized use of the network with evident damages to the operator and to the quality of services. This paper shows how a rigorous formal analysis of the TSM protocol allowed us to discover serious weaknesses in the model describing its authentication procedure. The paper reports on the design activity of the formal model, the tool-aided verification we carried out and the security flaws we discovered. This allows us to discuss how the security of the TSM protocol can be generally improved.
1 Introduction
Service architectures based on Parlay/Parlay X Application Program Interfaces (APIs) [9], allow network operators to supply service capability features to third party service providers. Parlay/Parlay X APIs propose an attractive system where programmers, not necessary experts in telephony or telecommunication, can develop innovative resources or design new services. 

When network resources are broadly accessible, it becomes crucial to define and enforce appropriate access rules between the entities that make network capabilities and the service suppliers, so that the operator can maintain the full control over the usage of her resources and on the quality of the services offered. For this reason quality parameters need to be carefully evaluated before any service is actually executed. In particular, the security checks to avoid that unauthorized entities can reach to use the network become of primary importance. Authentication, in a distributed setting is usually achieved by the use cryptographic protocols, but unfortunately their design is a formidably difficult task; in some cases subtle flaws were found only years after the publication of a protocol [4

 REF _Ref66794968 \r \h 
,7]. Experience teaches that security protocols need to be carefully checked, before being fielded. Luckily, Formal Methods [6] can be employed to verify if a protocol satisfies some desired property. Generally speaking, formal methods provide engineers with methodologies and tools for the analysis of complex, concurrent and distributed systems. They require the main characteristics of a system to be encoded by a formal (i.e., with a rigorous semantics) model. Recently, formal methods have been profitably applied in the verification of many authentication security protocols (e.g., see [7]). They have been especially used in the formal analysis of security properties such as confidentiality and authenticity. Confidentiality guarantees the secrecy of sensitive information (e.g., personal information, session keys, reference to private interfaces etc.). Authenticity [8] assures the genuineness of the identities of the agents involved in a communication, thereby avoiding for instance that an impostor uses a service while charging it on someone else. 
This paper reports and discusses on the application of Formal Methods for verifying the security of the Trust and Security Management protocol in Parlay/OSA APIs [9]. This protocol is put into place to protect the telecommunication capabilities from unauthorized access and it implements an authentication procedure. 
The formal validation experience, conducted within a joint project between universities and industry, has uncovered some security flaws in the authentication mechanism. Moreover, from the analysis of the traces showing the attacks, we were able to suggest solutions to fix the security weaknesses discovered.

2 The Parlay/OSA Architecture
Parlay/OSA is an architecture that enables service application developers to make use of network functionalities through an open standardized interface. Parlay/OSA APIs [9] provide an abstract and coherent view of heterogeneous network capabilities, which allow a developer to interface its applications to distributed processing mechanisms. The Parlay/OSA architecture, synthesized in Figure 1, consists of:

· a set of Client Applications accessing the network resources;
· a set of Service Interfaces, or Service Capability Features (SCFs), that represent interfaces for controlling the network capabilities provided by network resources (e.g., controlling the routing of voice calls, sending/receiving SMSs, locating a terminal, etc.);
· a Framework, that provides a modular and “controlled” access to the SCFs;
· Network Resources, in the telecommunication network, implementing the network capabilities.
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Figure 1. The Parlay/OSA Architecture
A Parlay Gateway includes the framework functions and the Service Capability Services (SCSs), i.e., the modules implementing the SCFs: it is a logical entity that can be implemented in a distributed way across several systems.

Since the target applications could be deployed in an administrative domain different from the one of the Parlay Gateway, the secure and controlled access to the SCFs is a predominant aspect for the Parlay architecture. To get the references of the required SCFs, an application must interact several times with the framework interfaces. For example, the application must carry out an authentication phase before selecting the SCFs required, as described in Section 2.1. in this phase the framework verifies whether the application is authorized to use them, according to a subscription profile. Finally, an agreement is digitally signed, and the framework gives to the application the references to the required SCFs (e.g., as CORBA interface reference). These references are valid only for a single session of the application.

When the framework has to return an SCF reference to an application it contacts the SCS which implements it, by passing all the configuration parameters, e.g., representing Service Level Agreement conditions, stored in the subscription profile of the application. The SCS creates a new instance of the SCF, configured with the received parameters, and returns its reference to the framework. Each time the application invokes a method on the SCF instance, the SCS executes it by taking into account the configuration parameters received at instantiation time.

2.1 Trust and Security Management Protocol

One of the critical steps for guaranteeing the controlled access to the SCFs is the authentication phase between the gateway and the application. This is realized by a protocol implemented by the Trust and Security Management (TSM) API. This paper focuses on the analysis of the properties of this security protocol, whose behavior is synthesized by the message sequence chart in Figure 2. The main steps of the protocol are:

· Initiate Authentication: the client invokes "initiateAuthenticationWithVersion" on the framework public interface (e.g., an URL) to initiate the authentication process. The client provides a reference to its own authentication interface, and the framework returns a reference to its authentication interface.

· Select Authentication Mechanism: the client invokes "selectAuthenticationMechanism" on the framework authentication interface, to negotiate which hash function will be used in the authentication steps.
· The client and the framework authenticate each other
, following a one-way Challenge Handshake Authentication Protocol (CHAP) [11] i.e., by issuing a challenge in the "challenge" method, and checking if the partner returns the correct response. An invocation of the method "authenticationSucceeded" signals the successful completion of this phase
· Request an access session: when authenticated by the framework, the client is permitted to invoke "requestAccess" to start an access session. The client provides a reference to its own access interface, and the framework returns a reference to the access interface, unique for this client.
· The access interface is used to negotiate the signing algorithm to be used in the session and to obtain the references to other framework interfaces (we will call them, service framework interfaces), such as service discovery, service agreement management, etc.

Having obtained the reference to a service framework interface the TSM finishes. Note that the references to the interfaces must remain secret: if an intruder got hold of them, it would be able to (abusively) access the services. For this reason our analysis will mainly concentrate on the secrecy of these references.
In fact, after the TSM ends the client selects the required SCFs by invoking the "selectService" method on the service agreement management interface.
 The client obtains a service token, which can be signed as part of the service agreement by the client and the framework, through the "signService Agreement" and the "signAppServiceAgreement" methods. Generally the service token has a limited lifetime: if the lifetime of the service token expires, a method accepting the service token will return an error code. If the sign service agreement phase succeeds, the framework returns to the client a reference to the selected SCF, personalized with the client configuration parameters.
Figure 2: Message sequence chart describing the component steps of the TMS protocol [9].
3 Security Formal Analysis

This section explains in detail the formal analysis of security of the TSM protocol, that we have done. To carry out the verification phase we used “CoProVe” [1], a tool developed at the Twente University (NL), which is specifically designed for model-checking security protocols
. Roughly speaking Model Checking [3] is a validation methodology used to verify automatically if a given desired behavior is satisfied by a formal and finite-state specification of a system (called model). If an error is recognized a counter-example showing under which circumstances the error happens, is usually generated. 
We anticipate that our analysis of the TSM protocol has lead to spot important security flaws, and allowed us to suggest possible corrections to the system.

3.1 Formal Models 
One of the challenges in applying tools of automatic analysis to industrial architectures lies in translating the (usually less than formal) architecture specification into a rigorous formal model. In particular, translating a complex system design into a formal protocol specification involves many non-trivial steps: software technology concepts such as method invocation and port specification have to be “encoded” into a straightforward protocol specification. This encoding phase also forces the engineer to reason about the security implication of using these constructs.

The Parlay/OSA framework API specification consists of many pages, and hence it extremely difficult to have a good overview of its security mechanisms. By extracting a short formal specification out of those pages we were able to have a concise yet complete summary of the security core of the system. To translate the TSM specification into a protocol of a few lines we had to take some modelling choices: 

· a reference to a (new) private interface f was modeled by a (new) shared encryption key kf;
· calling a method with parameter m over a new interface f was translated into a sending message m encrypted with the relative key kf. Dually, getting a result from a method invocation was translated into receiving a message still encrypted with kf; 
The use of an encryption key reflects the fact that an intruder that does not know the interface reference cannot infer anything that comes from any method’s invocation over that interface. In the following we report the obtained formal model, written in the usual abstract representation of cryptographic protocols (we called abstract model). 
* initiate *

1.
C --> F: C, KC 
2.
F --> C: KF 
* select authentication methods *

3.
C --> F:{h;h’;h’’}_KF 
4.
F --> C: {h}_KC 

* challenge *

5.
F --> C: {F,N}_KC

6.
C --> F: {C,h(N,SCF)}}_KF 
7.
F --> C: {ok/fail}_KC 

* request access *

8.
C --> F: {req, KC’}_KF 
9.
F --> C: {KA/fail}_KF 
* select signing methods *

10.
C --> F:{s;s’;s’’}_KF 

11.
F --> C: {s}_KC 

* request framework service interface *

12.
C --> F: {req’}_KA 
13.
F --> C: {KS/fail}_KA 
In this abstract model, C represents a client and F the framework, while C-->F:M denotes C sending message M to F. With {M}_K we indicate the plaintext M encrypted with a key K, while with h(M) we write the result of applying a hash function h to M.
In step 1 the client initiates the protocol over the public interface of the framework, by providing its name and a reference to its interface. In step 2 the framework replies by sending a reference KF to its own interface. In steps 3 and 4 the client asks the framework to choose an authentication method amongst h, h’ and h’’. In the steps 5 and 6 the actual CHAP protocol is carried out, using the hash function selected in step 4. Here, SCF represent a shared secret
 between C and F, required by CHAP [11]. In steps 8 and 9 the client asks for an interface where to invoke the request access for a service. In steps 10 and 11 the framework chooses the interface. Finally in steps 12 and 13 the client asks for a request and receives back the reference to the framework interface.
The abstract model of Figure 3 has then been translated into the language required by the tool CoProVe. The result of this translation is a concrete formal model. In addition to this model, we also have to encode (in the language of CoProVe) the security properties that we want to check. Below, we comment the specification used for checking whether ka remains secret or not (to check other security properties, like authentication etc, we used different specifica-tions). To reduce the search space here we implemented only steps 1-2, 5-6 and 8-9 in Figure 3. In words we assumed: (a) a fixed hashing function “h”; (b) that the framework does not reply (instead of replying “false”) if the client answer wrongly to the CHAP challenge.
% Initiator role specification

client(C,F,Kc,Kf,N,Req,Ka,Scf,[ 

   send([C,Kc]),
   recv(Kf),

   recv([F,N]+Kc),

   send([C,sha([N,Scf])]+Kf),

   send(Req+Kf),

   recv(Ka+Kf)]).
% Responder role specification

framework(C,F,Kc,Kf,N,Req,Ka,Scf[ 

   recv([C,Kc]),

   send(Kf),

   send([F,N]+Kc),

   recv([C,sha([N,Scf])]+Kf),

   recv(Req+Kf),

   send(Ka+Kf)]).

% Secrecy check (it is a singleton role)

secrecy(N, [ recv(N) ] ).

% scenario specification pairs [name, Name] 
% [label for the role; actual role] 

scenario
([[c,Client1],[f,Framew1],[sec,Secr1]]):-

   client(c,f,kc,_,_,req,_,scf,Client1),

   framework(c,f,_,kf,n,_,ka,scf,Framew1),

   secrecy(ka, Secr1).

% The initial intruder knowledge

initial_intruder_knowledge([c,f,e]).

% specify which roles we want to force 
% to finish (only sec in this example)
has_to_finish([sec]).
This specification involves three principals: one client (c), one framework (f) and eavesdropping agent (sec) that receives any message passing in the net. Each role is specified by a sequence of send/receive actions that mimic exactly the steps of the abstract model. Symbol “+” is used to denote symmetric encryption using shared keys. Formal parameters (e.g., in the client role C,F,Kc,Kf,N,Req,Ka,Scf) are used to denote all the objects used in the role specification. In a scenario those parameter are instantiated with actual constant representing real object (i.e., c,f,_,kf,n,_,ka, scf). Here “_” is used when no instantiation is required. The intruder is assumed to know only the client and framework names plus its own name “e”.

The verification of secrecy (i.e., the quest for a secrecy flaw) is carried out by asking if there is a trace bringing the eavesdropper to know a given secret. Therefore, to check that ka (which models the reference of the interface used by the client to request an access session) remains secret we check if agent sec can learn ka.
 Formal Analysis and Detected Weakness
The analysis we did pointed out the following security weaknesses.
1. An intruder can impersonate a client and start an authentication challenge with the framework.
Informally, a malicious application can obtain the reference to the method used to start the authentication procedure. Formally an intruder can obtain the reference to the interface used by the client to start the authentication challenge (key kf).
2. An intruder can impersonate a client, authenticate itself to the framework and obtain the reference to the interface used to request an access to a service.
This is a serious flaw that compromises the main goal of the protocol itself. Informally, a malicious application can pass the authentication phase instead of an honest client. Our analysis shows also that, as a consequence, an intruder can also obtain a reference to the interface used to request a service (key ka). In order to understand better this weakness, let us study the output of CoProVe showing the attack:
[c,send([c,kc])]

[f,recv([c,kc])]

[c,recv(_h325)] 
[f,send(kf)]

[f,send([f,n] + kc)]

[c,recv([f,n] + kc)]

[c,send([c,sha([n,scf])] + _h325)]

[f,recv([c,sha([n,scf])] + kf)]

[c,send(req + _h325)]

[c,recv(_h391 + _h325)]

[f,recv(req + kf)]

[f,send(ka + kf)]

[sec,recv(ka)]
Here, each row represents a communication action. For example [c,send(req + _h314)] represents the action “send” that “c” executes with message “req” encrypted with a new name “_h134”. The sequence of actions leads to the attack, in which the intruder uses an honest client as an oracle to obtain the answer required by the authentication procedure and after that to make the framework reveal the secret ka. Using the standard informal notation for describing protocols, the above run becomes:

1.a C --> I(F) : c,Kc

1b. I(C) --> F : c, Kc

2.a I(F) --> C : Ke

2.b. F --> I(C) : Kf
5.b F --> I(C) : [f,n]_Kc
5.a I(F) --> C : [f,n]_Kc

6.a C --> I(F) : [c,sha[n,scf]]_Ke 

6.b I(C) --> F : [c,sha[n,scf]]_Kf 
8.a C --> I(F) : req_Ke 

9.a I(F) --> C : {fail}_Ke
8.b I(C) --> F : {req}_Kf 

9.b F --> I(C) : Ka_Kf 
This run comprises two parallel runs of the protocol, in which the intruder plays, respectively, the role of the client against the framework (I(C) in steps i.b) and of the framework against the client (I(F) in steps i.a), where i is the step number w.r.t. the abstract model. Ke is the intruder's key. It is worth to underline that this attack exists even if we assume a perfect encryption assumption [5] (i.e., that the cryptographic engine is unbreakable).

3. An intruder can impersonate a client, authenticate itself to the framework, send a request of a service and obtain the reference to a service framework interface
This is also a serious flaw that compromises the main goal of the protocol. An intruder can obtain the reference to the framework interface (key ks). This is possible, for example as a consequence of flaw 1 and 2: the intruder authenticates itself instead of the client, and it can easily obtain the reference to a service. Further checks with CoProVe, has also shown that the intruder can even retrieve this reference with a man-in-the-middle attack e.g., by listening to the communication between the client and the framework. In our model this attack can be explained in this way: the intruder intercepts the message ks encrypted with ka, and it decrypts it. This is possible because the key kf is passed in clear and, by eavesdropping, the intruder can easily obtain {ka}_kf, and hence ka .
4. An intruder can force the framework to use an authentication mechanism of her choice.
This last attack shows how an intruder, by using a replay attack, can force the framework to select a particular authentication mechanism (or a particular digital signature procedure). 

4 Discussion

The analysis has shown some weaknesses of the protocol, but it gives also useful indications on how to improve the protocol to avoid them. We start with some preliminary considerations: first of all, the common practice in protocol engineering [1] suggests the use of session keys to protect the confidentiality of sensitive information, which in the case of TSM are the references to interfaces. In fact, from our analysis arises that the core of the security weaknesses lies in the fact that the references to interfaces are passed in clear. Session keys are indeed missing at all in the present implementation
, while their use could prevent the intruder from gaining a reference to an interface (as shown, by a men-in-the-middle attack - see flaw 3).
Note that unfortunately it is not sufficient to establish a session key during the challenge phase. In this case, flaw 2 remains intact, as confirmed by CoProVe. This implies that the structure of the protocol needs to be globally reviewed. 
An additional point of discussion concerns the correct use of a CHAP-based authentication. The specification states that security can be ensured if the “challenge” is frequently invoked by the framework to authenticate the client that, in turn, must reply “immediately”. These qualitative adjectives give only an apparent image of security. In fact, our analysis proves that not only the intruder can act as a client w.r.t. the framework, but it can passively observe, as man-in-the-middle, the framework and a client authenticate to each other, and steal the reference to the service framework interfaces when it is transmitted in clear. At this point the intruder can substitute itself to the client. 
Flaw 4 is different in nature, and it teaches that particular care must be reserved on the choice of the encryption algorithms or digital signature procedures offered by the framework: the intruder can i.e. force the system to use the encryption algorithm that is easier to crack.
5 Conclusions

This paper discusses an experience of formal analysis of the security aspects of the Parlay/OSA Trust and Security Management protocol. The protocol is devised to authenticate the clients before giving them access to the network services. Our experience confirms that formal methods are an invaluable tool that can discover serious security flaws which are difficult to spot otherwise. This is true in two respects. First, the use of a formal model, where only the relevant security features are expressed, helps in pointing out what are the critical parts for security. In an informal description, on the other hand, this information is usually dispersed and difficult to gather. Second, the use of an automatic tool allows us to easily identify dangerous man-in-the middle attacks, which are notoriously difficult to see otherwise. 
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� The framework could authenticate the client before (or after) the client authenticates the framework, or the two authentication processes could be interleaved. However, the client shall respond immediately to any challenge issued by the framework, as the framework might not respond to any challenge issued by the client until the framework has successfully authenticated the client.





�The discovery interface can be to obtain a list of the SCFs supported by the Framework.


� 	CoProVe is also freely accessible via the web at http://wwwes.cs.utwente.nl/24cqet/coprove.html


� The original specification did not provide the details of the CHAP implementation to be used. Here we show that the protocol contains a security flaw even when using the strong version of CHAP (where the client and the framework already share the secret SCF).


� Do not confuse them with the session keys that appear in the abstract model. Those are part of the model and represent private references to interfaces.






