3GPP TS 29.199-14 V1.0.6 (2004-09)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network;

Open Service Access (OSA);

Parlay X Web Services;

Part 14: Presence

(Release 6)

[image: image5.wmf]

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

API, OSA

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2004, 3GPP Organizational Partners (ARIB, CCSA, ETSI, T1, TTA, TTC).

All rights reserved.

Contents

44
Scope

5
References
5
6
Definitions and Abbreviations
6
6.1
Definitions
6
6.2
Abbreviations
6
7
Detailed Service Description
7
8
Namespaces
8
9
Sequence Diagrams
8
9.1
Interface Flow Overview
8
10
XML Schema Data Type Definition
9
10.1
Presence Structure
11
10.2
Tuple Structure
11
10.3
NoteType Structure
11
10.4
OtherValuesType Structure
12
10.5
StatusType structure
12
10.6
ContactType Structure
12
10.7
BasicType enumeration
12
10.8
ActivityType structure
13
10.9
ActivityEnumerationType enumeration
13
10.10
PlaceType structure
14
10.11
PlaceEnumerationType enumeration
14
10.12
PrivacyType structure
15
10.13
PrivacyType enumeration
15
10.14
SphereType structure
15
10.15
IdleType structure
16
10.16
MoodType enumeration
16
10.17
PresenceElementType Enumeration
18
10.18
SubscriptionRequest Structure
18
10.19
PresencePermission Structure
18
11
Web Service Interface Definition
19
11.1
Interface : PresenceConsumer
19
11.2
Interface : PresenceNotification
22
11.3
Interface : PresenceSupplier
24
12
Fault Definitions
27
12.1
ServiceException
27
13
Service Policies
27
Annex A:
WSDL of Presence API (normative)
28
Annex B:
Change History (informative)
28

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

3GPP acknowledges the contribution of the Parlay X Web Services specifications from The Parlay Group. The Parlay Group is pleased to see 3GPP acknowledge and publish this specification, and the Parlay Group looks forward to working with the 3GPP community to improve future versions of this specification.

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document is part 14 of a multi-part TS covering the 3rd Generation Partnership Project: Technical Specification Group Core Network; Open Service Access (OSA); Parlay X Web Services, as identified below. The Parlay X Web Services specification (3GPP TS 29.199) is structured in the following Parts:

Part 1:
Common
Part 2:
Third Party Call
Part 3:
Call Notification

Part 4:
Call Handling

Part 5:
Audio Call

Part 6:
Multimedia Conference
Part 7:
Short Messaging
Part 8:
Multimedia Messaging

Part 9:
Terminal Status

Part 10:
Terminal Location
Part 11:
Payment
Part 12:
Account Management
Part 13:
Address List Management
Part 14:
Presence
1 Scope

The present document is Part 14 of the Stage 3 Parlay X Web Services specification for Open Service Access (OSA).
The OSA specifications define an architecture that enables application developers to make use of network functionality through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA are contained in 3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Presence Web Service aspects of the interface. All aspects of the Presence Web Service are defined here, these being:

· Name spaces

· Sequence Diagrams

· Data definitions

· Interface specification plus detailed method descriptions

· Fault definitions

· Service policies

· WSDL Description of the interfaces

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI TISPAN and the Parlay Consortium.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905

[2]
3GPP TS 22.127

[3]
3GPP TS 23.127

[4]
3GPP TS 22.101

[5]
XML Schema

[6]
Parlay X Web Services Part 1: Common

[7]
Event notification filtering: draft-ietf-simple-event-filter-funct-01.txt
[8]
OSA / Parlay Presence and Availability. ETSI ES 202 915-14

[9]
SIP SIMPLE (draft-ietf-simple-presence-10.txt)

[10]
XMPP (Jabber)

[11]
Rich Presence Information Data Format draft-ietf-simple-rpid-04.txt

[12]
3GPP TS 23.141: Presence Service; Architecture and functional description

[13]
Parlay X group management

[14]
SIP-Specific Event Notification: RFC3265

[15]
3GPP XCAP Protocol - draft-ietf-simple-xcap-02.txt

[16]
Presence Information Data Format (PIDF) draft-ietf-impp-cpim-pidf-08.txt

3 Definitions and Abbreviations

3.1 Definitions

In addition to the terms and definitions given in TS 29.199-1 [6] the following definitions apply.

We use the names watcher and presentity to denote the role of the client connected to the presence services. Like in OSA/Parlay PAM [8] the watcher and the presentity have to be associated to identities registered to the system, i.e. users, groups of users or organizations.

An Identity represents a user in the real world. See OSA/Parlay PAM identities [8, section 4.4.1].

Presence information: Presence information consists of a set of attributes that characterize the presentity such as current activity, environment, communication means and contact addresses. Only the system and the presentity have direct access to this information, which may be collected and aggregated from several devices associated to the presentity.

Applications: for Instant Messaging, Push to Talk, or call control and other purposes may become clients of the presence web service. We assume that these applications belong to a watcher and authenticate to the services in the name of the watcher.

Presence attributes: contain information about a presentity. An attribute has a name and a value and can be supplied by any device, application or network module that can be associated to the presentity's identity. A watcher can obtains attributes only after he has successfully subscribed to them. Examples for attributes are activity, location type, communication means, etc.

Subscription: Before a watcher can access presence data, he has to subscribe to it. One possibility the API provides is an end-to-end subscription concept, in which only identities that have accepted a subscription to their presence can be addressed. Subscriptions can be also automatically handled by server policies edited by the presentity or other authorized users. The service/protocol to manage those policies is out of the scope of this specification.
Note: This definition is not related to the term “subscription” in [1].
3.2 Abbreviations

For the purposes of the present document, the abbreviations given in TS 29.199-1 [6] and the following apply.

ACL
Access Control List

DMS
Data Manipulation Server

GM
Group Management

IETF
Internet Engineering Taskforce

IMS
IP Multimedia Subsystem

ISC
IP multimedia subsystem Service Control interface

MMS
Multimedia Message Service

PAM
Presence and Availability Management

RLS
Resource List Server

SCF
Service Capability Feature

SIMPLE
SIP for Instant Messaging and Presence Leveraging Extensions

SIP
Session Initiation Protocol

SMS
Short Message Service

URI
Uniform Resource Identifier

WS
Web Service

WSDL
Web Services Definition Language

XCAP
Extensible Markup Language (XML) Configuration Access Protocol

XML
Extensible Markup Language

XMPP
Extensible Messaging and Presence Protocol

XSD
XML Schema Definition

4 Detailed Service Description

The presence service allows for presence information to be obtained about one or more users and to register presence for the same. It is assumed that the typical client of these interfaces is either a supplier or a consumer of the presence information. An Instant Messaging application is a canonical example of such a client of this interface.

Figure 4-1 shows the architecture of the presence web service and the underlying services. The OSA/Parlay PAM SCF is the straightforward option and implements the presence server with extended identity-, device capability,- and presence agent management. OSA/Parlay PAM allows aggregation of presence information from internet, mobile and enterprise users, etc. using a presence transport network of SIP or XMPP servers. The Presence Web Service can however communicate directly for example with IMS presence network elements (presence and resource list servers) using the ISC (SIP/SIMPLE) protocol interface.

[image: image1.jpg]

Figure 7‑1. The PAM Web Service Environment

Relationship to Similar or Supplanted Specifications:
The most important relations are to:

· Parlay-X Terminal Status and User Location: Both services deal with information that could be considered part of the user’s presence information. Communication abilities can be derived from terminal status information, and the user’s place can be derived from his location.

· OSA/Parlay PAM: The OSA/Parlay Presence and Availability specification can be considered the big brother of this specification. While ParlayX Presence stays behind OSA PAM in terms of flexibility and power – especially concerning attributes and management interfaces – it also extends PAM by introducing end-to-end authorization. This specification aims to be mappable to OSA PAM.

· SIP SIMPLE [9]: This specification aims to be mappable to the SIP/SIMPLE architecture.

· XMPP (Jabber): Many principles of this specification have been taken from [10], especially the end-to-end authorization.

· IETF Rich Presence [11] & [16]. The set of attributes this document specifies is closely aligned with the IETF’s Rich Presence ideas.

· Group Management [13]: Presence of groups is supported by this specification, however their creation and manipulation has to be done using the GM PX web service. In the 3GPP presence context, contact lists and group manipulation is done with the XCAP protocol [15].

5 Namespaces

The PresenceConsumer interface uses the namespace

www.csapi.org/wsdl/parlayx/presence_consumer/v2_0
The PresenceNotification interfaces uses the namespace

www.csapi.org/wsdl/parlayx/presence_notification/v2_0
The PresenceSupplier interfaces uses the namespace

www.csapi.org/wsdl/parlayx/presence_supplier/v2_0
The ‘xsd’ namespace is used in this document to refer to the XML Schema data types defined in www.w3.org/2001/XMLSchema [5], The use of the name ‘xsd’ is not semantically significant.

The ‘common’ namespace is used in thies document to refer to the Parlay X Web Services common data types defined in http://www.csapi.org/schema/common/v2_0 [6], The use of the name ‘common’ is not semantically significant.

6 Sequence Diagrams

6.1 Interface Flow Overview

The sequence diagram shows the interactions in case both watcher application and presentity are web service clients. Compared to the SIP interactions, the subscription notification is separated from the delivery of presence information itself. Based on the subscription result, the watcher can select the polling or notification mode for presence events. Changes in the authorization of presence attributes are propagated to the watchers via notifySubscription() message, the blocking of a subscription by the presentity are propagated via an endSubscriptionNotification message.

The sequence diagram does not show the internal communication within the presence server. It is assumed that the Presence Consumer and Supplier interfaces are implemented by the same instance. If an implementers of the API find other solutions preferable, he has to take care of the internal communication himself.

[image: image2.emf]Presence Web Service :

PresenceConsumer

Watcher Application :

PresenceConsumerNotifications

Presence Web Service :

PresenceSupplier

Presentity Application

:

after a while the

user logs on

the watcher can access

presence data by polling...

if there is a policy for this

subscription request, no

interaction with the

presentity is necessary.

subscribePresence

getUserPresence

determine presence

getOpenSubscriptions

get user answer

updateSubscriptionAuthorisation

notifySubscription

check subscription policies

publish

getMyWatchers

getSubscribedAttributes

blockSubscription

endSubscriptionNotification

startPresenceNotification

statusChanged

endPresenceNotification

publish

... or through notifications

user status changes (for

whatever reason)

subscription timeout

endSubscriptionNotification

a subscription can either

time out; or the presentity

can cancel it

notifySubscription

Figure 9‑1. Message interaction overview

7 XML Schema Data Type Definition

Presence attributes are strictly derived from [11] & [16].

Figure 2 gives an informal depiction of the data structure defined in XML Schema [16]. This date structure is indentified as ‘urn:ietf:params:xml:ns:pidf’. Briefly, the enity attribute in the Presence element is used to carry the presentity. The basic element contained in the Status element can only assume one of two values: open or closed. Open and closed are defined in [11] as “PIDF [16] describes the basic status values of "open" or "closed" only as "have meanings of general availability for other communications means". We define "closed" in our context as meaning that communication to the contact address will in all likelihood not succeed, is undesired or will not reach the intended party. For example, a presentity may include a hotel phone number as a contact. After check-out, the phone number will still ring, but reach the chambermaid or the next guest. Thus, it would be declared "closed". For "pres" contacts, "closed" means that no presence status information is available.”. For further description of this datatype we refer to [16]. Note that [16] allows this data typt to be extended.

[image: image3.emf]

Presence attr:entity

Tuple attr:id

Status

Basic

Contact

Note

Timestamp

Figure 2: Graphical depiction of Presence Information Data Format (informational)
Figure 3 informally shows how [11] extends the Presence Information Data Format [16]. The blue boxes can be found in Figure 2 and the white boxes are extensions. The status element is extended with the following optional elements: activities, idle, mood, place, privacy, sphere, status-icon. The tuple element is extended with tupleClass, tupleType and relationship elements. For further description of these extensions we refer to [11].

[image: image4.emf]

Tuple attr:id

Status

Basic

Activities attr:since attr:until

Idle

Mood

Place-type attr:since attr:until

Privacy attr:since attr:until

Sphere attr:since attr:until

Status-icon

Class

Tuple-type

Relationship

Figure 3: Graphcial depiction of Rich Presence Information Data Format (informational)
Note that some XML element names found in [11] and [16] cannot be used verbatim in WSDL or derived implementations, e.g. hyphens as used in “Place-type” and names such as “class”. We have altered these in the WSDL definitions below.
7.1 Presence Structure

This structure describes presentity’s presence informormation.

	Element Name
	Element Type
	Description

	Tuples
	TupleType[0..unbounded]
	Tuples with presence information related to the Entity.

	Notes
	NoteType[0..unbounded]
	Comments

	OtherValues
	OtherValuesType[0..unbounded]
	Undefined values.

	Entity
	xsd:anyURI
	The presentity’s address.

7.2 Tuple Structure
This structure describes the presence information

	Element Name
	Element Type
	Description

	Status
	StatusType
	Contains the presence data.

	Notes
	NoteType[0..unbounded]
	Comments

	OtherValues
	OtherValuesType[0..unbounded]
	Undefined values.

	Contact
	ContactType[0..1]
	The presentity’s contact address and priority.

	TimeStamp
	xsd:dateTime[0..1]
	A timestamp reflecting the last update of this tupple.

	TupleClass
	xsd:string[0.. unbounded]
	This element describes the class of the tuple. Multiple tuples can have the same class name within a presence document. The naming of classes is left to the presentity. The presentity can use this information to group similar tuples or to convey information that the presence agent can use for filtering or authorization.

	TupleType
	xsd:string[0.. unbounded]
	Valid values are device, in-person, service and presentity.

	Relationship
	xsd:string[0.. unbounded]
	Valid values include "family", "associate" (e.g., for a colleague), "assistant" and "supervisor".

7.3 NoteType Structure

This structure describes a note and the language in which the note maybe written.

	Element Name
	Element Type
	Description

	Note
	xsd:string
	Contains the note

	Language
	xml:lang
	Specifies a language

7.4 OtherValuesType Structure

This structure describes any other, undefined values that are passed

	Element Name
	Element Type
	Description

	Name
	xsd:string
	Contains the attribute name

	Value
	xsd:string
	Contains the attribute value

7.5 StatusType structure

This structure describes any other, undefined values that are passed

	Element Name
	Element Type
	Description

	Basic
	BasicType[0..1]
	Contains the basic presence information

	OtherValues
	OtherValuesType[0..unbounded]
	Undefined values.

	Activities
	ActivityType[0..unbounded]
	Lists activitiues

	Place
	PlaceType[0..unbounded]
	Lists places

	Privacy
	PrivacyType[0..unbounded]
	Lists privacy considerations

	Sphere
	SphereType[0..unbounded]
	Lists spheres

	StatusIcon
	xsd:anyURI
	Contains the uri of an icon

	Idle
	IdleType[0..unbounded]
	Lists ways of being idle

	Mood
	MoodType[0..unbounded]
	Lists moods

7.6 ContactType Structure

This structure describes any other, undefined values that are passed

	Element Name
	Element Type
	Description

	Contact
	xsd:anyURI
	Contains the contact address

	Priority
	xsd:float
	Contains the priority associated with the contact address

7.7 BasicType enumeration

Defines the status of a presenty, only the values open and closed are defined. Open and closed are defined in [11] as “PIDF [16] describes the basic status values of "open" or "closed" only as "have meanings of general availability for other communications means". We define "closed" in our context as meaning that communication to the contact address will in all likelihood not succeed, is undesired or will not reach the intended party. For example, a presentity may include a hotel phone number as a contact. After check-out, the phone number will still ring, but reach the chambermaid or the next guest. Thus, it would be declared "closed". For "pres" contacts, "closed" means that no presence status information is available.”

	Enumeration
	Description

	Closed
	Communication to the contact address will in all likelihood not succeed.

	Open
	Communication to the contact address may succeed.

7.8 ActivityType structure

This structure lists an activity.

	Element Name
	Element Type
	Description

	Activity
	ActivityEnumerationType
	Contains the activity

	ValidSince
	xsd:dateTime[0..1]
	

	ValidUntil
	xsd:dateTime[0..1]
	

7.9 ActivityEnumerationType enumeration

This enumeration lists activities.

	Enumeration
	Description

	OnThePhone
	The presentity is talking on the telephone. This activity is included since it can often be derived automatically.

	Away
	The presentity is physically away from the device location. This activity was included since it can often be derived automatically from security systems, energy management systems or entry badge systems.

	Appointment
	The presentity has a calendar appointment, without specifying exactly of what type. This activity is indicated if more detailed information is not available or the presentity chooses not to reveal more information.

	Holiday
	This is a scheduled national or local holiday. This information can typically be derived automatically from calendars.

	Meal
	The presentity is scheduled for a meal. This activity category can often be generated automatically from a calendar.

	Meeting
	A meeting is a sub-class of an appointment. This activity category can often be generated automatically from a calendar.

	Performance
	A performance is a sub-class of an appointment and includes musical, theatrical and cinematic performances as well as lectures. It is distinguished from a meeting by the fact that the person may either be lecturing or be in the audience, with a potentially large number of other people, making interruptions particularly noticeable. This activity category can often be generated automatically from a calendar.

	Steering
	The presentity is controlling a vehicle, ship or plane.

	InTransit
	The presentity is riding in a vehicle, such as a car, but not steering. The <place> element provides more specific information about the type of conveyance the presentity is using.

	Travel
	The presentity is on a business or personal trip, but not necessarily in-transit. This category can often be generated automatically from a calendar.

	Vacation
	Leisure travel. This activity category can often be generated automatically from a calendar.

	Sleeping
	This activity category can often be generated automatically from a calendar, local time information or biometric data.

	Busy
	User is busy, without further details. While this activity would typically be associated with a status of CLOSED, a presentity may declare itself busy to discourage communication, but indicate that it still can be reached if needed.

	PermanentAbsence
	Presentity will not return for the foreseeable future, e.g., because it is no longer working for the company. This activity is associated with a status of CLOSED.

7.10 PlaceType structure

This structure lists a place.

	Element Name
	Element Type
	Description

	Place
	PlaceEnumerationType
	Contains the place

	ValidSince
	xsd:dateTime[0..1]
	

	ValidUntil
	xsd:dateTime[0..1]
	

7.11 PlaceEnumerationType enumeration

This enumeration lists places.
	Enumeration
	Description

	Home
	The presentity is in a private or residential setting, not necessarily the personal residence of the presentity, e.g., including hotel or a friend's home.

	Office
	The presentity is in a business setting, such as an office.

	Library
	The presentity is in a library or other public place that provides access to books, music and reference materials.

	Theatre
	The presentity is in a theater, lecture hall, auditorium, class room, movie theater or similar facility designed for presentations, talks, plays, music performances and other events involving an audience.

	Hotel
	The presentity is in a hotel, motel, inn or other lodging establishment.

	Restaurant
	The presentity is in a restaurant, coffee shop or other public dining establishment.

	School
	The presentity is in a school or university, but not necessarily in a classroom or library.

	Industrial
	The presentity is in an industrial setting, such as a manufacturing floor or power plant.

	Quiet
	The presentity is in a place such as a library, restaurant, place-of-worship, or theater that discourages noise, conversation and other distractions.

	Noisy
	The presentity is in a place with lots of background noise.

	InPublic
	The presentity is in a public area such as a shopping mall, street, park, public building, train station, airport or in public conveyance such as a bus, train, plane or ship. This general description encompasses the more precise descriptors "street", "public-transport", "aircraft", "ship", "bus", "train", "airport", "mall" and "outdoors" below.

	Street
	Walking in a street.

	PublicTransport
	Any form of public transport, including aircraft, bus, train or ship.

	Aircraft
	The presentity is in a plane, helicopter or balloon.

	Ship
	Water vessel, boat.

	Bus
	Public or charter bus.

	Train
	The presentity is traveling in a train, monorail, maglev, cable car or similar conveyance.

	Airport
	Airport, heliport or similar location.

	Station
	Bus or train station.

	Mall
	Shopping mall or shopping area.

	Outdoors
	General outdoors area, such as a park or city streets.

7.12 PrivacyType structure

This structure lists a privacy.

	Element Name
	Element Type
	Description

	Privacy
	PrivacyEnumerationType
	Contains the privacy

	ValidSince
	xsd:dateTime[0..1]
	

	ValidUntil
	xsd:dateTime[0..1]
	

7.13 PrivacyType enumeration

This enumeration lists privacy considerations.

	Enumeration
	Description

	InPublic
	Others may be able to see or hear the communications.

	InPrivate
	Inappropriate individuals are not likely to see or hear the communications.

7.14 SphereType structure

This structure lists a sphere.

	Element Name
	Element Type
	Description

	Sphere
	xsd:string
	Valid values include “home” and “work”

	ValidSince
	xsd:dateTime[0..1]
	

	ValidUntil
	xsd:dateTime[0..1]
	

7.15 IdleType structure

This structure indicates the presentity is idle.

	Element Name
	Element Type
	Description

	ValidSince
	xsd:dateTime[0..1]
	

7.16 MoodType enumeration

This enumeration lists moods.

	Enumeration
	Description

	Afraid
	

	Amazed
	

	Angry
	

	Annoyed
	

	Anxious
	

	Ashamed
	

	Bored
	

	Brave
	

	Calm
	

	Cold
	

	Confused
	

	Contented
	

	Cranky
	

	Curious
	

	Depressed
	

	Disappointed
	

	Disgusted
	

	Distracted
	

	Embarrassed
	

	Excited
	

	Flirtatious
	

	Frustrated
	

	Grumpy
	

	Guilty
	

	Happy
	

	Hot
	

	Humbled
	

	Humiliated
	

	Hungry
	

	Hurt
	

	Impressed
	

	InAwe
	

	InLove
	

	Indignant
	

	Interested
	

	Invincible
	

	Jealous
	

	Lonely
	

	Mean
	

	Moody
	

	Nervous
	

	Neutral
	

	Offended
	

	Playful
	

	Proud
	

	Relieved
	

	Remorseful
	

	Restless
	

	Sad
	

	Sarcastic
	

	Serious
	

	Shocked
	

	Shy
	

	Sick
	

	Sleepy
	

	Stressed
	

	Surprised
	

	Thirsty
	

	Worried
	

7.17 PresenceElementType Enumeration

The different types of attributes. For each entry in this enumeration there is a separate value type.

	Enumeration
	Description

	Activities
	Describes what the presentity is doing, using an enumeration of <activity> elements.

	Idle
	Indicates whether and optionally for how long the contact device has not been used.

	Mood
	Indicates the mood of the presentity.

	Place
	Reports in which type of place the presentity is currently located.

	Privacy
	Distinguishes whether the presentity is in a public or private space, i.e., whether the current location affords communications privacy.

	Other
	A name – value pair for arbitrary presence information

7.18 SubscriptionRequest Structure

This structure is returned to the presentity by the PAM web service and contains the requesting watcher and the attributes he wants to subscribe.

	Element Name
	Element Type
	Description

	Watcher
	xsd:anyURI
	The watcher who wants to gain access to data

	Attributes
	PresenceElementType [0..unbounded]
	The attributes the watcher wants to see

	Application
	xsd:string
	The name of the application running on behalf of the watcher. Note that this field has solely informative purposes, access rights management is based on watcher id only.

7.19 PresencePermission Structure

The answer from the service to the watcher in the message getSubscriptionStatusResponse.

	Element Name
	Element Type
	Description

	Attribute
	PresenceElementType
	The name of the attribute the watcher wanted to subscribe

	Decision
	xsd:boolean
	Whether the presentity accepted the subscription. If no, any further fields should be ignored.

8 Web Service Interface Definition

This API is separated into three interfaces:

PresenceConsumer interface: watcher methods for requesting and subscribing presence data

PresenceNotification interface: is the watcher notification interface for presence events

PresenceSupplier interface: presentity methods for supplying presence data and managing subscriptions

8.1 Interface : PresenceConsumer

Client role: watcher

This set of methods is used by the watcher to obtain presence data. After the subscription to presence data, the watcher can select between a polling mode or a notification mode in order to receive presence data.

8.1.1 Operation : subscribePresence

We assume that the watcher has been previously authenticated, so that his identity is known and can be associated with the subscription at the server.

The presentity is contacted and requested to authorize the watcher. As this process generally involves user interaction there cannot be an immediate response. The watcher is notified with notifySubscription(). If the presentity is a group, every member of the group will be contacted for authorization. The watcher will get one notification for each member.
Only after the subscription is completed (and the presentity has allowed access to attributes) may the watcher will get information when he uses getUserPresence() or startPresenceNotification().

Note that the SimpleReference contains the correlator string used in subsequent messages to the notification interface.

At this interface level, the subscription has no expiration, although at can be ended from the presentity of the underlying layers (see subscriptionEnded method)

8.1.1.1 Input message : subscribePresenceRequest

	Part Name
	Part Type
	Description

	Presentity
	xsd:anyURI
	A presentity or a group of presentities whose attributes the watcher wants to monitor.

	Attributes
	PresenceElementType [0..unbounded]
	The attributes the watcher wants to access. (the same for all the group members). An empty array means subscription of all attributes.

	Application
	xsd:string
	Describes the application the watcher needs the data for.

	Reference
	common:SimpleReference
	The notification interface.

8.1.1.2 Output message : subscribePresenceResponse

	Part Name
	Part Type
	Description

	None
	
	

8.1.1.3 Referenced Faults

ServiceException from [6]

· SVC0001: Service error

· SVC0002: Invalid input value

· SVC0004: No valid addresses – if the presentity address does not exist.

PolicyException from [6].

· POL0006: Groups not allowed

· POL0007: Nested groups not allowed

8.1.2 Operation : getUserPresence

Returns the aggregated presence data of a presentity. Only the attributes which the watcher is entitled to see will be returned. This method does not support group identities.

Before getting these attributes, the watcher has to subscribe to them (see above). The presentity needs not be informed of the access, as he has already consented when the watcher called requestSubscription().

8.1.2.1 Input message : getUserPresenceRequest

	Part Name
	Part Type
	Description

	Presentity
	xsd:anyURI
	The presentity whose data the watcher wants to see.

	Attributes
	PresenceElementType [0..unbounded]
	The attributes the watcher wants to see. An empty array means all attributes.

8.1.2.2 Output message : getUserPresenceResponse

	Part Name
	Part Type
	Description

	Result
	Presence
	The actual presence data.

8.1.2.3 Referenced Faults

ServiceException from [6]

· SVC0001: Service error

· SVC0002: Invalid input value

· SVC0004: No valid addresses – if the presentity address does not exist.

PolicyException from [6]. The presentity has the possibility to cancel or block a subscription by manipulating the policy rules. The exception informs the watcher about this status change.

· POL0002: Privacy error – if the watcher is not subscribed to the requested data.

· POL0006: Groups not allowed

8.1.3 Operation : startPresenceNotification

The notification pattern with correlation is used in order to be able to correlate the notification events with the request. The attributes represent a subset of the attributes subscribed and can be used as filter.

The watcher sets a notification trigger on certain user presence attribute changes. If the list of attributes is empty, the watcher wants to be notified on all subscribed attributes.

In case the presentity is a group the watcher will receive notifications for every single member of the group. The watcher will only get notifications for those attributes and presentities he subscribed successfully prior to the call. The service will return a list of presentities where the notifications could not be set up.

The presentity needs not be informed of the access, as he has already consented when the watcher called requestSubscription().

Note that the SimpleReference contains the correlator string used in subsequent messages to the notification interface.

8.1.3.1 Input message : startPresenceNotificationRequest

	Part Name
	Part Type
	Description

	Presentity
	xsd:anyURI
	The presentity or group whose attributes the watcher wants to monitor.

	Attributes
	PresenceElementType [0..unbounded]
	The attributes the watcher wants to see.

	Reference
	Common:SimpleReference
	The notification interface

	Frequency
	Common:TimeMetric
	Maximum frequency of notifications (can also be considered minimum time between notifications). In case of a group subscription the service must make sure this frequency is not violated by notifications for various members of the group, especially in combination with checkImmediate.

	Duration
	Common:TimeMetric
	Length of time notifications occur for, null to use default notification time defined by service policy.

	Count
	xsd:int
	Maximum number of notifications, zero if no maximum

	CheckImmediate
	xsd:boolean
	Whether to check status immediately after establishing notification.

8.1.3.2 Output message : startPresenceNotificationResponse

	Part Name
	Part Type
	Description

	Presentities
	xsd:anyURI [0..unbounded]
	The presentities whose attributes the watcher did not subscribe. Empty if all went fine.

8.1.3.3 Referenced Faults

ServiceException from [6]

· SVC0001: Service error

· SVC0002: Invalid input value

· SVC0004: No valid addresses – if the presentity URI does not exist.

· SVC0005: Duplicate correlator

PolicyException from [6]. The presentity has the possibility to cancel or block a subscription by manipulating the policy rules. The exception informs the watcher about this status change.

· POL0001: Policy error

· POL0004: Unlimited notifications not supported

· POL0005: Too many notifications requested

· POL0006: Groups not allowed

· POL0007: Nested groups not allowed

8.1.4 Operation : endPresenceNotification

Indicates that the watcher does not want further notifications for a specific notification request (identified by the correlator). Note that the subscription to presence data stays active; the caller of this method remains a watcher and can still use getUserPresence() or reactivate the notifications.

8.1.4.1 Input message : endPresenceNotificationsRequest

	Part Name
	Part Type
	Description

	Correlator
	xsd:string
	The notification the watcher wants to cancel.

8.1.4.2 Output message : endPresenceNotificationResponse

	Part Name
	Part Type
	Description

	None
	
	

8.1.4.3 Referenced Faults

ServiceException from [6]

· SVC0001: Service error

· SVC0002: Invalid input value

PolicyException from [6]

· POL0001: Policy error

8.2 Interface : PresenceNotification

This client callback interface is used by the presence consumer interface to send notifications.

8.2.1 Operation : statusChanged

The asynchronous operation is called by the web service when an attribute for which notifications were requested changes.

8.2.1.1 Input message : statusChangedRequest

	Part Name
	Part Type
	Description

	Correlator
	xsd:string
	Identifies the notification request

	Presentity
	xsd:anyURI
	The presentity whose presence status has changed

	ChangedAttributes
	Presence
	The new presence data

8.2.1.2 Output message : statusChangedResponse

	Part Name
	Part Type
	Description

	None
	
	

8.2.1.3 Referenced Faults

None.

8.2.2 Operation : statusEnd

The notifications have ended for this correlator. This message will be delivered when the duration or count for notifications have been completed. This message will not be delivered in the case of an error ending the notifications or deliberate ending of the notifications (using endNotification operation).

8.2.2.1 Input message : statusEndRequest

	Part Name
	Part Type
	Description

	Correlator
	xsd:string
	Correlator provided in request to set up this notification

8.2.2.2 Output message : statusEndResponse

	Part Name
	Part Type
	Description

	None
	
	

8.2.2.3 Referenced Faults

None.

8.2.3 Operation : notifySubscription

This asynchronous method notifies the watcher that the server or the presentity handled the pending subscription.

8.2.3.1 Input message : notifySubscriptionRequestt

	Part Name
	Part Type
	Description

	Presentity
	xsd:anyURI
	The presentity whose attributes the watcher wants to monitor

	Decisions
	PresencePermission [0..unbounded]
	Denote the attributes the server/presentity accepted to expose

8.2.3.2 Output message : notifySubscriptionResponse

	Part Name
	Part Type
	Description

	none
	
	

8.2.4 Operation : subscriptionEnded

This asynchronous operation is called by the web service to notify the watcher (application) that the subscription has terminated. Typical reasons are a timeout of the underlying SIP soft state subscription (in accordance with [14] and [9]) or the decision of the presentity to block further presence information to that watcher. Since the subscription request has no expiration parameters, the service implementation may provide an inactivity timer that also triggers the subscriptionEnded message.

8.2.4.1 Input message : subscriptionEndedRequest

	Part Name
	Part Type
	Description

	Presentity
	xsd:anyURI
	The presentity to which the subscription has terminated

	Reason
	xsd:string
	Timeout, Blocked

8.2.4.2 Output message : subscriptionEndedResponse

	Part Name
	Part Type
	Description

	None
	
	

8.3 Interface : PresenceSupplier

These methods are used by the presentity to supply presence data and manage access to the data by its watchers. We assume that the presentity has been previously authenticated, so that his Identity is known.

8.3.1 Operation : publish

The presentity publishes data about herself. This data will then be filtered by the system and forwarded to the watchers who have ordered notifications.

8.3.1.1 Input message : publishRequest

	Part Name
	Part Type
	Description

	Presence
	PresenceElementType [0..unbounded]
	The presence attributes the devices of the presentity supports

8.3.1.2 Output message : publishResponse

	Part Name
	Part Type
	Description

	None
	
	

8.3.1.3 Referenced Faults

ServiceException from [6]

· SVC0001: Service error

· SVC0002: Invalid input value

PolicyException from [6]

· POL0001: Policy error

8.3.2 Operation : getOpenSubscriptions

Called periodically by the presentity to see if any watchers wants to subscribe to presence data. The client will answer open requests with updateSubscriptionAuthorization().

8.3.2.1 Input message : getOpenSubscriptionsRequest

	Part Name
	Part Type
	Description

	None
	
	

8.3.2.2 Output message : getOpenSubscriptionsResponse

	Part Name
	Part Type
	Description

	OpenRequests
	SubscriptionRequest [0..unbounded]
	Any open requests

8.3.2.3 Referenced Faults

ServiceException from [6]

· SVC0001: Service error

PolicyException from [6]

· POL0001: Policy error

8.3.3 Operation : updateSubscriptionAuthorization

The presentity answers with this operation to watcher subscriptions for which no authorization policy exists. The answer consists of the attribute and the watcher involved and the permissions for each attribute. Subscription requests that are not answered are assumed pending.

The operation can be used by the presentity to change anytime the authorization for a certain watcher or group to monitor one or several attributes.

If the watcher did not try to subscribe the attribute – i.e. there is not pending subscription from this watcher to an attribute in the decisions array, a PresenceException will be raised and the entire authorization request ignored.

8.3.3.1 Input message : updateSubscriptionAuthorizationRequest

	Part Name
	Part Type
	Description

	Watcher
	xsd:anyURI
	watcher or group of watchers

	Decisions
	PresencePermission [0..unbounded]
	The answers to open requests

8.3.3.2 Output message updateSubscriptionAuthorizationResponse

	Part Name
	Part Type
	Description

	None
	
	

8.3.3.3 Referenced Faults

ServiceException from [6]

· SVC0001: Service error

· SVC0002: Invalid input value

· SVC0004: No valid addresses

· SVC0220: NoSubscriptionRequest

PolicyException from [6]

· POL0001: Policy error

8.3.4 Operation : getMyWatchers

Returns an array of watching identities that are subscribed to the presentity’s attributes. They are not necessarily users of the notification system, the mere fact that they are allowed to see the presentity’s attributes is enough to be on this list.

8.3.4.1 Input message : getMyWatchersRequest

	Part Name
	Part Type
	Description

	None
	
	

8.3.4.2 Output message : getMyWatchersResponse

	Part Name
	Part Type
	Description

	Result
	xsd:anyURI [0..unbounded]
	The list of identities who currently have access to the presentity’s attributes.

8.3.4.3 Referenced Faults

ServiceException from [6]

· SVC0001: Service error

PolicyException from [6]

· POL0001: Policy error

8.3.5 Operation : getSubscribedAttributes

Returns an array of attributes that a specific watcher has subscribed.

8.3.5.1 Input message : getSubscribedAttributesRequest

	Part Name
	Part Type
	Description

	Watcher
	xsd:anyURI
	The watcher whose subscriptions the presentity wants to know

8.3.5.2 Output message : getSubscribedAttributesResponse

	Part Name
	Part Type
	Description

	Result
	PresenceElementType [0..unbounded]
	The attributes the watcher is subscribed to.

8.3.5.3 Referenced Faults

ServiceException from [6]

· SVC0001: Service error

· SVC0004: No valid addresses

· SVC0221: Not a watcher – if the URI in the field watcher is not a watcher of the presentity.

PolicyException from [6]

· POL0001: Policy error

8.3.6 Operation : blockSubscription

With this operation the presentity can block entirely the flow of presence information to a certain subscribed watcher by canceling the subscription. The watcher will be notified with an subscriptionEnded() message.

8.3.6.1 Input message : blockSubscriptionRequest

	Part Name
	Part Type
	Description

	Watcher
	xsd:anyURI
	The watcher whose subscriptions the presentity wants to cancel

8.3.6.2 Output message : blockSubscriptionResponse

	Part Name
	Part Type
	Description

	None
	
	

8.3.6.3 Referenced Faults

ServiceException from [6]

· SVC0001: Service error

· SVC0002: Invalid input value

· SVC0004: No valid addresses

· SVC0221: Not a watcher – if the URI in the field watcher is not a watcher of the presentity.

PolicyException from [6]

· POL0001: Policy error

9 Fault Definitions
9.1 ServiceException

From [6].

9.1.1 SVC0220 : No subscription request

	Message Id
	SVC0220

	Text
	No subscription request from watcher %1 for attribute %2

	Variables
	%1 – watcher URI

%2 – type of attribute

9.1.2 SVC0221 : Not a watcher

	Message Id
	SVC0221

	Text
	%1 is not a watcher

	Variables
	%1 – watcher URI

10 Service Policies

	Name
	Type
	Description

	MaximumNotificationFrequency
	common:TimeMetric
	Maximum rate of notification delivery (also can be considered minimum time between notifications)

	MaximumNotificationDuration
	common:TimeMetric
	Maximum amount of time a notification may be set up for

	DefaultNotificationDuration
	common:TimeMetric
	Default amount of time a notification will be set up for.

	MaximumCount
	xsd:int
	Maximum number of notifications that may be requested

	UnlimitedCountAllowed
	xsd:boolean
	Allowed to specify unlimited notification count (i.e. specify zero in notification count requested)

	GroupSupport
	xsd:boolean
	Groups may be included with addresses

	NestedGroupSupport
	xsd:boolean
	Are nested groups supported in group definitions

Annex A:
WSDL of Presence API (normative)

The document/literal WSDL representation of this interface specification is compliant to [6] and is contained in text files (contained in archive 29199-14-106-doclit.zip) which accompanies the present document.
Annex B:
Change History (informative)

This annex will be removed before publication.

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	
	
	
	
	
	
	-
	0.0.1

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

presentity

client

watcher

client

watcher

application

Parlay-X API

Group Management WS

Parlay-X Presence Web Service

OSA/Parlay API

Network protocols (e.g. SIP)

Policy rules

PAM Parlay SCF

Network elements (e.g. SIP)

_1154345467.doc

Timestamp

Note

Contact

Basic

Status

Tuple attr:id

Presence attr:entity

_1154346443.doc

[image: image1]

Relationship

Tuple-type

Class

Status-icon

Sphere attr:since attr:until

Privacy attr:since attr:until

Place-type attr:since attr:until

Mood

Idle

Activities attr:since attr:until

Basic

Status

Tuple attr:id

