joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040559
Meeting #28, Piscataway, New Jersey, USA, 09-13 August 2004

Source:
Ultan Mulligan
Title:
Description of Backwards Compatibility rules in 203 915-1

Agenda Item:
OSA3 (3GPP Rel-6 / Parlay 5)
Document for:
Decision
Currently there is no description in our specifications of the rules we should follow for ensuring Backwards Compatibility, or even a definition of what is meant by Backwards Compatibility in terms of our specifications.

In order to add rules for deletion of deprecated methods, some text needs to be added to provide a context for these rules, and to describe how methods become deprecated in the first place.

The following text is largely taken from the Parlay Backwards Compatibility White Paper, last submitted to the JWG as N5-020422, also included in this zip file.
9
Backwards Compatibility Considerations

The backwards compatibility rules described below are intended to enable an older client to continue to interwork with a newer server or gateway.

9.1
Guidelines to enable backwards compatibility in implementations

1) The Gateway should require the usage of Framework versions and service versions. All Applications should use these parameters.

2) The IDL version parameter should not be used when generating the IDL.

3) If an SCF implementation handles multiple versions it should register all possible versions in the Framework and the implementation should use the version returned when a new service manager are created.

9.2
Rule summary

The following types of changes can be made to these specifications while preserving backwards compatibility, everything beyond these changes is not allowed.

9.2.1
Server side permitted changes:

· Addition of a new interface

· Addition of a new method to an existing or new interface

· Addition and removal of exceptions if the implementation uses the Application version as described above.

9.2.2

Client side permitted changes:

· Addition of a new interface

· Addition of a new method

Note:
The version the client requests should be used to indicate which interfaces and methods are supported on the client side.

· Addition and removal of exceptions if the implementation uses the Application version as described above.

9.2.3
Data type permitted changes:

· Elements can be added to “sequence” data types. Care should be taken when adding elements to data types that are sent back to the client: The client may be outdated and thus not be able to interpret the new element. Only information that has not been available before (and therefore is not expected by the client) may be transferred in added elements. Information that has been available before (and therefore possibly expected by the client) may not be modified in any way.

· Elements can be added to “tagged choice of data elements” data types, if they are always sent from client to server (either within a parameter of a server side method, or within the result of a client side method.

Every change beyond the rules listed above is forbidden. In particular, changes like the following should not be done:

· Changing the order of enumerated types

· Changing method signatures

· Removing or renaming methods

9.3
Implementation Guidelines for Server Programmers

· If methods are added at the client side, the server should call them only if it can be sure that the client has implemented them. Basically, this means the server needs to make sure that the client supports the release, where the new methods have been introduced, or a later one.

· Servers could ensure that references to dynamically created objects (service managers or calls) remain valid even after a server upgrade. An alternative method is to be able to make so called graceful close of old versions and running the new version in parallel. The old version will not allow any new requests but will allow existing ones to execute until they are finished.

9.4
Implementation Guidelines for Client Programmers

· The backwards compatibility rules allow for “smooth” upgrades to new Parlay/OSA releases in the Gateway. All existing functionality should still work without any changes in the client. Client programmers need to change code only to enhance it; they should never need to change code just to adopt it to the new release.
Care should be taken when supporting features of a new release. The moment a client application use newer release features, it should then support all of the client side features for that newer release, otherwise the sever may invoke newer release methods on the client and the client will not respond.

9.5
Tracking the changes in the specifications

9.5.1
New Tag

If a client side interface is added, or methods are added to an existing interface, the new methods are marked with a UML stereotype “New”.

This tag is merely a hint for the programmer.

9.5.2
Deprecated Tag

If interfaces, methods or service properties are deemed outdated or broken, the items are marked with a UML stereotype “Deprecated”. The tag indicates that they are supported by this Framework or SCF release, but that they will not necessarily be supported in subsequent releases. The respective items may be removed in the specification release.

The tag is a hint for the client programmer that an update to their client applications may be necessary.

9.6
Technology realization rules

9.6.1
Corba IDL Rules

In addition to the rules identified above, in order to ensure backwards compatibility of the IDL code, the following rules shall be followed in updating this specification:

· IDL version numbering should not be used when generating the IDL.
9.6.2
Java rules
In addition to the rules identified above, in order to ensure backwards compatibility of the J2EE and J2SE code, the following rules shall be followed in updating this specification:

· When elements are added to “sequence” data types, the Java constructor for these data types are updated with the new elements when the Java code is re-generated. The old constructor, without the new elements, shall be manually included in the generated Java code and marked as deprecated.
9.7
Rules for removal of deprecated items from the specifications
· At each major Parlay release n.0 (in ETSI terms, V1.1.1 of each ES 20x 915 specification), we delete, using change requests, all deprecated methods and other deprecated items, which are identified as deprecated in the most recent version of the Parlay n-2 edition of specifications.

i.e. for Parlay 5.0, we delete all deprecated items which are deprecated in the Parlay 3.4 specifications.
· When deleting deprecated methods, any unused data types can be deleted using the CR process,.
· At each major release, the <<new>> stereotypes that were present in the specifications prior to this release are deleted. CRs are not required for this.

· Methods or stereotypes are never deleted at a minor release.

· Names of deleted methods are never re-used.

· Exceptionally, we may choose not to delete certain deprecated methods, in the interest of preserving backwards compatibility.

�PAGE \# "'Page: '#'�'" �Page: 8���This is not allowed, so shouldn’t be in the bullet list

�PAGE \# "'Page: '#'�'" �Page: 8���I don’t think this is allowed

