Error! No text of specified style in document.
2
Error! No text of specified style in document.

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040040431 Rev.1

Meeting #27, Miami, FL, USA, 10-14 May 2004

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-04-2
	CR
	CRNum
	(

rev
	-
	(

Current version:
	6.0.1
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	x

	

	Title:
(

	Modify application initialisation with service to support multiple images of a single application to use the service in a consistent fashion.

	
	

	Source:
(

	Eamonn Murray, AePONA

	
	

	Work item code:
(

	OSA3
	
	Date: (

	06/05/2004

	
	
	
	
	

	Category:
(

	C
	
	Release: (

	REL-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	Current application high availability that employs features of the OSA service APIs is ambiguous and incomplete. Corrections and modifications are required to the Service APIs in order to provide a complete specification that will support this feature in an unambigous and consistent fashion. These changes are submitted to fulfill the Release 6 stage 1 requirement for high availability for OSA.

	
	

	Summary of change:
(

	Modify the sequence diagram that outlines the use of multiple application callbacks to support high availability to indicate that each application callback is treated as an independent application image.

Modify the behaviour of the enableCallNotification method to prevent multiple application callbacks being defined for a single application and service instance pair.

	
	

	Consequences if
(

not approved:
	Those vendors that wish to use features of the OSA API to support a high availability solution cannot do so with the existing set of high availability features that are specified, and therefore vendor proprietary extensions are required that will impact multi-vendor interoperability.

In addition the Release 6 stage 1 requirement cannot be fully addressed.

	
	

	Clauses affected:
(

	4.1, 6.1

	
	

	
	Y
	N
	
	

	Other specs
(

	
	x
	 Other core specifications
(

	

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

KEEP the History box of the TS to be changed (see end of the present document)

POSSIBLE Change no: AUTONUMLGL
4.1 Additional Application Callbacks

The following sequence diagram shows how two instances of an application can register two independent call back interfaces for the same set of events. If one of the call backs can not be used, e.g., because one application instance crashed, the other call back interface may be used instead. Alternatively if the service implementation supports multiple active application instances at the same time, the additional callbacks may be used to support a dynamic traffic load solution. In the latter case, the service implementation must be capable of preventing multiple points of control over a single call. Refer to Call Control Common Definitions subpart of this specification (TS 29.198-4-1) for further details on application control over a call or session.
Does anything prevent one from using the same constructs in cases where no API additions or modifications have been made? The API after all, permits an application to register multiple callbacks. It does not say which application instance these callbacks should belong to. The multiple instances design is merely one way in which things can be done, and this can be used even in cases where the callbacks belong to different instances, even if the Framework or SCSs themselves are unaware of it. Why the need for an API change or an addition?
In response to the point above, the main concern is that the existing sequence diagram indicates that an application can use additional callbacks directly to the SCS without requiring any authentication or access via the Framework. In such a design the integrity management capabilities that are supported in the existing API are not clearly supported, nor are the related concerns of service provisioning, SLA enforcement etc clearly evident in the existing API. The additional callback mechanism therefore appears to be only part of an overall solution, the remainder of which is not clear in the API. AePONA propose to correct and clarify the API to guarantee the integrity of the OSA model/API, if an alternate solution can be found that completes the intended use of additional callbacks, including SLA semantics, integrity management operation etc. AePONA shall certainly consider these as alternate stage 3 solutions.
AePONA Proposal:
The same constructs may indeed be used whether multiple application instances are being used or not. AePONA would wish for some clarifying semantics to be indicated so that the application developer can understand the implications of a chosen implementation approach. The changes proposed here, and in the sequence diagram therefore may not be required, however as this sequence is the only existing sequence dealing with multiple callbacks some further clarifying text is required. AePONA believe that app developers should be made aware that the use of additional callbacks can be supported in two main ways. That is, either in conjunction with multiple FW access sessions or under a single FW access session. In the case of a single FW access session, then if the FW no longer trusts the app or the IM indicates that the app is no longer operational, the FW may elect to terminate the service agreement and remove all resources. In the case where there are multiple apps visible to the FW, the failure of an individual App would not result in the service agreement being terminated. Therefore the second approach allows the app developer to achieve a more robust solution.
Regarding the highlighted text above, we must note that a robust solution can also be attained with multiple individual client applications acting in concert and that the second option is not “more” robust, but is instead merely another implementation option for an at most equivalently robust solution.
Lucent feels the existing API is sufficient for explaining how these callbacks are used in enableCallNotifications() and that potential lack of the various capabilities mentioned above (i.e. SLA enforcement, IM, etc.) associated with the redundant callback interface do not necessarily mean that the standard is incomplete. Particular implementation choices made by a gateway vendor may find it incomplete, while others find it entirely sufficient.

[image: image1.wmf]

first instance : (Logical

View::IpAppLogic)

second instance :

(Logic...

 : IpAppCallControlManager

 : IpAppCallControlManager

 : IpCallControlManager

1: new()

2: enableCallNo

tification()

3: new()

4: enableCallNotification()

8: callEventNotify()

9: "forward event"

5: callEventNotify()

7: "call Notify result: failure"

6: 'forward event'

 : IpCallControlManager

f

irst instance

second

 instance

Underlyin

g service

implementation

redirects event to

alternate service

manager.

1:
The first instance of the application is started on node 1. The application creates a new IpAppCallControlManager to handle callbacks for this first instance of the logic.

2:
The first instance of the application provisions the events that it is interested in receiving using the enableCallNotification method.
. .

3:
The second instance of the application is started on node 2. The application creates a new IpAppCallControlManager to handle callbacks for this second instance of the logic.

4:
The same enableCallNotification request is sent as for the first instance of the logic, however in this case to a second instance of the serviceManager.. The service implementation shall not reject the request but shall ensure that the routing of network events ensure only a single point of control for the call.
For this to work, the service instances need to be aware of the different application instances as well. The existing design when leveraged transparently to support multiple application instances does not suffer from that limitation.
AePONA would wish to discuss this further in order to understand whether the existing design or the design proposed fully support the Framework Integrity management feature in an unambiguous way.
What does it mean for the enableCallNotification to be the “same”? Does it have to be identical for this to work? What if some criteria overlap and some do not?
Same is intended to mean identical criteria.
5:
When the network event occurs the first instance of the application is notified. The gateway may have different policies on how to handle additional callbacks, e.g., always first try the first registered or use some kind of round robin scheme.
Shouldn’t these various notification schemes be indicated by the specification? Similarly, as mentioned in Miami, do the same rules apply if the notification is monitor mode as opposed to interrupt? Perhaps in that case the service may notify all client instances. These various permutations of behaviour lead more toward inoperability, not interoperability.
AePONA would be happy to work to identify a limited set of options if this was indeed required.
6:
The event is forwarded to the first instance of the logic.

7:
When the first instance of the application is overloaded or unavailable this is communicated with an exception to the call control manager.

8:
Based on this exception, the service implementation may redirect the network event to the second call control manager which will in turn notify another instance of the application.
Use “next” instead of “second”. The latter implies that there are only two instances, when there could be many.
Agreed
This may not be quite as simple. What if there are multiple events within a given call context, with the first few sent to one application instance and the remaining sent to the second application instance?
AePONA suggest that the call context is maintained within the app instance service instance pair for the duration of the call lifecycle.

 Is the service to assume that the two instances have some kind of state sharing implemented between them? Is this assumption warranted? Is this something that needs to be specified explicitly? Can one always assume the application design will factor this in? Will only events tied to new calls be forwarded with those associated with existing calls being denied and those calls being provided default treatment? Note that a HA solution that does not leverage these suggested API modifications does not suffer from this problem.
9:
The event is forwarded to the second instance of the logic.

 This implies an architecture for SCS implementation and the solution does not address the whole problem. The service instances used to be independent and now they are not. They have to constantly communicate with each other to coordinate their behaviour relative to the application instances.
AePONA consider that the service instance can be independent, however recognise that some common protocol access would be required to co-ordinate messaging to an individual service instance.
Consider the following issues:
When a service instance fails, other service instances need to monitor the status of the first service instance and take over the job of the primary service instance if needed. How does the SCS determine which service instance to use, and therefore which client instance picks up the slack?
Consider that this is an SCS implementation issue. With respect to the application although a switchover may result the net result is continued operation of service.
How are integrity management functions supported across a set of service instances? Are the values reported to the framework associated with a single service instance or the set of instances associated with a given client application domain?
The model proposed maintains the existing access session model, therefore existing Integrity Management functionality shall apply. Note also that a separate discussion on just this topic is also being progressed.
The service instances associated with client instances must manage the creation of notifications so that only a single instance is notified for an interrupt mode event. What are the semantics associated with establishing these notifications that prevent this from happening?
Sorry don’t understand this question. Believe that the existing mechanisms for SCS to support multiple points of control shall apply. Note such mechanisms are not defined in the API but are referred to in Part 1.
What are the semantics associate with a client instance removing a notification? Can any instance remove it for the client application or does it have to be the one that created it? How can the group of service instances be sure that no client instances are interested in a notification removed by only part of the group?
AePONA considers that the client instances should be free to operate independently, however that they should remain consistent over time.
What happens if as a result of an application or service instance failure, the remaining instances cannot shoulder the required load? Is it possible that such a failure could force a situation where aspects of the SLA for a given service instance are violated (this points back to the need to clarify the semantics of how the SLA is mapped across service instances).
Good point, but one surely not limited to the changes proposed. Such semantics are not defined today and would equally apply in any given deployment configuration?
POSSIBLE Change no: AUTONUMLGL
6.1 Interface Class IpCallControlManager

Inherits from: IpService
This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager interface provides the management functions to the generic call control service. The application programmer can use this interface to provide overload control functionality, create call objects and to enable or disable call-related event notifications.

This interface shall be implemented by a Generic Call Control SCF. As a minimum requirement either the createCall() method shall be implemented, or the enableCallNotification() and disableCallNotification() methods shall be implemented.
	<<Interface>>

IpCallControlManager

	

	createCall (appCall : in IpAppCallRef) : TpCallIdentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

6.1.1 Method createCall()

This method is used to create a new call object. An IpAppCallControlManager should already have been passed to the IpCallControlManager, otherwise the call control will not be able to report a callAborted() to the application (the application should invoke setCallback() if it wishes to ensure this).

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppCallRef

Specifies the application interface for callbacks from the call created.
Returns

TpCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE
6.1.2 Method enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an application has to do to get initial notification of calls happening in the network. When such an event happens, the application will be informed by callEventNotify(). In case the application is interested in other events during the context of a particular call session it has to use the routeReq() method on the call object. The application will get access to the call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application has already requested notifications with criteria that overlap the specified criteria or the specified criteria overlap with criteria already present in the network (when provisioned from within the network), the request is refused with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap when it leads to more than one application controlling the call or session at the same point in time during call or session processing.
So criteria overlap is supported across applications but ignored across application instances, is that right?
No, the same logic applies. The point being that overlapping criteria can be provisioned so long as the SCS implementation prevents multiple points of control

 What about application subscription cleanup if an application instance that had the subscribed events dies abruptly? What happens in cases where the service instance associated with one application were to die abruptly? What about race conditions where the application isn’t aware of whether its subscription request was processed before its service instance died?
By providing separate service managers, the termination of service can be used to remove stale sessions. Don’t fully appreciate the race conditions which are foreseen, as surely such must already exist given that the sequence is not fundamentally different from that which exists today.

If a notification is requested by an application with the monitor mode set to notify, then there is no need to check the rest of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed over. Only one application can place an interrupt request if the criteria overlaps.
If a notification is requested by an application with an event type that is mutually exclusive compared to existing requested event types, then there is no need to check against the rest of the criteria for overlap. An example could be one application that trigger on "user busy" together with another application that trigger on "answer" - both requests should be allowed as only one can occur on the same call or session.

The overlap criteria have been defined to prevent multiple points of control, leading to possible interaction problems in networks that have no multi service support. Notice that dynamic aspects cannot be taken into account in the overlap criteria check. Therefore where dynamic event arming from an application causes a persistent control relationship it can prevent other applications to be invoked in the case single point of application control applies in the network.

However, the criteria check for overlap may as a network option be overruled by Multi Service networks allowing more services or applications to gain control of the same call or session at the same point in time. Refer to Call Control Common Definitions subpart of this specification (TS 29.198-4-1) for further details on application control over a call or session.

Not sure how this ties in with the proposal under discussion. Please elaborate.
Believe this is existing text from MPCC spec???
AePONA Proposal:

The immediate change above is taken from existing text in the MPCC spec and is therefore seen as an essential change to keep SCS behaviour consistent across the API. The text introduced below is not required if the revised Framework proposal is accepted and can therefore be deleted. However, AePONA would wish to agree a wording for the deleted para below, particularly whether the text should be restricted to two as currently or made more generic to support multiple.
Lucent does not agree with this proposal. However, the callback mechanisms could use more elaboration. These elaborations must not be further constraining (as in the highlighted text below) than what was originally intended.

In the case where the same application is realised as a number of discrete application instances sharing the same application ID, each application instance shall invoke this method on its own IpCallControlManager interface and is therefore handled independently. If multiple instances of the same application request notifications with exactly the same criteria, the underlying service implementation must ensure that only one application instance can have control of the call at a given point in time. This approach ensures that multiple instances of the same application are treated in the same manner as multiple distinct applications with respect to management of notification criteria and ensuring single point of control of the call. The service implementation may support multiple application instances in order to achieve a resilient or distributed load configuration between application and service, however the exact details of this are considered implementation detail and not the subject of further specification. It shall not be possible for a single application instance to register more than one callback reference for a given notification criteria and therefore each assignmentID returned from this method corresponds to a single callBack reference that is visible to the IpCallManager.
There is no reason why this modification is better than what is already specified. What are the drawbacks if the currently defined specification permits a single application instance to register a second callback that points to a different application instance? In fact, one might even argue that this kind of an implementation is even more transparent and seamless since it provides equivalent HA capabilities with no extra API calls, and no changes to the existing defined behaviour of the API.
AePONA don’t disagree with the above observation but would then argue that the Integrity management model and framework access session models cannot be supported. The intention is to largely replicate the ‘principle’ of the additional callback feature but in a manner that is complete from the perspective of the OSA model.
In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway will use as callback the callback that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.

Parameters

appCallControlManager : in IpAppCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.
eventCriteria : in TpCallEventCriteria

Specifies the event specific criteria used by the application to define the event required. Only events that meet these criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer", "busy". Individual addresses or address ranges may be specified for destination and/or origination.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE, P_INVALID_EVENT_TYPE
6.1.3 Method disableCallNotification()

This method is used by the application to disable call notifications.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic call control manager interface when the previous enableCallNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the exception P_INVALID_ASSIGNMENTID will be raised.
Don’t agree that this should be deleted.
It was proposed to delete this by removing the current dual enableCallNotification model. This point should be considered along with the need to maintain this feature or not.
AePONA proposal:

The text in this method should be made consistent with agreed wording for enableCallNotification and the use of multiple callbacks (possible more than two) sharing a common assignmentID.
Given our disagreement with the other proposed changes, we see no need to modify this text.
Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID
Annex E (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Mar 2001
	CN_11
	NP-010134
	047
	-
	CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158)
	3.2.0
	1.0.0

	June 2001
	CN_12
	NP-010327
	--
	--
	Approved at TSG CN#12 and placed under Change Control
	2.0.0
	4.0.0

	Sep 2001
	CN_13
	NP-010467
	001
	--
	Changing references to JAIN
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	002
	--
	Correction of text descriptions for methods enableCallNotification and createNotification
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	003
	--
	Specify the behaviour when a call leg times out
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	004
	--
	Removal of Faulty state in MPCCS Call State Transition Diagram and method callFaultDetected in MPCCS in OSA R4
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	005
	--
	Missing TpCallAppInfoSet description in OSA R4
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	006
	--
	Redirecting a call leg vs. creating a call leg clarification in OSA R4
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	007
	--
	Introduction of MPCC Originating and Terminating Call Leg STDs for IpCallLeg
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	008
	--
	Corrections to SetChargePlan() Addition of PartyToCharge parmeter
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	009
	--
	Corrections to SetChargePlan()
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	010
	--
	Remove distinction between final- and intermediate-report
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	011
	--
	Inclusion of TpMediaType
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	012
	--
	Corrections to GCC STD
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	013
	--
	Introduction of sequence diagrams for MPCC services
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	014
	--
	The use of the REDIRECT event needs to be illustrated
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	015
	--
	Corrections to SetCallChargePlan()
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	016
	--
	Add one additional error indication
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	017
	--
	Corrections to Call Control – GCCS Exception handling
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	018
	--
	Corrections to Call Control – Errors in Exceptions
	4.0.0
	4.1.0

	Dec 2001
	CN_14
	NP-010597
	019
	--
	Replace Out Parameters with Return Types
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	020
	--
	Removal of time based charging property
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	021
	--
	Make attachMedia() and detachMedia() asynchronous
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	022
	--
	Correction of treatment datatype in superviseReq on call leg
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	023
	--
	Corrections to Call Control Data Types
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	024
	--
	Correction to Call Control (CC)
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	025
	--
	Amend the Generic Call Control introductory part
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	026
	--
	Correction in TpCallEventType
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	027
	--
	Addition of missing description of RouteErr()
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	028
	--
	Misleading description of createAndRouteCallLegErr()
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	029
	--
	Correction to values of TpCallNotificationType, TpCallLoadControlMechanismType
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010695
	030
	--
	Correction of method getLastRedirectionAddress
	4.1.0
	4.2.0

	Mar 2002
	CN_15
	NP-020106
	031
	--
	Add P_INVALID_INTERFACE_TYPE exception to IpService.setCallback() and IpService.setCallbackWithSessionID()
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020106
	032
	--
	Correction of Event Subscription/Notification Data Type
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020106
	033
	--
	Correction of parameter name in IpCallLeg.routeReq() and in IpCallLeg.setAdviceOfCharge()
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020106
	034
	--
	Clarification of ambiguous Event handling rules
	4.2.0
	4.3.0

	Jun 2002
	CN_16
	NP-020180
	035
	--
	Correction to TpCallChargePlan
	4.3.0
	4.4.0

	Jun 2002
	CN_16
	NP-020180
	036
	--
	Correction to CAMEL Service Property values
	4.3.0
	4.4.0

	Jun 2002
	CN_16
	NP-020181
	037
	-
	Addition of support for Java API technology realisation
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020182
	038
	-
	Addition of support for WSDL realisation
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	039
	-
	Addition of support for Emergency Telecommunications Service
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020183
	040
	-
	Addition of support for Network Controlled Notifications MPCC
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	041
	-
	Changes to getNotification()
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	042
	-
	Addition of P_UNSUPPORTED_MEDIA release cause to TpReleaseCause
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	043
	-
	Addition of CAMEL Phase 4 Service Property values
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	044
	-
	Addition of indication whether SCS supports initially multiple routeReqs in parallel
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	045
	-
	Explicit exception for continueProcessing when not in interrupted mode
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	046
	-
	Indication needed that supervision will be ended when call or callLeg is deassigned
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	047
	-
	Clarify ambiguous Supervision duration
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	048
	-
	Detach/Attach request illegal during pending Attach/Detach request
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	049
	-
	Correction of Multi-Party Call Control properties
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	050
	-
	Correcting the sequence diagram descriptions in GCC and MPCC
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	051
	-
	Correcting erroneous description of UI behaviour in call control
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	052
	-
	Correcting the descriptions of sequence diagrams that don't match the diagram
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	053
	-
	Correcting erroneous references to GCC in MPCC
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	054
	-
	Addition of the Multi-media APIs to Call control SCF (29.198-4)
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	055
	-
	Updating Clause 4 for Release 5
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020188
	056
	-
	Spliting of 29.198-04 into 4 separate TSs (sub-parts)
	4.4.0
	5.0.0

	Sep 2002
	CN_17
	NP-020430
	001
	--
	29.198-04-2 Correction on use of NULL in Call Control API
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020395
	002
	--
	Add text to clarify relationship between 3GPP and ETSI/Parlay OSA specifications
	5.0.0
	5.1.0

	Mar 2003
	CN_19
	NP-030020
	003
	-
	Correction of status of GCC methods
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030020
	004
	-
	Correction to Prepaid Sequence Diagram
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030020
	005
	-
	Correction to TpCallEventCriteriaResult in Generic Call Control
	5.1.0
	5.2.0

	Jun 2003
	CN_20
	NP-030238
	007
	--
	Correction of the description for callEventNotify & reportNotification
	5.2.0
	5.3.0

	Sep 2003
	CN_21
	NP-030352
	008
	--
	Correction to Java Realisation Annex
	5.3.0
	5.4.0

	Dec 2003
	CN_22
	NP-030544
	009
	--
	Correction of description in superviseCallRes
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030553
	010
	--
	Add OSA API support for 3GPP2 networks
	5.5.0
	6.0.0

	Feb 2004
	--
	--
	--
	--
	Added Java code attachment 2919804-2J2EE.zip which was delivered late by outside developers. See Annex C.
	6.0.0
	6.0.1

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �Page: 1��� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �Page: 1��� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �Page: 1��� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �Page: 1��� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �Page: 1��� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �Page: 2��� This is an example of pop-up text.

�PAGE \# "'Page: '#'�'" �Page: 5���This is actually incorrect and misleading the existing methods do not associate the enableCallNotification with an application ID.

3GPP

_1145263956.doc

first instance : (Logical

View::IpAppLogic)

second instance :

(Logic...

 : IpAppCallControlManager

 : IpAppCallControlManager

 : IpCallControlManager

1: new()

2: enableCallNotification()

3: new()

4: enableCallNotification()

8: callEventNotify()

9: "forward event"

5: callEventNotify()

7: "call Notify result: failure"

6: 'forward event'

 : IpCallControlManager

 first instance

 second instance

Underlying service implementation redirects event to alternate service manager.

