joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-050032
Meeting #30, Austin, TX, USA, 24-27 January 2005
Source:
Telecom Italia (Gaetano Di Caprio, Corrado Moiso)

Title:
Results of formal analysis of framework security properties 
Agenda Item:
OSA2 (3GPP Rel-5 / Parlay 4) Framework
Document for:
Discussion
Introduction

A formal analysis of a subset of the OSA Framework specification has detected some security weaknesses (see the attached paper presented to ICIN2004), specifically in the "Trust and Security Management" part.
This contribution aims:

· to summarize to 3GPP CN5 the results of an analysis of the security procedure implemented by the Trust and Security Management (TSM) Interface Classes part of the OSA Framework specifications (3GPP TS 29.198-03), 
and
· to be the starting point for a discussion on how to address and solve the weaknesses detected in the analysis.
The analysis was performed on the specification of Release 5, and it remains valid also for Release 6, as the changes introduced in Release 6 do not impact on the considered aspects.

Methodology used in the analysis
The analysis was performed by using Formal Methods [1] and automatic tools for security protocol verification.
Following the praxis of Formal Methods, the critical steps of the TSM protocol have been described in a finite‑state logical model. Later, by the use of a completely automatic tool, some identified security properties have been model checked (by Model Checking [2]) over the TSM model. The analysis underlined some flaws in the security mechanism of TSM. For each error the tool has produced a counter-example, showing under which circumstances the flaw happens. These weaknesses in the authentication procedure can lead to unauthorized use of the SCSs offered by an OSA Gateway, with evident damages to the operator and to the quality of services. 
Summary of analysis results
The analysis underlines two different categories of flaws: some confidentiality flaws (list ‘A’) and a general security weakness (list ‘B’). In the first category of flaws, we have:
A.1 An intruder can impersonate a client and start an authentication challenge with the framework.

Informally, a malicious intruder can obtain the reference to the interface used by a client to start the authentication phase. This happens easily by man-in-the-middle, e.g., by listening to the communication between the client and the framework, being the reference to the interface transmitted in clear.
This flaw is not serious in itself (e.g., the next authentication procedure could recognize and exclude the intrusion) but it becomes critical when combined with the following flaws A.2 and A.3:
A.2 An intruder can impersonate a client, authenticate itself to the framework and obtain the reference to the interface used to request an access to a service.

This is a flaw that compromises the main goal of the protocol itself. Informally, a malicious application can pass the authentication phase instead of an honest client. Our analysis shows also that, as a consequence, an intruder can also obtain the reference to the interface used to request a service. 
This flaw generates from two different possible situations: 

a. in the first, the intruder uses an honest client as an oracle to obtain the answer required by the CHAP authentication procedure. After, the intruder can also make the framework reveal the reference to the interface for requesting an access to a service. This attack exists even if we assume a perfect encryption assumption (i.e., that the cryptographic engine is unbreakable);

b. in the second, the intruder acts as man-in-the-middle: it leaves the client to conclude the authentication procedure, and when the framework delivers, in clear, the interface’s reference, it steals the reference.
A.3 An intruder can impersonate a client, authenticate itself to the framework, send a request of a service and obtain the reference to a service framework interface

This is also a flaw that compromises the main goal of the protocol. An intruder can obtain the reference to the service framework interface. This is possible, for example as a consequence of flaw A.1 and A.2: the intruder authenticates itself instead of the client, and it can easily obtain the reference to a service; alternatively, the intruder can retrieve this reference with a man-in-the-middle attack, stealing the information when the framework is transmitting it, in clear, through the public channel.
In the second category of flaws, the analysis identified the following weakness:
B.1 An intruder can make the framework select an authentication mechanism (or digital signature procedure) of his choice.

Informally an intruder, by using a replay attack, can force the framework to select a particular authentication mechanism or a particular digital signature procedure. 

All the technical details about the formal model used, how the analysis has been performed, and the counterexamples showing the attacks are reported in the attached document

According to the analysis results to be risky to interconnect OSA client applications and an OSA Gateway, compliant to the current OSA specifications through a "public" network (e.g., the Big Internet), without additional network-based security mechanisms (e.g., SSL, IIOP firewalls). This approach would consist in the deployment of specific solutions based on the integration of different systems.
Alternatively, the OSA specifications could be improved in order to overcome the detected problems. In the following we point out possible directions.
Possible solutions
Generally speaking confidentiality (compromised by the flaws in list ‘A’) improves if the framework encrypts all the messages containing a reference to an interface. Encryption requires that the framework authenticates the client, and later that it agrees upon a session key with the authenticated client. This can be done, for example by

· running a Secure Sockets Layer (SSL) protocol at the beginning of the TSM session. The SSL allows two entities, a client and a server, to authenticate each other and to establish session keys. Session keys are then used to ensure confidentiality and integrity in any, next, exchange of messages. As a consequence, the SSL can substitute the CHAP authentication procedure required by the TSM specification. 

The common use of the SSL sees the client to authenticate the server (i.e., the framework in our case); in the context of the TSM security, is mandatory that the server authenticates the client as well; a mutual authentication implies that both the client and the framework need a digital certificate. 
 Authentication is reached by the use of certificates, so a trusted certification authority is required in the authentication process. Once authenticated each other, the framework and the client generate a symmetric session key, which has to be used to encrypt all the next communications: no reference to interface must be transmitted in clear anymore. In this way the man-in-the-middle attacks understanding flaws A.1--A.3 are no more possible. If, for some reason, either side wants to renegotiate the connection, the SSL must be run again. 
If, for some motivated reason, the use of a certification authority was not possible, confidentiality can be reach by the use of
· an internet key exchange (IKE) protocol (e.g., [4]) based on Diffie-Hellman algorithm [3]. IKE protocols ensure two entities to agree (by Diffie-Hellman) upon a symmetric secret key; hence, this key is used to encrypt all the communications so that to ensure confidentiality and integrity.
 IKE protocol ensures also primary authentication either via pre-shared secret, or via digital certificates. Digital certificates require a certification authority or a Public Key Infrastructure (PKI). Therefore, the attendance of a third trusted party can be avoided only if a secret is already shared between server and client.
It is not clear from the specification of the TSM protocol [5] if the framework and the client share a secret before the TSM session starts; reasonably, a secure implementation of the CHAP protocol would require it. If it is really the case, this secret can be used to generate a fresh session key by running the Diffie-Hellman part of the IKE protocol. Again, the new session key must be used by the server and the client to encrypt all the communications preceding and following the authentication phase. When either the client or the server wants to re-negotiate a new session key, a new run of the IKE protocol is required.

On the contrary if the pre-shared secret does not exist, the IKE protocol requires authentication via digital certificates released by a trusted authority. In this case the previous solution based on SSL seems to be preferable to the IKE, being its authentication procedure of the SSL procedure provably more elaborated and reliable
The security weakness which falls into list ‘B’ is potentially serious. A direction to avoid it suggests that known breakable algorithms must not be included among the choices offered by the framework: for example, the offer “use transmission in clear text” has to be avoided at all.
Conclusions
This contribution is only a starting point for the discussion on how to address these issues. 
We recommend that the group reach an agreement on how to produce CRs to solve the issues, possibly identifying a backward compatible solution.
References

[1] J. A. Hall., Seven Myths of Formal Methods, IEEE Software, 7(5), 11-19, 1990

[2] E. M. Clarke, O. Grumberg and D. A. Peleg, Model Checking, MIT Press, 2000
[3] W. Diffie and M. Hellman, New direction in cryptography, IEEE Transaction on Information Theory, IT-22 (6): 644-654, November 1976.

[4] D. Harkins and D. Carrel, The Internet Key Exchange (IKE), The Internet Society, RFC 1409, November 1998

[5] 3GPP TR 29.998 v5.x.y, “Open Service Access (OSA) – Application Programming Interface (API) Mapping for OSA” (Release 5), http://www.3gpp.org/ftp/Specs/archive/29_series 
Attachment

R. Corin, G. Di Caprio, S. Etalle, S. Gnesi, G. Lenzini, and C. Moiso, "Security Analysis of Parlay/OSA Framework", 9th Int. Conference on Intelligence in service delivery Networks (ICIN 2004) Bordeaux, France, 2004
� This contribution has been prepared jointly with R. Corin, S. Etalle (Department of Computer Science of the University of Twente – Enschede, The Netherlands), G. Lenzini (CNR – Istituto di Informatica e Telematica - Pisa, Italy) and S. Gnesi (CNR - Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo” – Pisa, Italy).



