[image: image31.wmf]

TD <>
Draft DES/TISPAN-06004-13-OSA V0.0.1 (2004-06)
ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);

Test Suite Structure and Test Purposes (TSS&TP);

Part 13: Policy Management SCF;

(Parlay 4)

Reference

DES/TISPAN-06004-13-OSA
Keywords

API, OSA, TSS&TP

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, send your comment to:
editor@etsi.org
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2003.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Contents

4Intellectual Property Rights

Foreword
4
1
Scope
5
2
References
5
3
Definitions and abbreviations
5
3.1
Definitions
5
3.2
Abbreviations
6
4
Test Suite Structure (TSS)
6
5
Test Purposes (TP)
6
5.1
Introduction
6
5.1.1
TP naming convention
6
5.1.2
Source of TP definition
6
5.1.3
Test strategy
7
5.2
TPs for the Policy Management SCF
7
5.2.1
Policy Management, SCF side
7
5.2.1.1
IpPolicyManager
7
5.2.1.2
IpPolicyDomain
22
5.2.1.3
IpPolicyRule
35
5.2.1.4
IpPolicyRepository
44
5.2.2
Policy Management, application side
51
History
53

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES) has been produced by ETSI Technical Committee TISPAN.

The present document is part 13 of a multi-part deliverable. Full details of the entire series can be found in part 1 [6].

To evaluate conformance of a particular implementation, it is necessary to have a set of test purposes to evaluate the dynamic behaviour of the Implementation Under Test (IUT). The specification containing those test purposes is called a Test Suite Structure and Test Purposes (TSS&TP) specification.

1
Scope

The present document provides the Test Suite Structure and Test Purposes (TSS&TP) specification for the Policy Management SCF of the Application Programming Interface (API) for Open Service Access (OSA) defined in ES 202 915‑13 [1] in compliance with the relevant requirements, and in accordance with the relevant guidance given in ISO/IEC 9646-2 [4] and ETS 300 406 [5].

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication and/or edition number or version number) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

[1]
ETSI ES 202 915-13: "Open Service Access (OSA); Application Programming Interface (API);
Part 13: Policy Management SCF (Parlay 4)".

[2]
ETSI DES/TISPAN-06002-OSA: "Open Service Access (OSA); Application Programming Interface (API); Implementation Conformance Statement (ICS) proforma specification".

[3]
ISO/IEC 9646-1: "Information technology - Open Systems Interconnection - Conformance testing methodology and framework - Part 1: General concepts".

[4]
ISO/IEC 9646-2: "Information technology - Open Systems Interconnection - Conformance testing methodology and framework - Part 2: Abstract Test Suite specification".

[5]
ETSI ETS 300 406: "Methods for Testing and Specification (MTS); Protocol and profile conformance testing specifications; Standardization methodology".

[6]
ETSI DES/TISPAN-06004-01-OSA: "Open Service Access (OSA); Application Programming Interface (API); Test Suite Structure and Test Purposes (TSS&TP); Part 1: Overview (Parlay 4)".

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in ES 202 915-13 [1], ISO/IEC 9646-1 [3] and ISO/IEC 9646-2 [4] and the following apply:

abstract test case: Refer to ISO/IEC 9646‑1 [3].

Abstract Test Method (ATM): Refer to ISO/IEC 9646‑1 [3].

Abstract Test Suite (ATS): Refer to ISO/IEC 9646‑1 [3].

Implementation Under Test (IUT): Refer to ISO/IEC 9646‑1 [3].

Lower Tester (LT): Refer to ISO/IEC 9646‑1 [3].

Implementation Conformance Statement (ICS): Refer to ISO/IEC 9646‑1 [3].

ICS proforma: Refer to ISO/IEC 9646‑1 [3].

Implementation eXtra Information for Testing (IXIT): Refer to ISO/IEC 9646‑1 [3].

IXIT proforma: Refer to ISO/IEC 9646‑1 [3].

Test Purpose (TP): Refer to ISO/IEC 9646‑1 [3].

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

API
Application Programming Interface

ATM
Abstract Test Method

ATS
Abstract Test Suite

ICS
Implementation Conformance Statement

IUT
Implementation Under Test

IXIT
Implementation eXtra Information for Testing

LT
Lower Tester

OSA
Open Service Access

PM
Policy Management

TSS
Test Suite Structure

4
Test Suite Structure (TSS)

· Policy Management SCF

5
Test Purposes (TP)

5.1
Introduction

For each test requirement a TP is defined.

5.1.1
TP naming convention

TPs are numbered, starting at 01, within each group. Groups are organized according to the TSS. Additional references are added to identify the actual test suite (see table 1).

Table 1: TP identifier naming convention scheme

Identifier:
<suite_id>_<group>_<nnn>

<suite_id>
= SCF name:
"PM" for Policy Management SCF

<group>
= group number:
two character field representing the group reference according to TSS

<nn>
= sequential number:
(01-99)

5.1.2
Source of TP definition

The TPs are based on ES 202 915‑13 [1].

5.1.3
Test strategy

As the base standard ES 202 915‑13 [1] contains no explicit requirements for testing, the TPs were generated as a result of an analysis of the base standard and the PICS specification ES 202 170 [2].

The TPs are only based on conformance requirements related to the externally observable behaviour of the IUT and are limited to conceivable situations to which a real implementation is likely to be faced (see ETS 300 406 [5]).

5.2
TPs for the Policy Management SCF

All PICS items referred to in this clause are as specified in ES 202 170 [2] unless indicated otherwise by another numbered reference.

All parameters specified in method calls are valid unless specified.

The procedures to trigger the SCF to call methods in the application are dependant on the underlying network architecture and are out of the scope of this test specification. Those method calls are preceded by the words "Triggered action".

5.2.1 Policy Management, SCF side

5.2.1.1
IpPolicyManager

Test PM_PM_01
Summary:
create domain

Reference:
ES 202 915-13 [1], clauses 8.1

Precondition:
createDomain() implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call startTransaction()
Parameters:
none
Check:
no exception is returned

2.
Method call createDomain()
Parameters:
domainName
Check:
valid value of IpPolicyDomainRef is returned

3.
Method call commitTransaction()
Parameters:
none
Check:
value TRUE is returned

[image: image1.wmf] :

IpPolicyManager

 : (Logical

View::IpAppLogic)

1. startTransaction()

2. createDomain(domainName)

3. commitTransaction()

TRUE

IpPolicyDomainRef

Test PM_PM_02
Summary:
get domain

Reference:
ES 202 915-13 [1], clauses 8.1

Precondition:
getDomain() implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Policy domains have to be present and the tester (application) must be authorised to invoke methods
related to them.

Test Sequence:

1.
Method call startTransaction()
Parameters:
none
Check:
no exception is returned

2.
Method call getDomain()
Parameters:
domainName
Check:
valid value of IpPolicyDomainRef is returned

3.
Method call commitTransaction()
Parameters:
none
Check:
value TRUE is returned

[image: image2.wmf] :

IpPolicyManager

 : (Logical

View::IpAppLogic)

1. startTransaction()

2. getDomain(domainName)

3. commitTransaction()

TRUE

IpPolicyDomainRef

Test PM_PM_03
Summary:
remove domain

Reference:
ES 202 915-13 [1], clauses 8.1

Precondition:
removeDomain() implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Policy domains have to be present and the tester (application) must be authorised to invoke methods
related to them.

Test Sequence:

1.
Method call startTransaction()
Parameters:
none
Check:
no exception is returned

2.
Method call removeDomain()
Parameters:
domainName
Check:
no exception is returned

3.
Method call commitTransaction()
Parameters:
none
Check:
value TRUE is returned

[image: image3.wmf] :

IpPolicyManager

 : (Logical

View::IpAppLogic)

1. startTransaction()

2. removeDomain(domainName)

3. commitTransaction()

TRUE

Test PM_PM_04
Summary:
get number of policy domains

Reference:
ES 202 915-13 [1], clauses 8.1

Precondition:
getDomainCount() implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Policy domains have to be present and the tester (application) must be authorised to invoke methods
related to them.

Test Sequence:

1.
Method call startTransaction()
Parameters:
none
Check:
no exception is returned

2.
Method call getDomainCount()
Parameters:
none
Check:
valid number of domains is returned

3.
Method call commitTransaction()
Parameters:
none
Check:
value TRUE is returned

[image: image4.wmf] :

IpPolicyManager

 : (Logical

View::IpAppLogic)

1. startTransaction()

2. getDomainCount(domainName)

3. commitTransaction()

TRUE

number of domains

Test PM_PM_05
Summary:
get reference to policy domain iterator

Reference:
ES 202 915-13 [1], clauses 8.1

Precondition:
getDomainIterator() implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Policy domains have to be present and the tester (application) must be authorised to invoke methods
related to them.

Test Sequence:

1.
Method call startTransaction()
Parameters:
none
Check:
no exception is returned

2.
Method call getDomainIterator()
Parameters:
none
Check:
valid value of IpPolicyIteratorRef is returned

3.
Method call commitTransaction()
Parameters:
none
Check:
value TRUE is returned

[image: image5.wmf] :

IpPolicyManager

 : (Logical

View::IpAppLogic)

1. startTransaction()

2. getDomainIterator(domainName)

3. commitTransaction()

TRUE

IpPolicyIteratorRef

Test PM_PM_06
Summary:
find matching policy domains

Reference:
ES 202 915-13 [1], clauses 8.1

Precondition:
findMatchingDomain() implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Policy domains have to be present and the tester (application) must be authorised to invoke methods
related to them.

Test Sequence:

1.
Method call startTransaction()
Parameters:
none
Check:
no exception is returned

2.
Method call findMatchingDomain()
Parameters:
matchingAttributes
Check:
valid TpStringSet is returned

3.
Method call commitTransaction()
Parameters:
none
Check:
value TRUE is returned

[image: image6.wmf] :

IpPolicyManager

 : (Logical

View::IpAppLogic)

1. startTransaction()

2. findMatchingDomain(domainName)

3. commitTransaction()

TRUE

TpStringSet

Test PM_PM_07
Summary:
create policy repository

Reference:
ES 202 915-13 [1], clauses 8.1

Precondition:
createRepository() implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call startTransaction()
Parameters:
none
Check:
no exception is returned

2.
Method call createRepository()
Parameters:
repositoryName
Check:
valid value of IpPolicyRepository is returned

3.
Method call commitTransaction()
Parameters:
none
Check:
value TRUE is returned

[image: image7.wmf] :

IpPolicyManager

 : (Logical

View::IpAppLogic)

1. startTransaction()

2. createRepository(repositoryName)

3. commitTransaction()

TRUE

IpPolicyRepository

Test PM_PM_08
Summary:
get policy repository

Reference:
ES 202 915-13 [1], clauses 8.1

Precondition:
getRepository() implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Policy repositories have to be present and the tester (application) must be authorised to invoke methods
related to them.

Test Sequence:

1.
Method call startTransaction()
Parameters:
none
Check:
no exception is returned

2.
Method call getRepository()
Parameters:
repositoryName
Check:
valid value of IpPolicyRepository is returned

3.
Method call commitTransaction()
Parameters:
none
Check:
value TRUE is returned

[image: image8.wmf] :

IpPolicyManager

Application :

IpAccountManager

1. startTransaction()

2. getRepository(repositoryName)

3. commitTransaction()

TRUE

IpPolicyRepository

Test PM_PM_09
Summary:
remove policy repository

Reference:
ES 202 915-13 [1], clauses 8.1

Precondition:
removeRepository() implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Policy repositories have to be present and the tester (application) must be authorised to invoke methods
related to them.

Test Sequence:

1.
Method call startTransaction()
Parameters:
none
Check:
no exception is returned

2.
Method call removeRepository()
Parameters:
repositoryName
Check:
no exception is returned

3.
Method call commitTransaction()
Parameters:
none
Check:
value TRUE is returned

[image: image9.wmf] :

IpPolicyManager

 : (Logical

View::IpAppLogic)

1. startTransaction()

2. removeRepository(repositoryName)

3. commitTransaction()

TRUE

Test PM_PM_10
Summary:
get number of policy repositories

Reference:
ES 202 915-13 [1], clauses 8.1

Precondition:
getRepositoryCount() implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Policy repositories have to be present and the tester (application) must be authorised to invoke methods
related to them.

Test Sequence:

1.
Method call startTransaction()
Parameters:
none
Check:
no exception is returned

2.
Method call getRepositoryCount()
Parameters:
none
Check:
valid number of policy repositories is returned

3.
Method call commitTransaction()
Parameters:
none
Check:
value TRUE is returned

[image: image10.wmf] :

IpPolicyManager

 : (Logical

View::IpAppLogic)

1. startTransaction()

2. getRepositoryCount(repositoryName)

3. commitTransaction()

TRUE

number of repositories

Test PM_PM_11
Summary:
get reference to policy repository iterator

Reference:
ES 202 915-13 [1], clauses 8.1

Precondition:
getRepositoryIterator() implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Policy repositories have to be present and the tester (application) must be authorised to invoke methods
related to them.

Test Sequence:

1.
Method call startTransaction()
Parameters:
none
Check:
no exception is returned

2.
Method call getRepositoryIterator()
Parameters:
none
Check:
valid value of IpPolicyIteratorRef is returned

3.
Method call commitTransaction()
Parameters:
none
Check:
value TRUE is returned

[image: image11.wmf] :

IpPolicyManager

 : (Logical

View::IpAppLogic)

1. startTransaction()

2. getRepositoryIterator(repositoryName)

3. commitTransaction()

TRUE

IpPolicyIteratorRef

Test PM_PM_12
Summary:
start and abort transaction

Reference:
ES 202 915-13 [1], clauses 8.1

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call startTransaction()
Parameters:
none
Check:
no exception is returned

2.
Method call abortTransaction()
Parameters:
none
Check:
no exception is returned

[image: image12.wmf] :

IpPolicyManager

 : (Logical

View::IpAppLogic)

1. startTransaction()

2. abortTransaction()

Test PM_PM_13
Summary:
start transaction twice

Reference:
ES 202 915-13 [1], clauses 8.1

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call startTransaction()
Parameters:
none
Check:
no exception is returned

2.
Method call startTransaction()
Parameters:
none
Check:
P_TRANSACTION_IN_PROGRESS is returned.

[image: image13.wmf] :

IpPolicyManager

 : (Logical

View::IpAppLogic)

1. startTransaction()

2. startTransaction()

P_TRANSACTION_IN_PROGRESS

Test PM_PM_14
Summary:
commit non-started transaction

Reference:
ES 202 915-13 [1], clauses 8.1

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call commitTransaction()
Parameters:
none
Check:
P_NO_TRANSACTION_IN_PROGRESS or any other suitable exception is returned.

[image: image14.wmf] :

IpPolicyManager

 : (Logical

View::IpAppLogic)

1. commitTransaction()

P_NO_TRANSACTION_IN_PROGRESS

Test PM_PM_15
Summary:
abort non-started transaction

Reference:
ES 202 915-13 [1], clauses 8.1

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call abortTransaction()
Parameters:
none
Check:
P_NO_TRANSACTION_IN_PROGRESS or any other suitable exception is returned.

[image: image15.wmf] :

IpPolicyManager

 : (Logical

View::IpAppLogic)

1. abortTransaction()

P_NO_TRANSACTION_IN_PROGRESS

5.2.1.2
IpPolicyDomain

Test PM_PD_01
Summary:
create, get and remove subdomain

Reference:
ES 202 915-13 [1], clauses 8.1 and 8.3

Precondition:
createDomain(), getDomain() and removeDomain() are implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

2.
Method call createDomain() on the IpPolicyManager interface
Parameters:
domainName1
Check:
valid value of IpPolicyDomainRef is returned

3.
Method call createDomain() on the IpPolicyDomain interface
Parameters:
domainName2
Check:
valid value of IpPolicyDomainRef is returned

4.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

5.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

6.
Method call getDomain() on the IpPolicyDomain interface
Parameters:
domainName2
Check:
valid value of IpPolicyDomainRef is returned

7.
Method call removeDomain() on the IpPolicyDomain interface
Parameters:
domainName2
Check:
no exception is returned

8.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

[image: image16.wmf] : (Logical

View::IpAppLogic)

 :

IpPolicyManager

 :

IpPolicyDomain

1. startTransaction()

2. createDomain(domainName)

IpPolicyDomainRef

3. createDomain(domainName2)

IpPolicyDomainRef

4. commitTransaction()

TRUE

5. startTransaction()

6. getDomain(domainName2)

IpPolicyDomainRef

7. removeDomain(domainName2)

8. commitTransaction()

TRUE

Test PM_PD_02
Summary:
create domain and set attribute

Reference:
ES 202 915-13 [1], clauses 8.1, 8.2 and 8.3

Precondition:
createDomain() and setAttribute() are implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

2.
Method call createDomain() on the IpPolicyManager interface
Parameters:
domainName1
Check:
valid value of IpPolicyDomainRef is returned

3.
Method call setAttribute() on the IpPolicyDomain interface
Parameters:
targetAttribute.AttributeName = CommonName

targetAttribute.AttributeType = TpString

targetAttribute.AttributeValue = “Domain”
Check:
no exception is returned

4.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

[image: image17.wmf] : (Logical

View::IpAppLogic)

 :

IpPolicyManager

 :

IpPolicyDomain

 :

IpPolicyDomain

1. startTransaction()

2. createDomain(domainName)

IpPolicyDomainRef

3. createDomain(domainName2)

IpPolicyDomainRef

5. commitTransaction()

TRUE

targetAttribute.AttributeName = CommonName

targetAttribute.AttributeType = TpString

targetAttribute.AttributeValue = "Domain"

4. setAttribute(targetAttribute)

Test PM_PD_03
Summary:
create, get and remove group

Reference:
ES 202 915-13 [1], clauses 8.1 and 8.3

Precondition:
createDomain(), createGroup(), getGroup() and removeGroup() are implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

2.
Method call createDomain() on the IpPolicyManager interface
Parameters:
DomainName
Check:
valid value of IpPolicyDomainRef is returned

3.
Method call createGroup() on the IpPolicyDomain interface
Parameters:
groupName
Check:
valid value of IpPolicyGroupRef is returned

4.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

5.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

6.
Method call getGroup() on the IpPolicyDomain interface
Parameters:
groupName
Check:
valid value of IpPolicyGroupRef is returned

7.
Method call removeGroup() on the IpPolicyDomain interface
Parameters:
groupName
Check:
no exception is returned

8.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

[image: image18.wmf] : (Logical

View::IpAppLogic)

 :

IpPolicyManager

 :

IpPolicyDomain

1. startTransaction()

2. createDomain(domainName)

IpPolicyDomainRef

4. commitTransaction()

TRUE

5. startTransaction()

8. commitTransaction()

TRUE

3. createGroup(groupName)

IpPolicyGroupRef

6. getGroup(groupName)

IpPolicyGroupRef

7. removeGroup(groupName)

Test PM_PD_04
Summary:
create group and set attribute

Reference:
ES 202 915-13 [1], clauses 8.1, 8.2 and 8.3

Precondition:
createDomain(), createGroup() and setAttribute() are implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

2.
Method call createDomain() on the IpPolicyManager interface
Parameters:
DomainName
Check:
valid value of IpPolicyDomainRef is returned

3.
Method call createGroup() on the IpPolicyDomain interface
Parameters:
groupName
Check:
valid value of IpPolicyGroupRef is returned

4.
Method call setAttribute() on the IpPolicyGroup interface
Parameters:
targetAttribute.AttributeName = CommonName

targetAttribute.AttributeType = TpString

targetAttribute.AttributeValue = “Group”
Check:
no exception is returned

5.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

[image: image19.wmf] : (Logical

View::IpAppLogic)

 :

IpPolicyManager

 :

IpPolicyDomain

 :

IpPolicyGroup

1. startTransaction()

2. createDomain(domainName)

IpPolicyDomainRef

3. createGroup(groupName)

IpPolicyGroupRef

4. setAttribute(targetAttribute)

5. commitTransaction()

TRUE

targetAttribute.AttributeName = CommonName

targetAttribute.AttributeType = TpString

targetAttribute.AttributeValue = "Group"

Test PM_PD_05
Summary:
create, get and remove rule

Reference:
ES 202 915-13 [1], clauses 8.1 and 8.3

Precondition:
createDomain(), createRule(), getRule() and removeRule() are implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

2.
Method call createDomain() on the IpPolicyManager interface
Parameters:
DomainName
Check:
valid value of IpPolicyDomainRef is returned

3.
Method call createRule() on the IpPolicyDomain interface
Parameters:
ruleName
Check:
valid value of IpPolicyRuleRef is returned

4.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

5.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

6.
Method call getRule() on the IpPolicyDomain interface
Parameters:
ruleName
Check:
valid value of IpPolicyRuleRef is returned

7.
Method call removeRule() on the IpPolicyDomain interface
Parameters:
ruleName
Check:
no exception is returned

8.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

[image: image20.wmf] : (Logical

View::IpAppLogic)

 :

IpPolicyManager

 :

IpPolicyDomain

1. startTransaction()

2. createDomain(domainName)

IpPolicyDomainRef

4. commitTransaction()

TRUE

5. startTransaction()

8. commitTransaction()

TRUE

3. createRule(ruleName)

IpPolicyRuleRef

6. getRule(ruleName)

IpPolicyRuleRef

7. removeRule(ruleName)

Test PM_PD_06
Summary:
create and destroy notification

Reference:
ES 202 915-13 [1], clauses 8.1 and 8.3

Precondition:
createDomain(), createNotification() and destroyNotification() are implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

2.
Method call createDomain() on the IpPolicyManager interface
Parameters:
DomainName
Check:
valid value of IpPolicyDomainRef is returned

3.
Method call createNotification() on the IpPolicyDomain interface
Parameters:
appPolicyDomain, events
Check:
valid value of TpAssignmentID is returned

4.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

5.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

6.
Method call destroyNotification() on the IpPolicyDomain interface
Parameters:
assignmentID, events
Check:
no exception is returned

7.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

[image: image21.wmf] : (Logical

View::IpAppLogic)

 :

IpPolicyManager

 :

IpPolicyDomain

1. startTransaction()

2. createDomain(domainName)

IpPolicyDomainRef

4. commitTransaction()

TRUE

5. startTransaction()

7. commitTransaction()

TRUE

3. createNotification(appPolicyDomain, events)

TpAssignmentID

6. destroyNotification(assignmentID, events)

5.2.1.3
IpPolicyRule

Test PM_PRU_01
Summary:
create, get and remove condition

Reference:
ES 202 915-13 [1], clauses 8.1, 8.3 and 8.6

Precondition:
createDomain(), createRule(), createCondition(), getCondition() and removeCondition() are implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

2.
Method call createDomain() on the IpPolicyManager interface
Parameters:
domainName
Check:
valid value of IpPolicyDomainRef is returned

3.
Method call createRule() on the IpPolicyDomain interface
Parameters:
ruleName
Check:
valid value of IpPolicyRuleRef is returned

4.
Method call createCondition() on the IpPolicyRule interface
Parameters:
conditionName, conditionType, conditionAttributes
Check:
valid value of IpPolicyConditionRef is returned

5.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

6.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

7.
Method call getCondition() on the IpPolicyRule interface
Parameters:
conditionName
Check:
valid value of IpPolicyConditionRef is returned

8.
Method call removeCondition() on the IpPolicyRule interface
Parameters:
conditionName
Check:
no exception is returned

9.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

[image: image22.wmf] : (Logical

View::IpAppLogic)

 :

IpPolicyManager

 : IpPolicyRule

 :

IpPolicyDomain

1. startTransaction()

2. createDomain(domainName)

IpPolicyDomainRef

5. commitTransaction()

TRUE

6. startTransaction()

9. commitTransaction()

TRUE

4. createCondition(conditionName, conditionType, conditionAttributes)

IpPolicyConditionRef

7. getCondition(conditionName)

IpPolicyConditionRef

8. removeCondition(conditionName)

3. createRule(ruleName)

IpPolicyRuleRef

Test PM_PRU_02
Summary:
create, get and remove action

Reference:
ES 202 915-13 [1], clauses 8.1, 8.3 and 8.6

Precondition:
createDomain(), createRule(), createAction(), getAction() and removeAction() are implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

2.
Method call createDomain() on the IpPolicyManager interface
Parameters:
domainName
Check:
valid value of IpPolicyDomainRef is returned

3.
Method call createRule() on the IpPolicyDomain interface
Parameters:
ruleName
Check:
valid value of IpPolicyRuleRef is returned

4.
Method call createAction() on the IpPolicyRule interface
Parameters:
actionName, actionType, actionAttributes
Check:
valid value of IpPolicyActionRef is returned

5.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

6.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

7.
Method call getAction() on the IpPolicyRule interface
Parameters:
actionName
Check:
valid value of IpPolicyActionRef is returned

8.
Method call removeAcion() on the IpPolicyRule interface
Parameters:
actionName
Check:
no exception is returned

9.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

[image: image23.wmf] : (Logical

View::IpAppLogic)

 :

IpPolicyManager

 : IpPolicyRule

 :

IpPolicyDomain

1. startTransaction()

2. createDomain(domainName)

IpPolicyDomainRef

5. commitTransaction()

TRUE

6. startTransaction()

9. commitTransaction()

TRUE

4. createAction(actionName, actionType, actionAttributes)

IpPolicyActionRef

7. getAction(actionName)

IpPolicyActionRef

8. removeAction(actionName)

3. createRule(ruleName)

IpPolicyRuleRef

Test PM_PRU_03
Summary:
set, get and unset validity period

Reference:
ES 202 915-13 [1], clauses 8.1, 8.3 and 8.6

Precondition:
createDomain(), createRule(), setValidityPeriodCondition(), getValidityPeriodCondition() and unsetValidityPeriodCondition() are implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

2.
Method call createDomain() on the IpPolicyManager interface
Parameters:
domainName
Check:
valid value of IpPolicyDomainRef is returned

3.
Method call createRule() on the IpPolicyDomain interface
Parameters:
ruleName
Check:
valid value of IpPolicyRuleRef is returned

4.
Method call setValidityPeriodCondition() on the IpPolicyRule interface
Parameters:
conditionReference, actionType, actionAttributes
Check:
no exception is returned

5.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

6.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

7.
Method call getValidityPeriodCondition() on the IpPolicyRule interface
Parameters:
actionName
Check:
valid value of IpPolicyTimePeriodConditionRef is returned

8.
Method call unsetValidityPeriodCondition() on the IpPolicyRule interface
Parameters:
none
Check:
no exception is returned

9.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

[image: image24.wmf] : (Logical

View::IpAppLogic)

 :

IpPolicyManager

 : IpPolicyRule

 :

IpPolicyDomain

1. startTransaction()

2. createDomain(domainName)

IpPolicyDomainRef

5. commitTransaction()

TRUE

6. startTransaction()

9. commitTransaction()

TRUE

4. setValidityPeriodCondition(conditionReference)

IpPolicyTimePeriodConditionRef

7. getValidityPeriodCondition()

IpPolicyTimePeriodConditionRef

8. unsetValidityPeriodCondition()

3. createRule(ruleName)

IpPolicyRuleRef

Test PM_PRU_04
Summary:
create action and condition, set action and condition list, enable rule

Reference:
ES 202 915-13 [1], clauses 8.1, 8.2, 8.3 and 8.6

Precondition:
createDomain(), createRule(), createAction(), createCondition(), setActionList(), setConditionList() and setAttribute() are implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

2.
Method call createDomain() on the IpPolicyManager interface
Parameters:
domainName
Check:
valid value of IpPolicyDomainRef is returned

3.
Method call createRule() on the IpPolicyDomain interface
Parameters:
ruleName
Check:
valid value of IpPolicyRuleRef is returned

4.
Method call createAction() on the IpPolicyRule interface
Parameters:
actionName, actionType, actionAttributes
Check:
valid value of IpPolicyActionRef is returned

5.
Method call createCondition() on the IpPolicyRule interface
Parameters:
conditionName, conditionType, conditionAttributes
Check:
valid value of IpPolicyConditionRef is returned

6.
Method call setActionList() on the IpPolicyRule interface
Parameters:
actionList
Check:
no exception is returned.

7.
Method call setConditionList() on the IpPolicyRule interface
Parameters:
conditionList
Check:
no exception is returned.

8.
Method call setAttribute() on the IpPolicyRule interface
Parameters:
targetAttribute.AttributeName = Enabled

targetAttribute.AttributeType = TpBoolean

targetAttribute.AttributeValue = TRUE
Check:
no exception is returned

9.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

[image: image25.wmf] : (Logical

View::IpAppLogic)

 :

IpPolicyManager

 : IpPolicyRule

 :

IpPolicyDomain

1. startTransaction()

2. createDomain(domainName)

IpPolicyDomainRef

4. createAction(actionName, actionType, actionAttributes)

IpPolicyActionRef

3. createRule(ruleName)

IpPolicyRuleRef

5. createCondition(conditionName, conditionType, conditionAttributes)

IpPolicyConditionRef

6. setActionList(actionList)

7. setConditionList(conditionList)

8. setAttribute(targetAttribute)

9. commitTransaction()

TRUE

targetAttribute.AttributeName = Enabled

targetAttribute.AttributeType = TpBoolean

targetAttribute.AttributeValue = TRUE

Test PM_PRU_05
Summary:
get action and condition from repository, set action and condition list, enable rule

Reference:
ES 202 915-13 [1], clauses 8.1, 8.2, 8.3 and 8.6

Precondition:
createDomain(), createRule(), getAction(), getCondition(), setActionList(), setConditionList() and setAttribute() are implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

A policy repository containing at least one rule and one condition has to be present and the tester
(application) must be authorised to invoke methods related to it.

Test Sequence:

1.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

2.
Method call createDomain() on the IpPolicyManager interface
Parameters:
domainName
Check:
valid value of IpPolicyDomainRef is returned

3.
Method call createRule() on the IpPolicyDomain interface
Parameters:
ruleName
Check:
valid value of IpPolicyRuleRef is returned

4.
Method call getRepository() on the IpPolicyManager interface
Parameters:
repositoryName
Check:
valid value of IpPolicyRepositoryRef is returned

5.
Method call getAction() on the IpPolicyRepository interface
Parameters:
actionName
Check:
valid value of IpPolicyActionRef is returned

6.
Method call getCondition() on the IpPolicyRepository interface
Parameters:
conditionName
Check:
valid value of IpPolicyConditionRef is returned

7.
Method call setActionList() on the IpPolicyRule interface
Parameters:
actionList
Check:
no exception is returned.

8.
Method call setConditionList() on the IpPolicyRule interface
Parameters:
conditionList
Check:
no exception is returned.

9.
Method call setAttribute() on the IpPolicyRule interface
Parameters:
targetAttribute.AttributeName = Enabled

targetAttribute.AttributeType = TpBoolean

targetAttribute.AttributeValue = TRUE
Check:
no exception is returned

10.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

[image: image26.wmf] : (Logical

View::IpAppLogic)

 :

IpPolicyManager

 :

IpPolicyDomain

 : IpPolicyRule

 :

IpPolicyRepository

1. startTransaction()

2. createDomain(domainName)

IpPolicyDomainRef

3. createRule(ruleName)

IpPolicyRuleRef

4. getRepository(repositoryName)

IpPolicyRepositoryRef

5. getAction(actionName)

IpPolicyActionRef

6. getCondition(conditionName)

IpPolicyConditionRef

7. setActionList(actionList)

8. setConditionList(conditionList)

9. setAttribute(targetAttribute)

10. commitTransaction()

TRUE

5.2.1.4
IpPolicyRepository

Test PM_PR_01
Summary:
create, get and remove repository

Reference:
ES 202 915-13 [1], clauses 8.1 and 8.5

Precondition:
createRepository(), getRepository() and removeRepository() are implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

2.
Method call createRepository() on the IpPolicyManager interface
Parameters:
repositoryName1
Check:
valid value of IpPolicyRepositoryRef is returned

3.
Method call createRepository() on the IpRepository interface
Parameters:
repositoryName2
Check:
valid value of IpPolicyRepositoryRef is returned

4.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

5.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

6.
Method call getRepository() on the IpRepository interface
Parameters:
repositoryName2
Check:
valid value of IpPolicyRepositoryRef is returned

7.
Method call removeRepository() on the IpRepository interface
Parameters:
repositoryName2
Check:
no exception is returned

8.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

[image: image27.wmf] : (Logical

View::IpAppLogic)

 :

IpPolicyManager

 :

IpPolicyRepository

1. startTransaction()

2. createRepository(repositoryName)

IpPolicyRepositoryRef

4. commitTransaction()

TRUE

5. startTransaction()

8. commitTransaction()

TRUE

3. createRepository(repositoryName2)

IpPolicyRepositoryRef

6. getRepository(repositoryName2)

IpPolicyRepositoryRef

7. removeRepository(repositoryName2)

Test PM_PR_02
Summary:
create, get and remove condition

Reference:
ES 202 915-13 [1], clauses 8.1 and 8.5

Precondition:
createRepository(), createCondition(), getCondition() and removeCondition() are implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

2.
Method call createRepository() on the IpPolicyManager interface
Parameters:
repositoryName
Check:
valid value of IpPolicyDomainRef is returned

3.
Method call createCondition() on the IpRepository interface
Parameters:
conditionName, conditionType, conditionAttributes
Check:
valid value of IpPolicyConditionRef is returned

4.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

5.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

6.
Method call getCondition() on the IpRepository interface
Parameters:
conditionName
Check:
valid value of IpPolicyConditionRef is returned

7.
Method call removeCondition() on the IpRepository interface
Parameters:
conditionName
Check:
no exception is returned

8.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

[image: image28.wmf] : (Logical

View::IpAppLogic)

 :

IpPolicyManager

 :

IpPolicyRepository

1. startTransaction()

2. createRepository(repositoryName)

IpPolicyRepositoryRef

4. commitTransaction()

TRUE

5. startTransaction()

8. commitTransaction()

TRUE

3. createCondition(conditionName, conditionType, conditionAttributes)

IpPolicyConditionRef

6. getCondition(conditionName)

IpPolicyConditionRef

7. removeCondition(conditionName)

Test PM_PR_03
Summary:
create, get and remove action

Reference:
ES 202 915-13 [1], clauses 8.1 and 8.5

Precondition:
createRepository(), createAction(), getAction() and removeAction() are implemented

Preamble:
Registration of the IUT (Policy Management Control SCF) and the tester (application) to the
framework. The tester must have obtained a reference to an instance of the IpPolicyManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

2.
Method call createRepository() on the IpPolicyManager interface
Parameters:
repositoryName
Check:
valid value of IpPolicyDomainRef is returned

3.
Method call createAction() on the IpRepository interface
Parameters:
actionName, actionType, actionAttributes
Check:
valid value of IpPolicyActionRef is returned

4.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

5.
Method call startTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
no exception is returned.

6.
Method call getAction() on the IpRepository interface
Parameters:
actionName
Check:
valid value of IpPolicyActionRef is returned

7.
Method call removeAction() on the IpRepository interface
Parameters:
actionName
Check:
no exception is returned

8.
Method call commitTransaction() on the IpPolicyManager interface
Parameters:
none
Check:
value TRUE is returned

[image: image29.wmf] : (Logical

View::IpAppLogic)

 :

IpPolicyManager

 :

IpPolicyRepository

1. startTransaction()

2. createRepository(repositoryName)

IpPolicyRepositoryRef

4. commitTransaction()

TRUE

5. startTransaction()

8. commitTransaction()

TRUE

3. createAction(actionName, actionType, actionAttributes)

IpPolicyAcionRef

6. getAction(actionName)

IpPolicyActionRef

7. removeAction(actionName)

5.2.2
Policy Management, application side

Test PM_APP_01
Summary:
enable and accept notifications

Reference:
ES 202 915-13 [1], clauses 8.16

Precondition:
IUT capable of invoking getDomain() and createNotification()
Preamble:
Registration of the IUT (application) and the tester (Policy Management SCF) to the framework. The
IUT must have obtained a reference to an instance of the IpPolicyManager interface through selecting
that service and signing the required service agreement.

Test Sequence:

1.
Triggered Action: cause IUT to call startTransaction() method on the tester's (SCF's) IpPolicyManager interface.
Parameters:
none

2.
Triggered Action: cause IUT to call getDomain() method on the tester's (SCF's) IpPolicyManager interface.
Parameters:
domainName

3.
Triggered Action: cause IUT to call createNotification() method on the tester's (SCF's) IpPolicyDomain interface.
Parameters:
appPolicyDomain, events

4.
Triggered Action: cause IUT to call commitTransaction() method on the tester's (SCF's) IpPolicyManager interface.
Parameters:
none

5.
Method call reportNotification()
Parameters:
assignmentID, event
Check:
no exception is returned

[image: image30.wmf] :

IpPolicyManager

 :

IpPolicyDomain

 : (Logical

View::IpAppLogic)

 :

IpAppPolicyDomain

1. startTransaction()

2. createDomain(domainName)

IpPolicyDomainRef

3. createNotification(appPolicyDomain, events)

TpAssignmentID

4. commitTransaction()

TRUE

5. reportNotification(assignmentID , event)

History

	Document history

	V0.0.1
	June 2004
	STF251, first draft

	
	
	

	
	
	

	
	
	

[image: image31.wmf]_1065009619.doc

