Page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040718

Meeting #29, Barcelona, SPAIN, 01-05 November 2004

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-04
	CR
	CRNum
	(

rev
	-
	(

Current version:
	4.10.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	x

	

	Title:
(

	Correct Behaviour of CallBack sequence and timing.

	
	

	Source:
(

	AePONA (Eamonn Murray)

	
	

	Work item code:
(

	OSA1
	
	Date: (

	05/11/2004

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	Misunderstandings in how to treat and use the callback functionality supported in call control services has been reported from the second OSA/Parlay PLUGTEST event. In particular the sequence and timing of specifying callbacks has been subject to different interpretations amongst vendors of applications and services. This was recognised as a major interoperability problem at the second OSA/Parlay Interoperability test.

As a result, CRs to improve the description of callback behaviour were introduced during CN5#27 as contributions N5-040338 through N5-040342. However the resulting specification text that has been produced, retains significant ambiguities regarding the use of the callback functionality, such that interoperability between application and service implementations, using the callback features, cannot be clearly understood.

It is therefore recommended to further clarify the description of the use of the callback features such that a clear and common understanding is possible for vendors of applications and services.

	
	

	Summary of change:
(

	Correctly define the use of callback features through text corrections to existing method semantics and correction to existing sequence diagram.

	
	

	Consequences if
(

not approved:
	Interoperability cannot be supported, as the existing specification shall remain open to mutliple, differing, interpretations.

	
	

	Clauses affected:
(

	6.1.6, 6.3.1, 6.3.2, 7.3.1, 7.3.2

	
	

	
	Y
	N
	
	

	Other specs
(

	X
	
	 Other core specifications
(

	Rel 5: 29.198-04-2, 29.198-04-3

Rel 6: 29.198-04-2, 29.198-04-3

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	Rel 5 changes in N5-040719 and N5-040720.

Rel 6 changes in N5-040721 and N5-040722

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

KEEP the History box of the TS to be changed (see end of the present document)

Change in Clause 6.1.6

6.1.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event being received by the call control service.

For illustration, in this sequence the callback references are set explicitly. This is optional. All the callbacks references can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the sequences use that mechanism.

[image: image1.wmf]

 :

IpCallControlManager

 : IpAppCall

 : IpCall

 : IpAppCallControlManager

 : (Logical

View::IpAppLogic)

10: routeRes()

4: callEventNotify()

8: 'translate

 number'

9: routeReq()

5: 'forward event'

6: new()

11: 'forward event'

1: new()

2:

enableCallNotification()

 setCallBack()

12: deassignCall()

3:

setCallback()

 enableCallNotification()

7: setCallbackWithSessionID()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The CallControlManager reports the callEventNotify to referenced object only for enableCallNotifications that do not have a explicit IpAppCallControlManager reference specified in the enableCallNotification.
3:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria set in message 3, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object
.
4:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

5:
This message is used to forward message 4 to the IpAppLogic.

6:
This message is used by the application to create an object implementing the IpAppCall interface.

7:
This message is used to set the reference to the IpAppCall for this call.

8:
This message invokes the number translation function.

9:
The returned translated number is used in message 7 to route the call towards the destination.

10:
This message passes the result of the call being answered to its callback object

11:
This message is used to forward the previous message to the IpAppLogic.

12:
The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue in the network, but there will be no further communication between the call object and the application.

End of Change in Clause 6.1.6

Change in Clause 6.3.1

6.3.1 Interface Class IpCallControlManager

Inherits from: IpService
This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager interface provides the management functions to the generic call control service. The application programmer can use this interface to provide overload control functionality, create call objects and to enable or disable call-related event notifications.

This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement either the createCall() method shall be implemented, or the enableCallNotification() and disableCallNotification() methods shall be implemented.
	<<Interface>>

IpCallControlManager

	

	createCall (appCall : in IpAppCallRef) : TpCallIdentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

Method

createCall()

This method is used to create a new call object.

Call back reference:

An IpAppCallControlManager should already have been passed to the IpCallControlManager, otherwise the call control will not be able to report a callAborted() to the application. The application shall
invoke setCallback() prior to createCall if it wishes to ensure this.

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.
Returns

TpCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE
Method

enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an application has to do to get initial notification of calls happening in the network. When such an event happens, the application will be informed by callEventNotify(). In case the application is interested in other events during the context of a particular call session it has to use the routeReq() method on the call object. The application will get access to the call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and the same CallNotificationType is used.

If a notification is requested by an application with the monitor mode set to notify, then there is no need to check the rest of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed over. Only one application can place an interrupt request if the criteria overlaps.

Set of the callback reference:

The call back reference can be registered either in a) enableCallNotification() or b) explicitly with a separate setCallback() method depending on how the application provides its callback reference.

Case a:

From an efficiency point of view the enableCallNotification() with explicit immediate registration (no "Null" value) of call back reference may be the preferred method.

Case b:

The enableCallNotfication() with no call back reference ("Null" value) is used where (e.g. due to distributed application logic) the call back reference is provided previously in a setCallback().If no callback reference has been provided previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised
.
In case the enableCallNotification() contains no callback, at the moment the application needs to be informed the gateway will use as callback the callback that has been registered by setCallback(). See example in 6.1.6

Set additional callback reference:

If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used. See examples in 6.1.1.

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified previously via the setCallback() method.
eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer", "busy". Individual addresses or address ranges may be specified for destination and/or origination.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE, P_INVALID_EVENT_TYPE
End of Change in Clause 6.3.1

Change in Clause 6.3.2

6.3.2 Interface Class IpAppCallControlManager

Inherits from: IpInterface
The generic call control manager application interface provides the application call control management functions to the generic call control service.
	<<Interface>>

IpAppCallControlManager

	

	callAborted (callReference : in TpSessionID) : void

callEventNotify (callReference : in TpCallIdentifier, eventInfo : in TpCallEventInfo, assignmentID : in TpAssignmentID) : IpAppCallRef

callNotificationInterrupted () : void

callNotificationContinued () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method

callAborted()

This method indicates to the application that the call object (at the gateway) has aborted or terminated abnormally. No further communication will be possible between the call and application.

Parameters

callReference : in TpSessionID

Specifies the sessionID of call that has aborted or terminated abnormally.
Method

callEventNotify()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period (the duration of which forms a part of the service level agreement), then the call in the network shall be released and callEnded() shall be invoked, giving a release cause of 102 (Recovery on timer expiry).

Set of the callback reference:

A reference to the application interface has to be passed back to the call interface to which the notification relates. However, the setting of a call back reference is only applicable if the notification is in INTERRUPT mode.

When callEventNotify() is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the application writer should ensure that no continue processing e.g. routeReq() is performed until an IpAppCall has been passed to the gateway, either through an explicit setCallbackWithSessionID() invocation on the supplied IpCall, or via the return of the callEventNotify() method.

The call back reference can be registered either in a) callEventNotify() or b) explicitly with a setCallbackWithSessionID() method e.g. depending on how the application provides its call reference.

Case a:

From an efficiency point of view the callEventNotify() with explicit pass of registration may be the preferred method.

Case b:

The callEventNotify() with no call back reference ("Null" value) is used where (e.g. due to distributed application logic) the callback reference is provided previously in a setCallbackWithSessionID().If no callback reference has been provided previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised, and no further application invocations related to the call shall be permitted
.
In case the callEventNotify() contains no callback, at the moment the application needs to be informed the gateway will use as callback the callback that has been registered previously by setCallbackWithSessionID(). See example in 6.1.6

Returns appCall: Specifies a reference to the application interface which implements the callback interface for the new call. If the application has previously explicitly passed a reference to the IpAppCall interface using a setCallbackWithSessionID() invocation, this parameter may be null, or if supplied must be the same as that provided during the setCallbackWithSessionID().

This parameter will be null if the notification is in NOTIFY mode and in case b.

Parameters

callReference : in TpCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is in NOTIFY mode, this parameter shall be ignored by the application client implementation, and consequently the implementation of the SCS entity invoking callEventNotify may populate this parameter as it chooses.
eventInfo : in TpCallEventInfo

Specifies data associated with this event.
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the enableCallNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
Returns

IpAppCallRef

End of Change in Clause 6.3.2

Change in Clause 7.3.1

7.3.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService
This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control manager interface provides the management functions to the multi-party call control service. The application programmer can use this interface to provide overload control functionality, create call objects and to enable or disable call-related event notifications. The action table associated with the STD shows in what state the IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.

This interface shall be implemented by a Multi Party Call Control SCF. As a minimum requirement either the createCall() method shall be implemented, or the createNotification() and destroyNotification() methods shall be implemented.
	<<Interface>>

IpMultiPartyCallControlManager

	

	createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest : in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) : void

getNotification () : TpNotificationRequestedSet

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

Method

createCall()

This method is used to create a new call object. An IpAppMultiPartyCallControlManager should already have been passed to the IpMultiPartyCallControlManager, otherwise the call control will not be able to report a callAborted() to the application. The application shall invoke setCallback() prior to createCall() if it wishes to ensure this.

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.
Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE
Method

createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an application has to do to get initial notifications of calls happening in the network. When such an event happens, the application will be informed by reportNotification(). In case the application is interested in other events during the context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the eventReportReq() method on the call leg object. The application will get access to the call object when it receives the reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used.

If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed over. Only one application can place an interrupt request if the criteria overlaps.

Set of the callback reference:

The call back reference can be registered either in a) createNotication() or b) explicitly with a setCallback() method e.g. depending on how the application provides its callback reference.

Case a:

From an efficiency point of view the createNotification() with explicit registration may be the preferred method.

Case b:

The createNotification() with no call back reference ("Null" value) is used where (e.g. due to distributed application logic) the call back reference is provided previously in a setCallback().If no callback reference has been provided previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised.
In case the createNotification() contains no callback, at the moment the application needs to be informed the gateway will use as callback the callback that has been registered by setCallback().

Set additional Call back:

If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. Both notifications will share the same assignmentID. The gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.

Returns assignmentID: Specifies the ID assigned by the call control manager interface for this newly-enabled event notification.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified previously via the setCallback() method.
notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer", "busy". Individual addresses or address ranges may be specified for destination and/or origination.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE, P_INVALID_EVENT_TYPE
End of Change in Clause 7.3.1

Change in Clause 7.3.2

7.3.2 Interface Class IpAppMultiPartyCallControlManager

Inherits from: IpInterface
The Multi-Party call control manager application interface provides the application call control management functions to the Multi-Party call control service.
	<<Interface>>

IpAppMultiPartyCallControlManager

	

	reportNotification (callReference : in TpMultiPartyCallIdentifier, callLegReferenceSet : in TpCallLegIdentifierSet, notificationInfo : in TpCallNotificationInfo, assignmentID : in TpAssignmentID) : TpAppMultiPartyCallBack

callAborted (callReference : in TpSessionID) : void

managerInterrupted () : void

managerResumed () : void

callOverloadEncountered (assignmentID : in TpAssignmentID) : void

callOverloadCeased (assignmentID : in TpAssignmentID) : void

Method

reportNotification()

This method notifies the application of the arrival of a call-related event.

If this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, then the APL has control of the call. If the APL does nothing with the call (including its associated legs) within a specified time period (the duration of which forms a part of the service level agreement), then the call in the network shall be released and callEnded() shall be invoked, giving a release cause of P_TIMER_EXPIRY.

Set of the callback reference:

A reference to the application interface has to be passed back to the call interface to which the notification relates. However, the setting of a call back reference is only applicable if the notification is in INTERRUPT mode.

When reportNotification() is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the application writer should ensure that no continue processing e.g. createAndRouteCallLegReq() is performed until the callback interface for the new call and/or new call leg has been passed to the gateway, either through an explicit setCallbackWithSessionID() invocation, or via the return of the reportNotification() method
.

The call back reference can be registered either in a) reportNotification() or b) explicitly with a setCallbackWithSessionID() method depending on how the application provides its callback reference.

Case a:

From an efficiency point of view the reportNotification() with explicit pass of registration may be the preferred method.

Case b:

The reportNotification() with no call back reference ("Null" value) is used where (e.g. due to distributed application logic) the call back reference is provided previously in a setCallbackWithSessionID(). If no callback reference has been provided previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised, and no further application invocations related to the call shall be permitted
In case reportNotification() contains no callback, at the moment the application needs to be informed the gateway will use as callback the callback that has been registered previously by setCallbackWithSessionID().

Returns appCallBack: Specifies references to the application interface which implements the callback interface for the new call and/or new call leg. If the application has previously explicitly passed a reference to the callback interface using a setCallbackWithSessionID() invocation, this parameter may be set to P_APP_CALLBACK_UNDEFINED, or if supplied must be the same as that provided during the setCallbackWithSessionID().

This parameter will be set to P_APP_CALLBACK_UNDEFINED if the notification is in NOTIFY mode and in case b.

Parameters

callReference : in TpMultiPartyCallIdentifier

Specifies the reference to the call interface to which the notification relates. If the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client implementation, and consequently the implementation of the SCS entity invoking reportNotification may populate this parameter as it chooses.
callLegReferenceSet : in TpCallLegIdentifierSet

Specifies the set of all call leg references. First in the set is the reference to the originating callLeg. It indicates the call leg related to the originating party. In case there is a destination call leg this will be the second leg in the set. from the notificationInfo can be found on whose behalf the notification was sent.
However, if the notification is being given in NOTIFY mode, this parameter shall be ignored by the application client implementation, and consequently the implementation of the SCS entity invoking reportNotification may populate this parameter as it chooses.
notificationInfo : in TpCallNotificationInfo

Specifies data associated with this event (e.g. the originating or terminating leg which reports the notification).
assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the createNotification() method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
Returns

TpAppMultiPartyCallBack

End of Change in Clause 7.3.2

End Of Document

Annex B (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Mar 2001
	CN_11
	NP-010134
	047
	-
	CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158)
	3.2.0
	1.0.0

	June 2001
	CN_12
	NP-010327
	--
	--
	Approved at TSG CN#12 and placed under Change Control
	2.0.0
	4.0.0

	Sep 2001
	CN_13
	NP-010467
	001
	--
	Changing references to JAIN
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	002
	--
	Correction of text descriptions for methods enableCallNotification and createNotification
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	003
	--
	Specify the behaviour when a call leg times out
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	004
	--
	Removal of Faulty state in MPCCS Call State Transition Diagram and method callFaultDetected in MPCCS in OSA R4
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	005
	--
	Missing TpCallAppInfoSet description in OSA R4
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	006
	--
	Redirecting a call leg vs. creating a call leg clarification in OSA R4
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	007
	--
	Introduction of MPCC Originating and Terminating Call Leg STDs for IpCallLeg
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	008
	--
	Corrections to SetChargePlan() Addition of PartyToCharge parmeter
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	009
	--
	Corrections to SetChargePlan()
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	010
	--
	Remove distinction between final- and intermediate-report
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	011
	--
	Inclusion of TpMediaType
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	012
	--
	Corrections to GCC STD
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	013
	--
	Introduction of sequence diagrams for MPCC services
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	014
	--
	The use of the REDIRECT event needs to be illustrated
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	015
	--
	Corrections to SetCallChargePlan()
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	016
	--
	Add one additional error indication
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	017
	--
	Corrections to Call Control – GCCS Exception handling
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	018
	--
	Corrections to Call Control – Errors in Exceptions
	4.0.0
	4.1.0

	Dec 2001
	CN_14
	NP-010597
	019
	--
	Replace Out Parameters with Return Types
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	020
	--
	Removal of time based charging property
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	021
	--
	Make attachMedia() and detachMedia() asynchronous
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	022
	--
	Correction of treatment datatype in superviseReq on call leg
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	023
	--
	Corrections to Call Control Data Types
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	024
	--
	Correction to Call Control (CC)
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	025
	--
	Amend the Generic Call Control introductory part
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	026
	--
	Correction in TpCallEventType
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	027
	--
	Addition of missing description of RouteErr()
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	028
	--
	Misleading description of createAndRouteCallLegErr()
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	029
	--
	Correction to values of TpCallNotificationType, TpCallLoadControlMechanismType
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010695
	030
	--
	Correction of method getLastRedirectionAddress
	4.1.0
	4.2.0

	Mar 2002
	CN_15
	NP-020106
	031
	--
	Add P_INVALID_INTERFACE_TYPE exception to IpService.setCallback() and IpService.setCallbackWithSessionID()
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020106
	032
	--
	Correction of Event Subscription/Notification Data Type
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020106
	033
	--
	Correction of parameter name in IpCallLeg.routeReq() and in IpCallLeg.setAdviceOfCharge()
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020106
	034
	--
	Clarification of ambiguous Event handling rules
	4.2.0
	4.3.0

	Jun 2002
	CN_16
	NP-020180
	035
	--
	Correction to TpCallChargePlan
	4.3.0
	4.4.0

	Jun 2002
	CN_16
	NP-020180
	036
	--
	Correction to CAMEL Service Property values
	4.3.0
	4.4.0

	Sep 2002
	CN_17
	NP-020424
	057
	--
	Correction on use of NULL in Call Control API
	4.4.0
	4.5.0

	Mar 2003
	CN_19
	NP-030020
	058
	--
	Correction of status of methods to interfaces in clause 6.3
	4.5.0
	4.6.0

	Mar 2003
	CN_19
	NP-030020
	059
	--
	Correction to TpReleaseCauseSet in Multi Party Call Control
	4.5.0
	4.6.0

	Mar 2003
	CN_19
	NP-030020
	060
	--
	Correction to Sequence Diagrams to remove incorrect Framework references
	4.5.0
	4.6.0

	Mar 2003
	CN_19
	NP-030020
	061
	--
	Correction to User Interaction Prepaid Sequence Diagrams
	4.5.0
	4.6.0

	Mar 2003
	CN_19
	NP-030020
	062
	--
	Correction to remove unused TpCallChargeOrder
	4.5.0
	4.6.0

	Mar 2003
	CN_19
	NP-030020
	063
	--
	Correction to TpCallEventCriteriaResult in Generic Call Control
	4.5.0
	4.6.0

	Mar 2003
	CN_19
	NP-030020
	064
	--
	Correction of status of methods to interfaces in clause 7.3
	4.5.0
	4.6.0

	Jun 2003
	CN_20
	NP-030238
	065
	--
	Correction of the description for callEventNotify & reportNotification
	4.6.0
	4.7.0

	Dec 2003
	CN_22
	NP-030544
	066
	--
	Correction of description in superviseRes and superviseCallRes
	4.7.0
	4.8.0

	Jun 2004
	CN_24
	NP-040255
	067
	--
	Correction of continueProcessing method for Generic Call Control Service (GCCS)
	4.8.0
	4.9.0

	Jun 2004
	CN_24
	NP-040256
	068
	--
	Correct the P_TRIGGERING_ADDRESSES service property
	4.8.0
	4.9.0

	Jun 2004
	CN_24
	NP-040257
	069
	--
	Correction of callbacks sequence and timing conditions in GCCS and MPCCS
	4.8.0
	4.9.0

	Sep 2004
	CN_25
	NP-040352
	070
	--
	Correct State Transition Diagram for IpCall
	4.9.0
	4.10.0

	
	
	
	
	
	
	
	

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

�PAGE \# "'Page: '#'�'" �� Previous wording suggested that enableCallNotif could be set with NO callback prior to defining the default callBack, thus resulting in possible race condition. Revised sequence, guarantees existence of callback.

�PAGE \# "'Page: '#'�'" ��Current wording merely a recommendation. Modification to ‘shall’ clarifies that this is the intended behaviour required to ensure interoperability.

�PAGE \# "'Page: '#'�'" �� In order for enableCallNotification to be used with NULL, the SCS implementation must be aware of a default callBack in order to handle any calls. Therefore the setCallBack method must be invoked prior to ECN with NULL.

�PAGE \# "'Page: '#'�'" ��Prevent application from invoking routeReq etc, in advance of defining an IpAppCall to deal with responses.

�PAGE \# "'Page: '#'�'" ��This appears to be duplicate text from above.

�PAGE \# "'Page: '#'�'" ��This paragraph of clarification is contained in the GCC wording, yet not included in MPCC.

CR page 1

_1159790849.doc

 :

IpCallControlManager

 : IpAppCall

 : IpCall

 : IpAppCallControlManager

 : (Logical

View::IpAppLogic)

10: routeRes()

4: callEventNotify()

8: 'translate number'

9: routeReq()

5: 'forward event'

6: new()

11: 'forward event'

1: new()

2: enableCallNotification() setCallBack()

12: deassignCall()

3: setCallback() enableCallNotification()

7: setCallbackWithSessionID()

