Error! No text of specified style in document.
1
Error! No text of specified style in document.

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040430 Rev.1
Meeting #27, Miami, FL, USA, 10-14 May 2004

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	CRNum
	(

rev
	-
	(

Current version:
	6.0.1
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	x

	

	Title:
(

	Modify and enhance Application Initialisation mechanisms to support application high availability and recovery in the event of application failure.

	
	

	Source:
(

	Eamonn Murray, AePONA

	
	

	Work item code:
(

	OSA3
	
	Date: (

	06/05/2004

	
	
	
	
	

	Category:
(

	C
	
	Release: (

	REL-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	Current application high availability that employs features of the OSA API is ambiguous and incomplete. Corrections and modifications are required to the Framework API in order to provide a complete specification that will support this feature in an unambigous and consistent fashion. These changes are submitted to fulfill the Release 6 stage 1 requirement for high availability for OSA.

	
	

	Summary of change:
(

	Modify the framework API such that multiple identical application instances may establish an independent access session with the framework and thereafter establish an independent service session with a service manager.

In addition clarify the behaviour and oepration of the framework in the event of application recovery after failure.

The changes are introduced in a manner that does not mandate their use so that vendors are free to implement an alternate high availability solution within their products.

	
	

	Consequences if
(

not approved:
	Those vendors that wish to use features of the OSA API to support a high availability solution cannot do so with the existing set of high availability features that are specified, and therefore vendor proprietary extensions are required that will impact multi-vendor interoperability.

In addition the Release 6 stage 1 requirement cannot be fully addressed.

	
	

	Clauses affected:
(

	5.1, 6.1.1, 6.3.1.2, 6.3.1.4, 6.4.1, 7.3.4, 7.5.2.2, 7.5.3.2, 8.1.2, 8.3.1, 8.3.2, 8.3.4.1, 9, 10.3, 11

	
	

	
	Y
	N
	
	

	Other specs
(

	
	x
	 Other core specifications
(

	

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

KEEP the History box of the TS to be changed (see end of the present document)

POSSIBLE Change no: AUTONUMLGL
5.1 Generic Service Interface

5.1.1 Interface Class IpService

Inherits from: IpInterface
All service interfaces inherit from the following interface.

	<<Interface>>

IpService

	

	setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

5.1.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application. It is not allowed to invoke this method on an interface that uses SessionIDs.
Note: Only a single callback interface may be specified, therefore multiple invocations of this method on a given interface shall overwrite any existing reference that may exist.
Why? If a change is truly optional, clients using this mechanism to set multiple callbacks such that one may be used in place of another that fails should not see any difference in behaviour . This change therefore breaks backwards compatibility from the point of view of the application.
The setCallback is used to define a default callback. The behaviour of multiple invocations of this method is currently not defined, what is being proposed is clarification of this behaviour to prevent the SCS from being expected to manage multiple defaults. Some application vendors have suggested invoking this method multiple times in a manner similar to the current enableCallNotification mechanism, yet nowhere is the semantics of such behaviour defined. By introducing this proposal AePONA suggest preventing introduction of the same problem that exists with the current notification callback methods. Also we are not suggesting that all the changes themselves are optional, but rather that the use of API features to provide HA should be an optional choice for vendors to adopt. There are no backwards compatibility issues here as the API has not changed however the semantics have been clarified.
AePONA suggests the following.
Remove the original recommendation to change as above. However in so doing there is a potential for ambiguity to arise regarding what is the expected semantic behaviour when this method is invoked multiple times on a given interface. This behaviour must be clarified, and if necessary there may be a need to ensure consistency with the use of the enableNotification style mechanisms. AePONA would welcome input from Lucent and others to agree what the API should support.
Lucent is in favour of continuing to allow setCallback and setCallbackWithSessionID to specify redundant call back interfaces instead of overwriting existing interfaces.
Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.
Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

5.1.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an interface that does not use SessionIDs.
Note: Only a single callback interface may be specified for a given sessionID, therefore multiple invocations of this method on a given interface shall overwrite any existing reference that may exist.

Same comment as above.
Again if we imply that an app may invoke multiple times for a given sessionID, can we describe what behaviour shall result.
Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.
sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

6 Framework Access Session API

6.1 Sequence Diagrams

Will we have two instance of each call flow, one showing the existing sequence and one showing the other sequence as influenced by the client instance-based architecture?
This is not suggested. AePONA feel that the sequence diagrams are non exhaustive and therefore that as long as an example of the use of the functionality is provided the reader is free to apply this pattern to their requirements.
6.1.1 Trust and Security Management Sequence Diagrams

6.1.1.1 Initial Access

The following figure shows a client accessing the OSA Framework for the first time.

Before being authorized to use the OSA SCFs, the client must first of all authenticate itself with the Framework. For this purpose the client needs a reference to the Initial Contact interfaces for the Framework; this may be obtained through a URL, a Naming or Trading Service or an equivalent service, a stringified object reference, etc. At this stage, the client has no guarantee that this is a Framework interface reference, but it is to initiate the authentication process with the Framework. The Initial Contact interface supports the initiateAuthenticationWithVersion and the deprecated initiateAuthentication methods to allow the authentication process to take place.

POSSIBLE Change no: AUTONUMLGL
If the deployment configuration uses multiple instances of the same client application in order to achieve application resilience and redundancy, then each instance of the application that shares a common domainID, must establish a unique access session with the Framework. This is necessary to ensure that the Framework and the Services used by the application share a common understanding and view of the application in question. The method, initiateAuthenticationInstance must be used in order to achieve this. It is noted however, that such a deployment is not mandatory and that the application developer may choose not to support resilience or recovery, or to do so in another manner, for example using middleware capabilities.
Note that the use of multiple application instances, or images is simply one means, or an interpretation of how high availability may be supported. It is not necessarily the only correct, or the only way to achieve the goal of HA. Other means may exist as well, and are equally valid.
Agreed. Are you suggesting that we include the text above in the resulting specification or is this merely a comment/observation?

Each such method should not require its own changes to the specification.
This statement assumes that there is no need for changes to the specification in order to ‘complete’ the specification of how multiple images can be used with the API. AePONA does not believe that the existing specification allows this deployment choice without forcing developers into proprietary extensions. This state of affairs is the justification for changes to the specification.
What happens if the Framework implementation does not support this new method or handshake and the application expects it?
AePONA sees this as current behaviour for any API method that a Framework chooses not to support. An exception should be raised.

What happens in cases where the Framework supports this method but the application uses some other transparent scheme for HA that requires the use of multiple callbacks and is therefore in conformance with the specification as it is defined today?
If the application chooses not to use this method then clearly that is an implementation choice and the application remains valid for the Gateway implementation. With respect to the multiple callbacks supported, AePONA feels that there is inconsistency and ambiguity in the default callbacks and notification callbacks, with behaviour being specified for the latter and yet not for the default. AePONA have no objection to keeping the existing callback support if there is demand for such, however we would want to ensure that what is specified is clear and unambiguous. By this we feel that the current behaviour is unclear how framework integrity management is to be supported consistently with this alternate application callback reference.
AePONA Proposal;

The modification to selectService now allows multiple identical applications to gain initialAccess without making any further modifications or clarifications. Therefore can remove this paragraph and all references to application instances here. This then becomes a vendor (gateway and/or application) implementation decision regarding how they enforce multiple initial access from the same domainID.
We agree that the authentication mechanism should not be changed to support application instances.
Once the client has been authenticated by the Framework, it can gain access to other framework interfaces and SCFs. This is done by invoking the requestAccess method, by which the client requests a certain type of access SCF.

Independently, the client could decide to authenticate the Framework, before deciding to continue using the interfaces provided by the Framework.
In the case where there are multiple instances, would each be allowed to authenticate the Framework? This would seem to be a waste of resources.
See no reason why not. It is probably only minimally wasteful and when compared with simplified development for the application developer, and the fact that this is non traffic related, this is only a minor concern.
[image: image1.wmf]Client

 : IpInitial

 : IpAPILevelAuthentication

Framework

 : IpAccess

 :

IpClientAPILevelAuthentication

1: initiateAuthenticationWithVersion()

2: selectAuthenticationMechanism()

3: challenge()

5: challenge()

9: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

8: selectSigningAlgorithm()

7: requestAccess()

1:
Initiate Authentication

The client invokes initiateAuthenticationWithVersion on the Framework's "public" (initial contact) interface to initiate the authentication process. It provides in turn a reference to its own authentication interface. The Framework returns a reference to its authentication interface.

2:
Select Authentication Mechanism

The client invokes selectAuthenticationMechanism on the Framework's API Level Authentication interface, identifying the authentication algorithm it supports for use with CHAP authentication. The Framework prescribes the method to be used. OSA authentication is based on CHAP, which prescribes the MD5 hashing algorithm as the minimum to be supported. Note however that the framework need not accept this algorithm.

3:
The client authenticates the Framework, issuing a challenge in the challenge() method.

4:
The client provides an indication if authentication succeeded.

5:
The Framework authenticates the client. The sequence diagram illustrates one of a series of one or more invocations of the challenge method on the client's API Level Authentication interface. In each invocation, the Framework supplies a challenge and the client returns the correct response. The Framework could authenticate the client before the client authenticates the Framework, or afterwards, or the two authentication processes could be interleaved. However, the client shall respond immediately to any challenge issued by the Framework, as the Framework might not respond to any challenge issued by the client until the Framework has successfully authenticated the client.

6:
The Framework provides an indication if authentication succeeded.

7:
Request Access

Upon successful authentication of the client by the Framework, the client is permitted to invoke requestAccess on the Framework's API Level Authentication interface, providing in turn a reference to its own access interface. The Framework returns a reference to a framework Access interface that is unique for this client. The success or failure of the client's authentication of the Framework does not affect the client's right to invoke requestAccess.

8:
The client and framework negotiate the signing algorithm to be used for any signed exchanges.

9:
The client invokes obtainInterface or obtainInterfaceWithCallback on the framework's Access interface. This is used to obtain a reference to a framework interface that supports the required framework functionality, such as service discovery, integrity management, service subscription etc.

6.1.1.2 Framework Terminates Access

This sequence shows how a Framework could terminate an application's use of the Framework and of all service instances. This type of termination is unusual, but possible with the terminateAccess method. Note that if at any point the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for that client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the client. This follows a generally accepted security model where the framework has decided that it can no longer trust the client and will therefore sever ALL contact with it.

[image: image2.wmf]AppLogic

 :

IpClientAccess

 :

IpAppServiceAgreementManagement

 : IpAccess

 :

IpServiceAgreementManagement

 : IpMultiPartyCallControlManager

 : IpUserLocationCamel

1: signServiceAgreement()

2: signServiceAgreement()

3: createNotification()

4: triggeredLocationReportingStartReq()

5: terminateAccess()

1:
Following successful authentication and service discovery, the client initiates the service agreement signing process (not shown). This is completed when the client invokes signServiceAgreement on the Framework's IpServiceAgreementManagement interface, and a reference to an instance of a service manager interface is returned.

2:
The client (application) had initiated service agreement signing process for a second service agreement (not shown), and when the client signs this second service agreement, a reference to an instance of another service manager, for another service type, is returned.

3:
The application starts to use the new service manager interface.

4:
The application starts to use the other new service manager interface.

POSSIBLE Change no: AUTONUMLGL
5:
The framework decides to terminate the application's access session, and to terminate all the service agreements associated with this access session. This is an unusual and drastic step, but could be e.g. due to violation or expiry of the application's service agreements, or some problem within the framework itself. The framework will also destroy each of the service managers the application was using (not shown). The application is now no longer authenticated with the framework, and all Framework and service interfaces unique to the client access session are destroyed.

So each instance has its own access and service sessions and the proposal has not yet addressed how service agreement management across instances of the same application is to be handled. Also, when all service sessions associated with a given client are closed, there needs to be a definition of what kind of error caused this behaviour. If its an error that applies to that application as a single entity and not to individual instances, the same behaviour may need to be applied not just to one set of sessions tied to a single instance, but to all instances associated with a single application context. Also, what happens when the service sessions and access session tied to a single instance are closed? Does the spare capacity associated with that instance (from its service agreement) now translate to the other instances in existence? Is there some kind of distribution algorithm to ensure equitable (based on some mechanism, metric or heuristic) distribution of this capacity across instances?
Without wishing to appear too flippant, what is sought here is the ability to support the mechanism rather than the implementation policies and procedures that may apply as a result of this. You raise a number of valid observations, which AePONA feels will form the basis of vendor implementation choice. AePONA feels that much of these issues relate to whether the API supports multiple application instances with the same domainID and provisioning record, or whether multiple discrete applications (with identical functionality) are provisioned each with their own SLA. The issue of service level agreement should be examined, to determine whether this relates to the access session or the service session, if the current method description is unclear as a result of the changes proposed AePONA are open to suggestions on preferred operation/behaviour. This may be explained somewhat in the sequence that follows.
AePONA proposal:

Again the modifications to selectService would now allow multiple application images to share a common service manager, therefore the service agreement and SLA issues are resolved within the SCS implementation irrespective of the application design. This would now result in multiple enableCallNotifications as currently supported, however the selectService initial access ensures that this is accomplished via a Framework access step.
Lucent feels that this can be accomplished with the existing specification as long as there is no requirement for a service instance to distinguish between client application images. We would like to request clarification on why it would be advantageous for the service to be able to make such a distinction and why this needs to be specified as part of the standard.
6.1.1.3 Application Terminates Access

This sequence shows how an application could terminate its use of the Framework and of all service instances. This type of termination is unusual, but possible with the terminateAccess method.

[image: image3.wmf]App Logic

 :

IpClientAccess

 : IpAccess

 :

IpMultiPartyCallControlManager

 :

IpUserLocationCamel

1: destroyNotification()

2: triggeredLocationReportingStop()

3: terminateAccess()

1:
The application terminates its use of the multi-party call control service manager in a controlled manner.

2:
The application ceases to use the user location camel SCF.

POSSIBLE Change no: AUTONUMLGL
3:
The application decides to terminate its access session and all its service agreements in one go. The framework will also destroy each of the service managers the application was using (not shown). The application is now no longer authenticated with the framework, and all Framework and service interfaces unique to the client access session are destroyed. The application could have terminated its service agreements one by one, by invoking terminateServiceAgreement on the Framework's IpServiceAgreementManager interface, and then invoked terminateAccess on the Framework's IpAccess interface, which would have been a more controlled shutdown.

AePONA Proposal:

AePONA see this as a minor further clarification of existing behaviour rather than a new HA feature, and are prepared to withdraw this change if there is a valid objection.
Lucent agrees that this proposed change should be withdrawn until complete details of the proposed changes are available.
6.1.1.4 Non-API level Authentication

The following figure shows a client accessing the OSA Framework for the first time. The client and the framework have mutually authenticated one another using an underlying distribution technology mechanism, or the client and the framework recognise each other as a trusted party, not requiring authentication.

[image: image4.wmf]Client

 : IpInitial

Framework

 : IpAuthentication

 : IpAccess

1: initiateAuthenticationWithVersion()

2: requestAccess()

4: obtainInterface()

Underlying Distribution Technology Mechanism is used for application

identification and authentication, or both the client and the Framework

recognise each other as trusted parties not requiring API level

authentication. There is no requirement as to when authentication should

take place using the Underlying Distribution Technology Mechanism:

before initiateAuthenticationWithVersion is invoked, after requestAccess is

invoked, or between the two.

3: selectSigningAlgorithm()

1:
The client calls initiateAuthenticationWithVersion on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. In this case, the client selects to use the underlying distribution technology mechanism for identification and authentication. What that mechanism is, if it even exists, is outside the scope of the API.

2:
The client invokes the requestAccess method on the Framework's Authentication interface. This returns a reference to the framework Access interface that is unique for the client.

3:
If the authentication was successful, the client and the framework can negotiate, on the framework's Access interface, the signing algorithm to be used for any signed exchanges.

4:
The client can now invoke obtainInterface or obtainInterfaceWithCallback on the framework's Access interface. This is used to obtain a reference to a framework interface such as service discovery, integrity management, service subscription etc.

Is there a way for instance-based clients to do non-API authentication? That is not specified.
No, AePONA felt that the need for an instance API authentication was required in order to support the integrity of the access session and therefore that such deployments should avail of an authentication mechanism that fulfilled their requirements.
6.1.1.5 API Level Authentication

This sequence diagram illustrates the two-way mechanism by which the client and the framework mutually authenticate one another.

The OSA API supports multiple authentication techniques. The procedure used to select an appropriate technique for a given situation is described below. The authentication mechanisms may be supported by cryptographic processes to provide confidentiality, and by digital signatures to ensure integrity. The inclusion of cryptographic processes and digital signatures in the authentication procedure depends on the type of authentication technique selected. In some cases strong authentication may need to be enforced by the Framework to prevent misuse of resources. In addition it may be necessary to define the minimum encryption key length that can be used to ensure a high degree of confidentiality.

The client must authenticate with the Framework before it is able to use any of the other interfaces supported by the Framework. Invocations on other interfaces will fail until authentication has been successfully completed.

1)
The client calls initiateAuthenticationWithVersion on the OSA Framework Initial interface. This allows the client to specify the type of authentication process. This authentication process may be specific to the provider, or the implementation technology used. The initiateAuthenticationWithVersion method can be used to specify the specific process, (e.g. CORBA security). OSA defines a generic authentication interface (API Level Authentication), which can be used to perform the authentication process. The initiateAuthenticationWithVersion method allows the client to pass a reference to its own authentication interface to the Framework, and receive a reference to the authentication interface preferred by the client, in return. In this case the API Level Authentication interface.

2)
The client invokes the selectAuthenticationMechanism on the Framework's API Level Authentication interface. This includes the authentication algorithms supported by the client. The framework then chooses a mechanism based on the capabilities of the client and the Framework. If the client is capable of handling more than one mechanism, then the Framework chooses one option, defined in the prescribedMethod parameter. In some instances, the authentication mechanism of the client may not fulfil the demands of the Framework, in which case, the authentication will fail, for example CHAP prescribes the MD5 hashing algorithm as the minimum to be supported, however the framework need not accept this algorithm.

3)
The application and Framework interact to authenticate each other by using the challenge method. For an authentication method of P_OSA_AUTHENTICATION, this procedure consists of a number of challenge/ response exchanges. This authentication protocol is performed using the challenge method on the API Level Authentication interface. P_OSA_AUTHENTICATION is based on CHAP, which is primarily a one-way protocol. There are in fact two authentication processes: authentication of the client performed by the Framework , and authentication of the Framework performed by the client. Mutual authentication is achieved by both these processes terminating successfully. Mutual authentication may not necessarily be required, i.e. it could be that a client may not need to authenticate the Framework. There is also no required order for the execution of these two authentication processes, however, the client shall respond immediately to any challenge issued by the Framework, as the Framework might not respond to any challenge issued by the client until the Framework has successfully authenticated the client.

Note that at any point during the access session, either side can request re-authentication of the other side.

[image: image5.wmf] : IpClientAPILevelAuthentication

Client

 : IpInitial

Framework

 : IpAPILevelAuthentication

1: initiateAuthenticationWithVersion()

2: selectAuthenticationMechanism()

3: challenge()

4: challenge()

5: challenge()

7: challenge()

IpClientAPILevelAuthentication

reference is passed to framework

and IpAPILevelAuthentication

reference is returned.

This is an example of the

sequence of

authentication

operations. Different

authentication protocols

may have different

requirements on the

order of operations.

IpClientAccess reference is

passed to Framework, and

IpAccess reference is

returned.

9: requestAccess()

6: authenticationSucceeded()

8: authenticationSucceeded()

POSSIBLE Change no: AUTONUMLGL
6.1.1.6 Re-Initialisation on Application Recovery
In the case of an application that is deployed as a single instance with a single access session with the Framework, the failure and recovery of such an application may be supported by treating the recovery in the same manner as an application initialisation. In this way, the same methods used to establish initial access between the Framework and the application shall be used, and the framework shall treat this application as a new independent application access governed by a new SLA, and remove all references and knowledge of the previous application that failed. Note it must remove all knowledge of the failed application, without informing either the recovering or failed application, as the recovering application shall have no knowledge of the failed application, and the failed application can no longer be trusted. The re-authentication of such an application is therefore treated in the same manner as outlined previously, for example as in 6.1.1.1, 6.1.1.4, 6.1.1.5.
What happens in the case where there are multiple application images, and the some subset of the multiple clones go insane? Are we also assuming that there is some kind of back-end process running within the application domain that tracks their sanity over time? As one depends more and more on the implementation, there is greater impact to the standards over and beyond what the API itself may specify.
Not sure I follow this point. The intention would be to allow application images in principle to run as multiple identical entities. Whether a back end manager is supported or required in such a deployment is an issue for application architecture and implementation.
In the case where an application is deployed as multiple application instances that share a common application domain, and each with a unique access session with the framework, the failure and recovery of an individual application instance must be supported independent of other ongoing application instance access sessions.
This is no different from the model supported today. Unless the Framework has a consistent view of instances and is able to distinguish between instances of a given application and distinct applications, there appears to be no great difference in what is specified here versus what is currently the stated behaviour in the standard. In fact, if the standards specified behaviour is to be modified, one needs to explain in detail how the service agreements negotiated are distributed across the various application instances.
Agree that there is much in common with existing behaviour. The issue is one of establishing the service agreement correctly to provide the application with the correct service manager experience. If the existing signServiceAgreement functionality is used to allow the same application to gain access to the service manager multiple times, this issue of correlating the SCS to application integrity features becomes problematic yet again. This may be an alternate mechanism to achieve what is being sought and AePONA are open to discuss this further.
The following figure shows an example of an application instance establishing an initial access session with the OSA Framework, and thereafter as a result of a subsequent failure, recovering and re-establishing a new access session for this application instance with the OSA Framework.

[image: image6.wmf]

Client

 : IpInitial

 : IpAPILevelAuthentication

Framework

 : IpAccess

 :

IpClientAPILevelAuthentication

1: initiateAuthenticationInstance()

2: selectAuthenticat

ionMechanism()

3: challenge()

5: challenge()

9: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

8: selectSigningAlgorithm()

7: requestAccess()

10: client Failure

11: client Recovery

12: initiateAuthenticatio

nInstance()

13: repeat steps 2

-

 9

1:
Initiate Authentication

The client invokes initiateAuthenticationInstance on the Framework's "public" (initial contact) interface to initiate the authentication process for the application instance. The client application instance is supplied as “-1” to indicate to the Framework that this is the first time that this application instance has attempted to establish an access session with the Framework. The application instance provides a reference to its own authentication interface. The Framework returns a reference to its authentication interface, and an instance identifier that the Framework has assigned to this application instance and associated with any access session thereafter established.

2 - 9:
Authentication and Access request
The authentication procedure and subsequent establishment of access session etc., continues as normal.
10:
The client application instance fails. An alternate application instance for the same client is used to continue to provide the service to end users.
How does the framework know that the application instance has failed and is attempting to recover. One cannot assume that integrity management interfaces are in place since they are entirely optional. What does the framework do when it perceives an access session is valid, but a client is trying to re-initialize it?
Cleary integrity management is provided to allow the Framework to gain such information. As stated however it is not mandatory to employ these and in such cases the issue of an application failure is the same regardless of whether a HA deployment is available or not. In the case of a valid access session that is being re-initialised, it is proposed to allow the Framework to elect whether to update the existing access session based on the client behaviour or to start afresh and terminate the pre-existing access session.
11:
The failed application instance attempts to recover.

12: Re-Initialisation of Authentication
The recovering application instance invokes initiateAuthenticationInstance on the Framework's "public" (initial contact) interface to initiate the authentication process for the application instance. The client application instance previously allocated by the Framework during step 1 above is supplied, to indicate to the Framework that this application instance is attempting to recover an access session with the Framework. The application instance provides a reference to its own authentication interface.
How does the framework determine how long to retain knowledge about the failed client instance? What if the instance never recovers?
See this as an implementation decision and policy of the framework.
The Framework may choose to support re-initialisation of the application in either of two ways.

The Framework may choose to re-use the existing access session, resources and interfaces associated with the application instance, in which case it returns a reference to the existing authentication interface, and the instance identifier that the Framework has assigned to this application instance remains unchanged and valid. As the recovering application shall re-establish callback references with the framework for other framework services such as Integrity Management etc. the framework must also remove any pre-existing state associated with the application instance use of the Framework.
Has this been worked out to an adequate level of detail to ensure that no new security loopholes are introduced, and that the existing interface is provided to the re-initialized application only once that application’s identity has been firmly established? For if not, a malicious client may use this as a means to establish a denial of service attack and invalidate access sessions tied to other client applications
The existing steps to authenticate are carried out prior to the requestAccess method. It is the implementation of this method that we believe may be open to interpretation, however the authentication and level of trust must be established before this can take place.
Alternatively, the Framework may choose to create a new access session, authentication interface etc for this application instance, returning a new framework authentication interface reference and a new instance identifier by which the Framework shall identify this application instance. In this case, the instance identifier supplied by the client application to the Framework in this step becomes invalid and the Framework shall take appropriate steps to remove redundant framework and service resources.
13:
 Steps 2 through 9 are repeated as before. Depending on the implementation choice of the Framework outlined above in step 12, this will either refresh any callback references associated with the access session in existence prior to failure as the application instance requests framework features again on recovery, or alternatively a new access session with relevant callback references is established.
If the implementation supports re-use of existing interfaces, then the application can gain access to the service managers in existence prior to failure. Alternatively if a new access session results, a new service manager will be created for the recovering application instance. Therefore if the framework indicates to the application that a new access session has been created on recovery, the application shall initialise rather than recover all notification criteria and associated callbacks.
How does the client application know what behaviour to expect from the framework and services regarding recovery?
AePONA feels that this issue exists currently and shall be improved through clearly description of semantics in the API.
How does the client instance know that when it re-initializes it is going to recover its same service session as opposed to a new one?
Such indication is provided through the instance identifier. A re-used identifier may be used to indicate re-use of service sessions.
AePONA Proposal:

Upon reflection we believe that the sequence above and behaviour is already catered for in the existing API therefore there is no need to add this distinct sequence. AePONA therefore propose to withdraw this proposal for change.
Lucent agrees with the withdrawal of this proposal.
6.1.1.7 Interface Class IpClientAccess

Inherits from: IpInterface.
IpClientAccess interface is offered by the client to the framework to allow it to initiate interactions during the access session. This interface and the terminateAccess() method shall be implemented by a client.

	<<Interface>>

IpClientAccess

	

	terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpOctetSet) : void

6.1.1.7.1 Method terminateAccess()

The terminateAccess operation is used by the framework to end the client's access session.
POSSIBLE Change no: AUTONUMLGL
After terminateAccess() is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. Also, all access to the service instances created by the framework either directly in this access session or on behalf of the client during this access session shall be terminated. In the case of a client application realised using a single application instance, the removal of the service instance removes all access to the service in question.
Please clarify the sentence directly above. I think you mean removal of the access session also removes the service instance. This comment also applies to the text below.
This was the intention of the statement above and below.
 In the case of a client application realised with multiple application instances, the removal of the service instance is restricted to the application instance in question, and continued use of the service may be possible through other application and service instances. Only when all application instances of a single client have successfully terminated their access with the Framework shall complete access to the service by that application be deemed to have been carried out.
Please clarify what is meant in the above sentence by “shall complete access to the service by that application be deemed to have been carried out.”
Unless application instances share their accesses to each others’ service managers, the value offered by support for this seems limited.
This is not what is being proposed. Rather each application image has its own service manager, and through the modifications to remove the additional callback references suggested, the application and service manager have a single defined communication path. By thereafter allowing multiple (single) paths to be established the choice of which path is pushed below the API into the underlying SCS implementation, much like the multiple point of control issue. AePONA see no reason why such an approach would be constrained or limited, other than by SCS properties or behaviour.
If they do support access to each others’ service managers, the limitations imposed by the restricted number of callbacks that can be registered with individual SCSs imply that the number of service instances is constrained to a pre-specified maximum, or that the backup references in fact overwrite the primary ones.
By removing the dual callback feature the constraint as mentioned, becomes an issue of SCS implementation rather than API behaviour, there is in fact no over writing, but rather an ability to add or delete the number of communication channels.
If at any point the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for that client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the client. This follows a generally accepted security model where the framework has decided that it can no longer trust the client and will therefore sever ALL contact with it.
AePONA Proposal:

AePONA propose to withdraw this recommendation for change, as the existing wording allows sufficient scope for interpretation to support the multiple application operation required.
Lucent agrees with the withdrawal of this proposal.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown to the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. The list of possible algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The framework uses this to confirm its identity to the client. The client can check that the terminationText has been signed by the framework. If a match is made, the access session is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNING_ALGORITHM, P_INVALID_SIGNATURE
POSSIBLE Change no: AUTONUMLGL
6.3.1.2 Interface Class IpInitial

Inherits from: IpInterface.
The Initial Framework interface is used by the client to initiate the authentication with the Framework. This interface shall be implemented by a Framework. The initiateAuthentication() and the initiateAuthenticationWithVersion() methods shall be implemented. In addition, if the Framework vendor wishes to support deployment of multiple application instances that share a common application domainID (TpClientAppID), then the method initiateAuthenticationInstance() shall also be supported.
	<<Interface>>

IpInitial

	

	<<deprecated>> initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) : TpAuthDomain

<<new>> initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType, frameworkVersion : in TpVersion) : TpAuthDomain
<<new>> initiateAuthenticationInstance (clientDomain : in TpAuthDomain, authType : in TpAuthType, frameworkVersion : in TpVersion, instanceNumber : in TpInstanceID) : TpAuthDomainInstance

Consider calling this method initiateInstanceAuthentication() or initiateInstanceAuthenticationWithVersion() instead of initiateAuthenticationInstance(). We feel this aligns better with the other methods.
Either is fine
Please see our earlier comments regarding how as currently specified this method is not really “optional”.
Never intended for the method to be tagged as optional , however the feature may be optional. The ETSI PICS should/could indicate this, alternatively an alternate package structure may be possible?
6.3.1.2.1 Method <<deprecated>> initiateAuthentication()

This method is deprecated in this version, this means that it will be supported until the next major release of the present document.

This method is invoked by the client to start the process of authentication with the framework, and request the use of a specific authentication method.

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};
The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an instance of a service for which a client application has signed a service agreement (i.e. TpServiceInstanceID), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticate() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).
The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication which is used when an underlying distribution technology authentication mechanism is used.
Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE
6.3.1.2.2 Method <<new>> initiateAuthenticationWithVersion()

The description for this method would need to be altered to indicate that it is now optional since it is not needed by client applications that seek to only use initiateAuthenticationInstance. How will this affect backward compatibility? Also, an explicit statement indicating that this method should only be used by client applications that wish to use the non-instance based architecture should be included.
Agreed. However can you expand on your concerns regarding backwards compatibility?
This method is invoked by the client to start the process of authentication with the framework, and request the use of a specific authentication method using the new method with support for backward compatibility in the framework. The returned fwDomain authInterface will be selected to match the proposed version from the Client in the Framework response. If the Framework cannot work with the proposed framework version the framework returns an error code (P_INVALID_VERSION).

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework that is unique for the requesting client. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Note, there are no identifiers used in the authentication interface to correlate requests and responses, therefore the authentication interface may not be shared amongst multiple clients.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};
The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an instance of a service for which a client application has signed a service agreement (i.e. TpServiceInstanceID), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see challenge() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).
The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication that is used when an underlying distribution technology authentication mechanism is used.
frameworkVersion : in TpVersion

This identifies the version of the Framework implemented in the client. The TpVersion is a String containing the version number. Valid version numbers are defined in the respective framework specification.
Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE, P_INVALID_VERSION
6.3.1.2.3 Method <<new>> initiateAuthenticationInstance()
Change to initiateInstanceAuthentication() or perhaps initiateInstanceAuthenticationWithVersion() to align with other methods.
This methods needs an explicit statement that it is to be used only by client applications that follow the instance based architecture and that it is optional.
Agreed.
In the case where multiple instances of a single client (sharing a common TpClientAppID) exist, this method must be used by each instance of this client to start the process of authentication with the framework, and request the use of a specific authentication method. The method also provides support for backward compatibility in the framework. The returned fwDomainInstance authInterface provided in the Framework response will be selected to match the version proposed by the Client when invoking this method. If the Framework cannot work with the proposed framework version the framework returns an error code (P_INVALID_VERSION).

Note that a common domain identifier (TpDomainID) must apply to each instance of the client. In supporting authentication and access sessions between the framework and each individual instance of a client application, the application developer may simultaneously deploy multiple identical instances of a client application as a single logical client. Each application instance shall have a unique corresponding service instance for each service that it uses. This enables the application to be readily deployed in a manner that can be used to improve availability and scalability.
Returns <fwDomainInstance> : This provides the client with a framework identifier, a reference to call the authentication interface of the framework, and an instance identifier by which the framework shall uniquely identify this particular instance of the client.

structure TpAuthDomainInstance {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

instanceID:

TpInstanceID;

};

structure TpInstanceID {

instanceCount:
TpInt32;

instanceDate:

TpDateAndTime;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework that is unique for the requesting client. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework. Note, there are no identifiers used in the authentication interface to correlate requests and responses, therefore the authentication interface may not be shared amongst multiple client instances.
The instanceID parameter is returned to the client application instance to indicate the identifier by which the Framework shall recognise the given instance or image of the application that is initiating the authentication.
If an application is recovering after an abnormal termination, and has previously been allocated an instanceID, it can initiateAuthenticationInstance() supplying an instanceID returned previously by the framework. The framework can then choose to re-establish the existing session, updating any stored callback references during the sequence, or it can return a new instanceID, which must then be used by the application instance. If a new instanceID is returned by the framework, the previously used instanceID becomes invalid, and the framework shall be responsible for releasing all resources associated with this client instanceID. The application must always use the last instanceID returned by the framework.
Please clarify that this is referring to the access sessions and not service sessions. Also, what are the resources associated with the client instance ID that are released when a new instanceID is provided? Are these the access session, the service sessions, or both?
This is indeed the access session and not service session. The resources associated would be interfaces in use associated with such an access session such as Integrity Management, and in the case of a released client instanceID, the service session would also be freed.
How does a single SLA apply to multiple application instances? If the SLA indicates behaviour or resource allocation, how is this distributed across the set of client instance/service session pairs?
The issue of SLA enforcement we believe is an SCS implementation issue, based on whether the additional session is a resilient standby or an active load solution. In the latter case the SLA enforcement becomes an issue for the underlying SCS implementation to ensure that the total SLA is applied across all client/service session pairs. In order to do this the clients must all share the same client domainID.
In the existing framework, if a client goes away without telling the framework, the framework can still retain data associated with the access session for that client since at most 1 access session is allowed per client. With this approach, the framework could deplete its resources keeping track of failed access sessions.
The use of integrity management may be used to mitigate against this, however if this is not used some Framework housekeeping may be required. This issue is therefore not one that is directly related to the functionality being proposed, rather this is an issue related to scalability of the implementation of the Framework API.

The initiateAuthenticateInstance() method should add a new exception to throw when the limit of allowed client instances has been reached.
Would you see this as a Framework controlled policy or something that the SCS or SLA perhaps could better support?

How can it be assumed that a recovering application will have an instance ID stored in persistent memory to be used in its next incarnation after recovery from failure? What if a recovering application mistakenly invokes this method with the instance ID of an unaffected replica?
We assumed that an application may choose to persist some information if it can be of benefit in the broader scheme of a HA solution. As you suggest if it somehow uses an incorrect ID the Gateway will not be able to discriminate this application error.
Application instances are required to follow the same sequence whether they are starting for the first time or recovering from an abnormal termination.
What are the implications of the paragraph above?
Indication to application developers of how they should implement and use this feature. Nothing else?
Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};
In the case of the initiateAuthenticationInstance method, as this ability is restricted to multiple application instances, the domainID parameter shall be an identifier for a client application (i.e. TpClientAppID). It is used to identify the client domain to the framework, (see challenge() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).
The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication that is used when an underlying distribution technology authentication mechanism is used.
Can some client instances use P_AUTH while others use P_OSA_AUTH?
In principle AePONA sees no reason why not, as the general principle should be that each application instance shall be responsible for achieving authentication with the Framework. In practice the idea is that the same application shall be deployed and executed multiple times, so unless the application is designed to select an auth mechanism at random, it would be likely that the auth mechanism will be common across application instances.
frameworkVersion : in TpVersion

This identifies the version of the Framework implemented in the client. The TpVersion is a String containing the version number. Valid version numbers are defined in the respective framework specification.
Are all instances of a given application always constrained to use the same version? Can each instance use different authentication and encryption mechanisms? Do they share certificates, keys, or other encryption-related components?
Again AePONA would foresee that a common version would apply to the application as it is intended to run an identical mirror image of the application rather than a range of subtly different applications.
If each instance is unique in all these regards, how do they differ from individual client applications?
As noted if each instance is unique then this would suggest that the application is in reality a number of discrete applications.
instanceID : in TpInstanceID

The instanceID parameter is used to identify the application image in a situation where multiple application images are being used to provide high availability or load-sharing. The instanceID consists of an integer value and date stamp, generated and used by the Framework to uniquely identify an application instance and therefore the access session that application instance establishes with the Framework.

When supplying the instanceID to the Framework in this method the application instance should set the integer value to –1 if this is the first time this instance has authenticated. In this case the framework will return an instanceID as part of the TpAuthDomainInstance to be used by this application instance. If an application is recovering, it may supply an instanceID previously assigned to it by the framework using this parameter. The framework on receipt of a pre-existing instance ID may choose to re-use the existing instanceID, or assign a new instanceID to the application.
What is the value of InstanceTime if –1 is supplied?
Suggest that this may be ignored. Does Lucent have a preference for an explicit value to be stated?
Is the decision by the framework to re-use the client's access session interfaces or not defined in the SLA, is it a framework local policy? How do we ensure interoperability unless it is well defined?
Good point. It may be that the Framework local policy would be influenced by the SLA. For example if the Framework is aware of the application failure, through integrity management, it may clear down existing SLA and resources. Alternatively if an SLA remains in place the framework may apply a further policy, to either attempt to reuse existing resources, or do a purge and insist on new resources being established. In either event the same method sequences should apply, with the possible exception of the enableNotification methods. In this case in the event that an existing session is reused, as indicated to the app via the same instabce ID, the app should be able to refresh callbacks rather than establish the same notification criteria.
When a client supplies its instanceID during authentication, does it also need to supply the InstanceTime from before?
Don’t believe so. AePONA suggest that the instance time is used by the Framework to uniquely identify the access sessions and allow purging of stale access sessions where appropriate. There is no requirement for the application to populate this time.
Returns

TpAuthDomainInstance

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE, P_INVALID_VERSION, P_INVALID_INSTANCE_ID
We need a new exception to cover cases where initiateAuthentiationInstance() and initiateAuthenticationWithVersion() are called by within the same access session.
Agreed.
AePONA Proposal
As has been stated previously, Lucent disagrees that the specification should concern itself with explicit details pertaining to the architecture of the client application. We do not believe that it is appropriate for the Framework to be aware that the client application consists of a set of redundant instances, but rather these details should be something contained entirely within the domain of the client application itself. Speaking from that perspective, we maintain our standing objection to the approach suggested here.
It may be possible to support the same physical application deployment using the existing authentication mechanisms, and hence the need for this change may not be essential. However this is based on the following observations and assumptions.
Firstly, the limit of 1 access session per client needs to be clearly understood and agreed before all semantics and behaviour is clearly understood regarding using existing methods to fulfil the deployment configuration of multiple identical clients, sharing a common domainID. The physical deployment that the method above seeks to introduce is a logical client realised as a number of multiple physical implementations. Each physical client shall authenticate, gain access to Framework and other interfaces and select and discover services. This may all be possible today based on the interpretation of the term ‘client’ in a number of method definitions, e.g initiateAuthenticationWithVersion, requestAccess etc.
If the term client is intended to mean a logical client, then the existing functionality of these methods then assumes that a single set of Framework interfaces could be shared across multiple physical clients and the assumption above that there is only 1client access session no longer holds (the Framework implementation would need to resolve the multiple client access sessions to a single domain – where is the limit of 1 clearly stated or is it inferred from the existing wording?).
We believe that the current interpretation of the specification is that a “client” is a single physical instance. Is there room to broaden the interpretation of this definition without adversely affecting existing gateway and client application implementations?
However if the term client could equally apply to a number of physical client applications sharing the same domainID then the existing wording and methods may allow multiple unique physical clients to each establish a single access session with the Framework, and share a common domainID. This second approach would also result in the Framework requiring to resolve the multiple client access sessions, however as there will be multiple discreet application access sessions with the Framework, a clear indication on whether the Framework uses each application access to generate unique service managers or whether the Framework can reuse the serviceInstanceID (or some other mechanism) to ensure the same service manager is needed.
Assuming that a number of physical client applications sharing the same domainID were supported, we would expect the Framework specification to support the ability through the SLA or other mechanisms to enable either of the two operating modes specified in the last sentence of the above paragraph.
This behaviour should be supportable for cases where the application instances belong to the same domain or are separate client applications each with a unique domain ID (since this is part of HA solutions supported by the existing specification).
Generally speaking, complete feature parity should exist between those deployments that choose to use multiple application images to achieve HA versus those that choose to use multiple distinct client applications to achieve a similar effect.
How can the Framework distinguish between authentication attempts by a number of different client application instances sharing the same domainID and a single client application that periodically re-authenticates?
In either case the existing API methods would largely allow this deployment and hence the above method would not be necessary, however the existing semantics need to be greatly improved to clearly indicate how the SCS implementation and Framework shall support this.
Lucent agrees that the existing API methods provide the requisite semantics to achieve a workable implementation that supports multiple application replicas.
Secondly, the points above regarding SLA remain valid, however in suggesting that the same client domain gain access to the same or existing service manager (rather than a new service manager for each physical client), the SLA behaviour should remain as currently defined, within the scope of the service manager implementation.
This would only address the case where the same service manager is used by the set of client application images sharing the same domainID. For the sake of parity, such a solution should also transparently support the case where clients with distinct domainIDs are used as a HA solution.
Note the deployment that results provides the Framework with visibility of multiple application access sessions if the application chooses to deploy multiple times. Each application may gain access to the same service manager, however the service manager remains unique for the logical application. Therefore Integrity management for example would need to be resolved by the framework to total across client applications etc. The main advantage of this however is that the FW is aware that multiple application images exist, and can therefore take appropriate decisions on when to terminate a service agreement in the event of application heartbeat failure etc.
While not supporting this change, should the JWG accept this proposal, Lucent contends that there is a strong logical correlation between the changes proposed here and those suggested for Integrity Management. If that is so, it is perhaps most beneficial if the details of both sets of changes (those for HA and for IM) are submitted together to provide a complete logical view that can then be evaluated on its total merits.
POSSIBLE Change no: AUTONUMLGL
AePONA Proposal: This modification is only required if change 7 remains applicable.
Lucent agrees that this change is not needed, however as indicated previously, we do not agree with the modified version of proposal 7.
6.3.1.4 Interface Class IpAPILevelAuthentication

Inherits from: IpAuthentication.
The API Level Authentication Framework interface is used by the client to authenticate the Framework. It is also used to initiate the authentication process.

If the IpAPILevelAuthentication interface is implemented by a Framework, then selectEncryptionMethod(), selectAuthenticationMechanism(), authenticate(), challenge(), abortAuthentication() and authenticationSucceeded () shall be implemented. IpAPILevelAuthentication inherits the requirements of IpAuthentication, therefore requestAccess() shall be implemented.

	<<Interface>>

IpAPILevelAuthentication

	

	<<deprecated>> selectEncryptionMethod (encryptionCaps : in TpEncryptionCapabilityList) : TpEncryptionCapability

<<deprecated>> authenticate (challenge : in TpOctetSet) : TpOctetSet

abortAuthentication () : void

authenticationSucceeded () : void

<<new>> selectAuthenticationMechanism (authMechanismList : in TpAuthMechanismList) : TpAuthMechanism

<<new>> challenge (challenge : in TpOctetSet) : TpOctetSet

6.3.1.4.1 Method <<deprecated>> selectEncryptionMethod()

This method is deprecated and replaced by selectAuthenticationMechanism(). It shall only be used when the IpAPILevelAuthentication interface is obtained by using the deprecated method initiateAuthentication() instead of initiateAuthenticationWithVersion() on the IpInitial interface. This method will be removed in a later release.

The client uses this method to initiate the authentication process. The framework returns its preferred mechanism. This should be within capability of the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be found, the framework throws the P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY exception. Once the framework has returned its preferred mechanism, it will wait for a predefined unit of time before invoking the client's authenticate() method (the wait is to ensure that the client can initialise any resources necessary to use the prescribed encryption method).

Returns <prescribedMethod> : This is returned by the framework to indicate the mechanism preferred by the framework for the encryption process. If the value of the prescribedMethod returned by the framework is not understood by the client, it is considered a catastrophic error and the client must abort.

Parameters

encryptionCaps : in TpEncryptionCapabilityList

This is the means by which the encryption mechanisms supported by the client are conveyed to the framework.
Returns

TpEncryptionCapability

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
6.3.1.4.2 Method <<deprecated>> authenticate()

This method is deprecated and replaced by challenge(). It shall only be used when the IpAPILevelAuthentication interface is obtained by using the deprecated method initiateAuthentication() instead of initiateAuthenticationWithVersion() on the IpInitial interface. This method will be removed in a later release.

This method is used by the client to authenticate the framework. The challenge will be encrypted using the mechanism prescribed by selectEncryptionMethod. The framework must respond with the correct responses to the challenges presented by the client. The domainID received in the initiateAuthentication() can be used by the framework to reference the correct public key for the client (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the client.

The invocation of this method may be interleaved with authenticate() calls by the framework on the client's APILevelAuthentication interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The response will be based on the challenge data, decrypted with the mechanism prescribed by selectEncryptionMethod().

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge mechanism used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994). The challenge will be encrypted with the mechanism prescribed by selectEncryptionMethod().
Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.4.3 Method abortAuthentication()

The client uses this method to abort the authentication process where the framework is authenticating the client. This method is invoked if the client no longer wishes to continue the authentication process, (unless the framework responded incorrectly to a challenge in which case no further communication with the framework should occur.) If this method has been invoked before the client has been authenticated by the Framework, calls to the requestAccess operation on IpAPILevelAuthentication will return an error code (P_ACCESS_DENIED), until the client has been properly authenticated. If this method is invoked after the client has been authenticated by the Framework, it shall not result in the immediate removal of the client's authentication. (The Framework may wish to authenticate the client again, however).

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.4.4 Method authenticationSucceeded()

The client uses this method to inform the framework of the success of the authentication attempt. Calls to this method have no impact on the client's rights to call requestAccess(), which depend exclusively on the framework's successful authentication of the client.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions, P_ACCESS_DENIED
6.3.1.4.5 Method <<new>> selectAuthenticationMechanism()

The client uses this method to inform the Framework of the different authentication mechanisms it supports as part of API level Authentication. The Framework will select one of the suggested authentication mechanisms and that mechanism shall be used for authentication by both Framework and Client. The authentication mechanism chosen as a result of the response to this method remains valid for an instance of IpAPILevelAuthentication and until this method is re-invoked by the client. If a mechanism that is acceptable to the framework within the capability of the client cannot be found, the framework throws the P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM exception.

This method shall only be used when the IpAPILevelAuthentication interface is obtained by using initiateAuthenticationWithVersion() or initiateAuthenticationInstance() on the IpInitial interface.

Returns: selectedMechanism. This is the authentication mechanism chosen by the Framework. The chosen mechanism shall be taken from the list of mechanisms proposed by the Client.

Parameters

authMechanismList : in TpAuthMechanismList

The list of authentication mechanisms supported by the client.
Returns

TpAuthMechanism

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM
6.3.1.4.6 Method <<new>> challenge()

This method is used by the client to authenticate the framework. The framework must respond with the correct responses to the challenges presented by the client. The domainID received in the initiateAuthenticationWithVersion() or initiateAuthenticationInstance() method can be used by the framework to reference the correct public key for the client (the key management system is currently outside of the scope of the OSA APIs). The number of exchanges is dependent on the policies of each side. The authentication of the framework is deemed successful when the authenticationSucceeded method is invoked by the client.

The invocation of this method may be interleaved with challenge() calls by the framework on the client's APILevelAuthentication interface.

This method shall only be used when the IpAPILevelAuthentication interface is obtained by using initiateAuthenticationWithVersion() or initiateAuthenticationInstance() on the IpInitial interface.

Returns <response> : This is the response of the framework to the challenge of the client in the current sequence. The formatting of this parameter shall be according to section 4.1 of RFC 1994. A complete CHAP Response packet shall be used to carry the response string. The Response packet shall make the contents of this returned parameter. The Name field of the CHAP Response packet shall be present but not contain any useful value.

Parameters

challenge : in TpOctetSet

The challenge presented by the client to be responded to by the framework. The challenge format used will be in accordance with the IETF PPP Authentication Protocols - Challenge Handshake Authentication Protocol (RFC 1994).
The formatting of the challenge value shall be according to section 4.1 of RFC 1994. A complete CHAP Request packet shall be used to carry the challenge value. The Name field of the CHAP Request packet shall be present but not contain any useful value.
Returns

TpOctetSet

Raises

TpCommonExceptions, P_ACCESS_DENIED
POSSIBLE Change no: AUTONUMLGL
AePONA Proposal: This modification is only required if change 7 remains applicable.

Lucent agrees that this change is not needed, however as indicated previously, we do not agree with the modified version of proposal 7.
6.4 State Transition Diagrams

This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return an exception. Apart from the methods that can be invoked by the client also events internal to the gateway or related to network events are shown together with the resulting event or action performed by the gateway. These internal events are shown between quotation marks.

6.4.1 Trust and Security Management State Transition Diagrams
6.4.1.4 State Transition Diagrams for IpInitial

[image: image7.wmf]

Active

initiateAuthentication / return FW auth interface

initiateAuthenticationWithVersion / return FW auth interface

initiateAuthenticationInstance / return FW auth interface

Figure : State Transition Diagram for IpInitial

6.4.1.5 State Transition Diagrams for IpAPILevelAuthentication

[image: image9.wmf]Idle

IpInitial.initiateAuthentication

Authenticating

Framework

selectEncryptionMethod

authenticate / Client

challenges FW

selectEncryptionMethod

FW Aborts

^IpClientAPILevelAuthentication.

abortAuthentication

Framework

Authenticated

authenticationSucceeded / Client satisfied

with FW response

selectEncryptionMethod

authenticate / Client

re-authenticates FW

Figure : STD for IpAPILevelAuthentication: Client authenticates Framework using deprecated initiateAuthentication() and authenticate() method combination

6.4.1.5.1 Idle State

When the client has invoked the IpInitial initiateAuthentication or the initiateAuthenticationWithVersion method, an object implementing the IpAPILevelAuthentication interface is created. If the client used initiateAuthentication, the client now has to provide its encryption capabilities by invoking selectEncryptionMethod. If the client used initiateAuthenticationWithVersion, the client now has to select the authentication mechanism to be used using selectAuthenticationMechanism.
6.4.1.5.2 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the authenticate method on the Framework if it has used initiateAuthentication followed by selectEncryptionMethod (deprecated mechanism). The client invokes the challenge on the Framework if it has used selectAuthenticationMechanism followed by selectAuthenticationMechanism. The Framework may either buffer the requests and respond when the client has been authenticated, or respond immediately, depending on policy. When the client has processed the response from the authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process is not yet complete, then another authenticate request or challenge is sent to the Framework. If the response is valid and the authentication process has been completed, then a transition to the state Framework Authenticated is made and the Framework is informed of its success by invoking authenticationSucceeded. At any time the Framework may abort the authentication process by calling abortAuthentication on the client's APILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.5.3 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling authenticationSucceeded on the Framework's IpAPILevelAuthentication interface. The client may at any time request re-authentication of the Framework, by calling the authenticate method if it had previously used the initiateAuthentication method on IpInitial, or by calling the challenge method if it had previously used the initiateAuthenticationWithVersion method on IpInitial, resulting in a transition back to Authenticating Framework state. The client may also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.5.4 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the authenticate method on the client if the client has used initiateAuthentication followed by selectEncryptionMethod (deprecated mechanism). The Framework invokes the challenge on the client if the client has used selectAuthenticationMechanism followed by selectAuthenticationMechanism. When the Framework has processed the response from the Authenticate request on the client, the response is analysed. If the response is valid but the authentication process is not yet complete, then another Authenticate request or challenge is sent to the client. If the response is valid and the authentication process has been completed, then a transition to the state Client Authenticated is made, the client is informed of its success by invoking authenticationSucceeded. In case the response is not valid, the Authentication object is destroyed. This implies that the client has to re-initiate the authentication by calling once more the initiateAuthentication or the initiateAuthenticationWithVersion method on the IpInitial interface. At any time the client may abort the authentication process by calling abortAuthentication on the Framework's IpAPILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.5.5 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the framework decides to re-authenticate the client, then the authenticate request or challenge, depending on whether initiateAuthentication or initiateAuthenticationWithVersion was previously used, is sent to the client and a transition back to the AuthenticatingClient state occurs. The client may also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.

[image: image10.wmf]

Idle

IpInitial.initiateAuthenticationWithVersion

Authenticating

Framework

FW Aborts

^IpClientAPILevelAuthentication.abortAuthentication

selectAuth

enticationMechanism

challenge / Client

challenges

FW

selectAuthenticationMechanism

Framework

Authenticate

d

FW Aborts

^IpClientAPILevelAuthentication.

abortAuthentication

authenticationSucceeded /

Client

satisfied with FW

response

selectAuthe

nticationMechanism

challenge / Client

re

-

challenges

Framework

IpInitial

.

initiateAuthenticationI

nstance

Figure : STD for IpAPILevelAuthentication: Client authenticates Framework using initiateAuthenticationWithVersion() or initiateAuthenticationInstance(), and challenge() method combination

6.4.1.5.6 Idle State

When the client has invoked the IpInitial initiateAuthentication or the initiateAuthenticationWithVersion or initiateAuthenticationInstance method, an object implementing the IpAPILevelAuthentication interface is created. If the client used initiateAuthentication, the client now has to provide its encryption capabilities by invoking selectEncryptionMethod. If the client used initiateAuthenticationWithVersion or initiateAuthenticationInstance, the client now has to select the authentication mechanism to be used using selectAuthenticationMechanism.
6.4.1.5.7 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the authenticate method on the Framework if it has used initiateAuthentication followed by selectEncryptionMethod (deprecated mechanism). The client invokes the challenge on the Framework if it has used initiateAuthenticationWithVersion or initiateAuthentication instance followed by selectAuthenticationMechanism. The Framework may either buffer the requests and respond when the client has been authenticated, or respond immediately, depending on policy. When the client has processed the response from the authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process is not yet complete, then another authenticate request or challenge is sent to the Framework. If the response is valid and the authentication process has been completed, then a transition to the state Framework Authenticated is made and the Framework is informed of its success by invoking authenticationSucceeded. At any time the Framework may abort the authentication process by calling abortAuthentication on the client's APILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.5.8 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling authenticationSucceeded on the Framework's IpAPILevelAuthentication interface. The client may at any time request re-authentication of the Framework, by calling the authenticate method if it had previously used the initiateAuthentication method on IpInitial, or by calling the challenge method if it had previously used the initiateAuthenticationWithVersion or initiateAuthenticationInstance method on IpInitial, resulting in a transition back to Authenticating Framework state. The client may also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.5.9 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the authenticate method on the client if the client has used initiateAuthentication followed by selectEncryptionMethod (deprecated mechanism). The Framework invokes the challenge on the client if the client has used initiateAuthenticationWithVersion or initiateAuthenticationInstance followed by selectAuthenticationMechanism. When the Framework has processed the response from the Authenticate request on the client, the response is analysed. If the response is valid but the authentication process is not yet complete, then another Authenticate request or challenge is sent to the client. If the response is valid and the authentication process has been completed, then a transition to the state Client Authenticated is made, the client is informed of its success by invoking authenticationSucceeded. In case the response is not valid, the Authentication object is destroyed. This implies that the client has to re-initiate the authentication by calling once more the initiateAuthentication or the initiateAuthenticationWithVersion or initiateAuthenticationInstance method on the IpInitial interface. At any time the client may abort the authentication process by calling abortAuthentication on the Framework's IpAPILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.
The number of variants in the Framework handshake are getting fairly large, as are the number of combinations involved – this does not reduce the complexity of the interfaces any. Additionally, there may be a need for multiple state models to support the various handshakes, especially in cases where clients can recover an access or service session.
Noted. AePONA also find this part of the specification cumbersome, particularly the continued documentation of the deprecated approach. We are open to suggestions as to how this part of the API can be improved, whilst recognising the need for a new method.
6.4.1.5.10 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the framework decides to re-authenticate the client, then the authenticate request or challenge, depending on whether initiateAuthentication or initiateAuthenticationWithVersion or initiateAuthenticationInstance was previously used, is sent to the client and a transition back to the AuthenticatingClient state occurs. The client may also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.
[image: image12.wmf]Idle

IpInitial.initiateAuthentication

requestAccess

^P_ACCESS_DENIED

Authenticating

Client

selectEncryptionMethod

requestAccess

^P_ACCESS_DENIED

selectEncryptionMethod

FW challenges Client

^IpClientAPILevelAuthentication.authenticate

abortAuthentication /

Client Aborts

Invalid Client Response

Client

Authenticated

FW satisfied with Client response

^IpClientAPILevelAuthentication.authenticationSucceeded

requestAccess / new IpAccess

selectEncryptionMethod

FW re-authenticates Client

^IpClientAPILevelAuthentication.authenticate

Figure : STD for IpAPILevelAuthentication: Framework authenticates Client using deprecated initiateAuthentication() and authenticate() method combination

6.4.1.5.11 Idle State

When the client has invoked the IpInitial initiateAuthentication or the initiateAuthenticationWithVersion method, an object implementing the IpAPILevelAuthentication interface is created. If the client used initiateAuthentication, the client now has to provide its encryption capabilities by invoking selectEncryptionMethod. If the client used initiateAuthenticationWithVersion, the client now has to select the authentication mechanism to be used using selectAuthenticationMechanism.
6.4.1.5.12 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the authenticate method on the Framework if it has used initiateAuthentication followed by selectEncryptionMethod (deprecated mechanism). The client invokes the challenge on the Framework if it has used selectAuthenticationMechanism followed by selectAuthenticationMechanism. The Framework may either buffer the requests and respond when the client has been authenticated, or respond immediately, depending on policy. When the client has processed the response from the authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process is not yet complete, then another authenticate request or challenge is sent to the Framework. If the response is valid and the authentication process has been completed, then a transition to the state Framework Authenticated is made and the Framework is informed of its success by invoking authenticationSucceeded. At any time the Framework may abort the authentication process by calling abortAuthentication on the client's APILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.5.13 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling authenticationSucceeded on the Framework's IpAPILevelAuthentication interface. The client may at any time request re-authentication of the Framework, by calling the authenticate method if it had previously used the initiateAuthentication method on IpInitial, or by calling the challenge method if it had previously used the initiateAuthenticationWithVersion method on IpInitial, resulting in a transition back to Authenticating Framework state. The client may also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.5.14 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the authenticate method on the client if the client has used initiateAuthentication followed by selectEncryptionMethod (deprecated mechanism). The Framework invokes the challenge on the client if the client has used selectAuthenticationMechanism followed by selectAuthenticationMechanism. When the Framework has processed the response from the Authenticate request on the client, the response is analysed. If the response is valid but the authentication process is not yet complete, then another Authenticate request or challenge is sent to the client. If the response is valid and the authentication process has been completed, then a transition to the state Client Authenticated is made, the client is informed of its success by invoking authenticationSucceeded. In case the response is not valid, the Authentication object is destroyed. This implies that the client has to re-initiate the authentication by calling once more the initiateAuthentication or the initiateAuthenticationWithVersion method on the IpInitial interface. At any time the client may abort the authentication process by calling abortAuthentication on the Framework's IpAPILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.5.15 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the framework decides to re-authenticate the client, then the authenticate request or challenge, depending on whether initiateAuthentication or initiateAuthenticationWithVersion was previously used, is sent to the client and a transition back to the AuthenticatingClient state occurs. The client may also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.

[image: image13.wmf]

Idle

requestAccess

^P_ACCESS_DENIED

IpInitial.initiateAuthenticationWithVersion

Authenticating

Client

requestAccess

^P_AC

CESS_DENIED

selectAuthenticationMechanism

selectAuthenticationMechanism

FW challenges Client

^IpClientAPILevelAuthentication.challenge

Invalid Client Response

abortAuthentication

/ Client Aborts

Client

Authenticated

FW satisfied with Client re

sponse

^IpClientAPILevelAuthentication.authenticationSucceeded

requestAccess / new IpAccess

selectAuthenticationMechanism

FW re

-

challenges Client

^IpClientAPILevelAuthentication.challenge

IpInitial.initiateAuthenticationInstance

Figure : STD for IpAPILevelAuthentication: Framework authenticates Client using initiateAuthenticationWithVersion() or initiateAuthenticationInstance(), and challenge() method combination

6.4.1.5.16 Idle State

When the client has invoked the IpInitial initiateAuthentication or the initiateAuthenticationWithVersion or initiateAuthenticationInstance method, an object implementing the IpAPILevelAuthentication interface is created. If the client used initiateAuthentication, the client now has to provide its encryption capabilities by invoking selectEncryptionMethod. If the client used initiateAuthenticationWithVersion or initiateAuthenticationInstance, the client now has to select the authentication mechanism to be used using selectAuthenticationMechanism.
6.4.1.5.17 Authenticating Framework State

When entering this state, the client requests the Framework to authenticate itself. The client invokes the authenticate method on the Framework if it has used initiateAuthentication followed by selectEncryptionMethod (deprecated mechanism). The client invokes the challenge on the Framework if it has used initiateAuthenticationWithVersion or initiateAutenticationInstance followed by selectAuthenticationMechanism. The Framework may either buffer the requests and respond when the client has been authenticated, or respond immediately, depending on policy. When the client has processed the response from the authenticate request on the Framework, the response is analysed. If the response is valid but the authentication process is not yet complete, then another authenticate request or challenge is sent to the Framework. If the response is valid and the authentication process has been completed, then a transition to the state Framework Authenticated is made and the Framework is informed of its success by invoking authenticationSucceeded. At any time the Framework may abort the authentication process by calling abortAuthentication on the client's APILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.5.18 Framework Authenticated State

This state is entered when the client indicates that the Framework has been authenticated, by calling authenticationSucceeded on the Framework's IpAPILevelAuthentication interface. The client may at any time request re-authentication of the Framework, by calling the authenticate method if it had previously used the initiateAuthentication method on IpInitial, or by calling the challenge method if it had previously used the initiateAuthenticationWithVersion or initiateAuthenticationInstance method on IpInitial, resulting in a transition back to Authenticating Framework state. The client may also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.5.19 Authenticating Client State

When entering this state, the Framework requests the client to authenticate itself. The Framework invokes the authenticate method on the client if the client has used initiateAuthentication followed by selectEncryptionMethod (deprecated mechanism). The Framework invokes the challenge on the client if the client has used initiateAuthenticationWithVersion or initiateAuthenticationInstance followed by selectAuthenticationMechanism. When the Framework has processed the response from the Authenticate request on the client, the response is analysed. If the response is valid but the authentication process is not yet complete, then another Authenticate request or challenge is sent to the client. If the response is valid and the authentication process has been completed, then a transition to the state Client Authenticated is made, the client is informed of its success by invoking authenticationSucceeded. In case the response is not valid, the Authentication object is destroyed. This implies that the client has to re-initiate the authentication by calling once more the initiateAuthentication or the initiateAuthenticationWithVersion or initiateAuthenticationInstance method on the IpInitial interface. At any time the client may abort the authentication process by calling abortAuthentication on the Framework's IpAPILevelAuthentication interface. The client may also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.
6.4.1.5.20 Client Authenticated State

In this state the client is considered authenticated and is now allowed to request access to the IpAccess interface If the framework decides to re-authenticate the client, then the authenticate request or challenge, depending on whether initiateAuthentication or initiateAuthenticationWithVersion or initiateAuthenticationInstance was previously used, is sent to the client and a transition back to the AuthenticatingClient state occurs. The client may also call selectEncryptionMethod to choose other encryption capabilities, or call selectAuthenticationMechanism to choose another hash algorithm.
POSSIBLE Change no: AUTONUMLGL
7.3.4 Service Agreement Management Sequence Diagrams

7.3.4.4 Service Selection

The following figure shows the process of selecting an SCF.

After discovery the Application gets a list of one or more SCF versions that match its required description. It now needs to decide which service it is going to use; it also needs to actually get a way to use it.

This is achieved by the following two steps:

[image: image15.wmf] :

IpServiceAgreementManagement

 :

IpAppServiceAgreementManagement

Application

Framework

1: selectService()

3: signServiceAgreement()

4: signServiceAgreement()

2: initiateSignServiceAgreement()

1:
Service Selection: first step - selectService

In this first step the Application identifies the SCF version it has finally decided to use. This is done by means of the serviceID, which is the agreed identifier for SCF versions. The Framework acknowledges this selection by returning to the Application a new identifier for the service chosen: a service token, that is a private identifier for this service between this Application and this network, and is used for the process of signing the service agreement.

Input is:

·
in serviceID

This identifies the SCF required.

And output:

·
out serviceToken

This is a free format text token returned by the framework, which can be signed as part of a service agreement. It contains operator specific information relating to the service level agreement.

2:
Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once this contractual details have been agreed, then the Application can be given the means to actually use it. The means are a reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By calling the createServiceManager operation on the lifecycle manager the Framework retrieves this interface and returns it to the Application (Note a unique service manager reference for the service instance is provided for each client application instance).
Why is it necessary to specify this? It seems like an implementation detail.
AePONA felt that this was additional clarity required to ensure the integrity of the model and solution proposed.
The service properties suitable for this application are also fed to the SCF (via the lifecycle manager interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

The sequence of events indicated above, where the application initiates the signature process by calling initiateSignServiceAgreement, and where the framework calls signServiceAgreement on the application's IpAppServiceAgreementManagement interface before the application calls signServiceAgreement on the frameworks's IpServiceAgreementManagement, is the only sequence permitted.

Input:

·
in serviceToken

This is the identifier that the network and Application have agreed to privately use for a certain version of SCF.

·
in agreementText

This is the agreement text that is to be signed by the Framework using the private key of the Framework.

·
in signingAlgorithm

This is the algorithm used to compute the digital signature.

Output:

·
out signatureAndServiceMgr

This is a reference to a structure containing the digital signature of the Framework for the service agreement, and a reference to the manager interface of the SCF. This manager interface is unique to the application instance.
Isn’t the uniqueness of the manager interface an implementation detail?
AePONA again see this as necessary to support the model necessary. This is particularly true when considering how the integrity management interfaces are required to operate. If an implementation chooses not to support IM then perhaps an alternate implementation approach may be possible.
AePONA Proposal:

Some change here to clarify the semantics of supported behaviour is necessary as this will clarify how the application can use the Framework to gain access to the service manager and also how the resulting SLA, Integrity Management, Access session are expected to behave. AePONA does not insist on the changes outlined above, however would request some additional semantic clarification to be agreed in order to ensure consistent operation. For example is a service manager provided uniquely for a serviceInstanceID, clientAppID combination provided by the Framework, and if so can the Framework share a serviceInstanceID amongst multiple client applications sharing a common AppID thereby re-using the same service manager? Can multiple clients sharing the same AppID use/obtain different service tokens?
If the proposed changes were made additional semantic clarifications would become necessary, however as indicated previously, we do not agree with the modified version of proposal 7.
POSSIBLE Change no: AUTONUMLGL (Typo)

7.5.1 Service Discovery Interface Classes
7.5.1.1 Interface Class IpServiceDiscovery

Inherits from: IpInterface.
The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the enterprise operator (or the client applications) must know what "types" of services are supported by the Framework and what service "properties" are applicable to each service type. The listServiceTypes() method returns a list of all "service types" that are currently supported by the framework and the "describeServiceType()" returns a description of each service type. The description of service type includes the "service-specific properties" that are applicable to each service type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both belong to a given type and possess the desired "property values", by using the "discoverService() method. Once the enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these services using the Subscription Interfaces. The enterprise operator (or the client applications in its domain) can find out the set of services available to it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service discovery APIs are invoked by the enterprise operators or client applications. They are described below.

This interface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(), describeServiceType() and discoverService() methods.

POSSIBLE Change no: AUTONUMLGL
7.5.2.2 Interface Class IpServiceAgreementManagement

Inherits from: IpInterface.
This interface and the signServiceAgreement(), terminateServiceAgreement(), selectService() and initiateSignServiceAgreement() methods shall be implemented by a Framework.

	<<Interface>>

IpServiceAgreementManagement

	

	signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

selectService (serviceID : in TpServiceID) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

7.5.2.2.1 Method signServiceAgreement()

After the framework has called signServiceAgreement() on the application's IpAppServiceAgreementManagement interface, this method is used by the client application to request that the framework sign the service agreement, which allows the client application to use the service. A reference to the service manager interface of the service is returned to the client application. The service manager returned will be configured as per the service level agreement. The service manager returned shall be unique to the client application instance, thereby ensuring that there is a one to one correlation between application instance and service instance.
Why must it be unique? This is an implementation detail.
If it is not unique can the Integrity Management functionality as defined be supported?
The details of how the client instance architecture affects the creation of the service manager and the enforcement of the service level agreement need to be detailed somewhere.
Agreed. AePONA feels this issue is to the core of whether the changes sought are acceptable or not. This may follow from satisfactorily resolving whether a unique service manager is required or not.
If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned. If the client application invokes this method before the processing (i.e. digital signature verification) the reponse of signServiceAgreement() on the application's IpAppServiceAgreementManagement interface completed, a TpCommonExceptions with ExceptionType P_INVALID_STATE may be raised to indicate that this method is currently unable to complete the method due to a race condition. In this case, the TpCommonExceptions with ExceptionType P_INVALID_STATE suggests the application to retry the method invocation after a reasonable amount of time has passed.

There must be only one service instance per client application instance. Therefore, in case the client application instance attempts to select a service for which it has already signed a service agreement and this service agreement has not been terminated, a reference to the already existing service manager will be returned. An example of when such a scenario may occur would be upon recovery after an application failure for which the framework has not terminated the application access session.
This text is now specific to the application instance architecture. We would need to describe both cases here.

I am not sure I agree here. AePONA believes that there must be N application instances, where N is greater or equal to 1. In the case where an application is not realised as multiple instances, a single instance must exist. This term is not intended to indicate that the new authenticationInstance method must have been invoked.
If anerroneously coded application instance performs the same operations but with the address of another instance that has no error, then will the two instances end up sharing a common service manager? Is this the desired behaviour? Is there any way to guard against this?
I am not sure I understand this, can you clarify what you mean by the address of another instance?
Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement, and a reference to the service manager interface of the service.

structure TpSignatureAndServiceMgr {

digitalSignature:
TpOctetSet;

serviceMgrInterface:
 IpServiceRef;

};

The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement text given by the client application. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

The serviceMgrInterface is a reference to the service manager interface for the selected service that is unique to the client application instance.
See previous comments about the above statement.
Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned. The list of possible algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).
Returns

TpSignatureAndServiceMgr

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_AGREEMENT_TEXT, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNING_ALGORITHM, P_SERVICE_ACCESS_DENIED
AePONA Proposal:

Much of the comments above are reflective of the existing ambiguity in semantics, particularly when considered along with change number 10. AePONA propose that the semantics of this method be clarified consistently in line with changes in change 10 and such that the application can be deployed multiple times in a consistent fashion. The result may be that some or all of the changes above may no-longer be required but also that additional clarification on semantics is necessary.
Lucent would agree that should the general direction suggested in proposal 7 be adopted, that these semantic clarifications are necessary.
POSSIBLE Change no: AUTONUMLGL
7.5.3.2 Interface Class IpFaultManager

Inherits from: IpInterface.
This interface is used by the application to inform the framework of events that affect the integrity of the framework and services, and to request information about the integrity of the system. The fault manager operations do not exchange callback interfaces as it is assumed that the client application supplies its Fault Management callback interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

If the IpFaultManager interface is implemented by a Framework, at least one of these methods shall be implemented. If the Framework is capable of invoking the IpAppFaultManager.appActivityTestReq() method, it shall implement appActivityTestRes() and appActivityTestErr() in this interface. If the Framework is capable of invoking IpAppFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface.

	<<Interface>>

IpFaultManager

	

	activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServiceID) : void

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcUnavailableInd (serviceID : in TpServiceID) : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void

appActivityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> appUnavailableInd (serviceID : in TpServiceID) : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void

<<new>> appAvailStatusInd (reason : in TpAppAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in TpFaultStatisticsError) : void

7.5.3.2.1 Method activityTestReq()

The application invokes this method to test that the framework or its instance of a service is operational. On receipt of this request, the framework must carry out a test on itself or on the client's instance of the specified service, to check that it is operating correctly. The framework reports the test result by invoking the activityTestRes method on the IpAppFaultManager interface. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

For security reasons the client application has access to the service ID rather than the service instance ID. However, as there is a one to one relationship between the client application instance and a service, i.e. there is only one service instance of the specified service per client application instance, it is the obligation of the framework to determine the service instance ID based on the application instance access session with the framework and the supplied service ID.
Need to specify behaviour in both instance and non-instance based scenarios.
Agreed, however the change suggested here is the only existing piece of text we believe that indicates current behaviour and that would be possibly impacted by the changes proposed. It could be argued that the current semantics of Integrity management are quite poorly defined and as much a cause for the confusion regarding physical deployments constraints imposed by the API definitions as the additional callback behaviour. To AePONA this represents an area of the API specification that is only partially accurate and causes much confusion for developers.
Parameters

activityTestID : in TpActivityTestID

The identifier provided by the client application to correlate the response (when it arrives) with this request.
svcID : in TpServiceID

Identifies either the framework or a service for testing. The framework is designated by an empty string.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
The integrity management interfaces are not sufficiently covered. Activity test is all that’s covered in the included changes. Must not similar patterns be applied to the calculation of load and reporting of load and fault statistics that take the client instance architecture into consideration? For example, is the load level of client’s service usage based on a single instance or should the framework be responsible for aggregating this data to present a unified view of service instance usage to the client domain?
To completely specify these API changes, such semantics and potential API changes are also necessary and at the same time are examples of the complexity required to fully support the proposed architecture within the specification.
AePONA agrees with these observations however, as there is a separate activity relating to detailing semantics of integrity management, and to which AePONA and Lucent are again active participants, we wanted to avoid overloading the two issues and try to keep the HA changes purely restricted to HA. However AePONA share the view that this may be somewhat unrealistic, as in effect the Integrity Management model is impacted by the other features of the API such as access sessions, SLAs etc and therefore there is a degree of interdependence between these features and the HA capability of the API. In addition when considering that the benefit of the Integrity Management package is primarily to support independent operational decisions to be made, the link to an application deployment strategy would appear quite strong.
AePONA Proposal

The changes proposed may not be required if satisfactory semantics regarding understanding the use of the term client, and elsewhere the Framework mechanisms to allow an application with the same clientAppID to gain access to a service manager are fully understood. If the new authentication method suggested in change 7 is no longer necessary, it may result that the existing wording is sufficient, in which case the remaining observations regarding service and service instance integrity management should be considered a separate topic for discussion.
Lucent agrees that additional semantics for this operation are needed, however as indicated previously, we do not agree with the modified version of proposal 7. We feel that the integrity management issues should also be addressed in a comprehensive proposal so that the entire set of HA related changes can be considered in their entirety.
POSSIBLE Change no: AUTONUMLGL
8.1.2 Service Instance Lifecycle Manager Sequence Diagrams

8.1.2.1 Sign Service Agreement

We would expect that this sequence be updated to show both the instance based and non-instance based scenarios and show how the service agreement is allocated across the client instances.
Agreed. However in principle there should be no API difference. Perhaps some of the low level semantics would be different and this should be clearly specified.
This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the signing of the service agreement and the corresponding actions towards the service. For more information on accessing the framework, authentication and discovery of services, see the corresponding clauses.

[image: image16.wmf] : IpAppCallControlManager

AppLogic

 : IpInitial

 :

IpServiceAgreementManagement

 : IpCallControlManager

 :

IpAppServiceAgreementManagement

GenericCallControlService :

IpServiceInstanceLifecycleManager

1: selectService()

3: signServiceAgreement()

4: createServiceManager()

5: new()

6: new()

7: setCallback()

We assume that the application is already authenticated and discovered the service it wants to use

2: signServiceAgreement()

1:
The application selects the service, using a serviceID for the generic call control service. The serviceID could have been obtained via the discovery interface. A ServiceToken is returned to the application.

2:
The client application signs the service agreement.

3:
The framework signs the service agreement. As a result a service manager interface reference (in this case of type IpCallControlManager) is returned to the application.

4:
Provided the signature information is correct and all conditions have been fulfilled, the framework will request the service identified by the serviceID to return a service manager interface reference. The service manager is the initial point of contact to the service.

5:
The lifecycle manager creates a new manager interface instance (a call control manager) for the specified application. It should be noted that this is an implementation detail. The service implementation may use other mechanism to get a service manager interface instance.

Following the creation of the service manager outlined above, a unique instance of the service particular to the application client results. This service instance is assigned a serviceInstanceID by the Framework, which is provided to the Service Instance Lifecycle manager during the createServiceManager operation. If it is necessary that Framework Integrity Management functionality and operations are to be supported between the Framework and the service instance identified by the defined serviceInstanceID, it is then necessary for the new service instance to establish an access session with the Framework. This provides the Framework with the ability to manage and monitor the operation of the service instance that relates to a particular application client. The steps required to establish a Framework access session are outlined in chapter 6 of this specification.
6:
The application creates a new IpAppCallControlManager interface to be used for callbacks.

7:
The Application sets the callback interface to the interface created with the previous message.

If multiple instances of the same application client can be supported by the Framework and Service, then each application instance shall carry out the sequence outlined above. In so doing each application instance shall establish a service agreement with the framework for the use of that service and shall also obtain an independent unique service instance and service manager for the use of that service. It is considered implementation detail whether a common SLA shall apply to all instances of an application using the service or whether a unique SLA can apply in each case.
This seems to be a rather important detail. If one specifies that multiple application instances can all together appear as a single application to the service mediation gateway, one must also specify how the service agreement aspects including distribution are addressed. The proposed modifications are not limited to API, but also impact behaviour. In such cases, one must specify the behaviour completely so there is no confusion. After all, if all applications use the same API but expect different things of the FSM on the other side of the network divide, it is not likely to effectively address interoperability concerns is it?
The text above represents the initial thoughts of AePONA, and we would welcome discussions and clarification of whether both options are possible and desireable. Introducing additional text to clarify the behaviour is desirable. AePONA believe it may be possible to limit the interoperability concerns through suitable service property definitions that clearly communicate to the application community how the service implementation operates with respect to support for HA and SLA etc. There may be additional changes required in order to support this.
AePONA Proposal

Through clarification of the semantics of whether the same service manager or unique service managers are returned, we believe that the SLA implications shall be largely addressed. Suggest a revised text clarification to this sequence to simply state therefore that multiple applications sharing a common appID may carry out the signServiceAgreement sequence, as exemplified. Suggest then clarify what semantics this may introduce, eg Framework re-using serviceInstanceID, call to createServiceManager retrieving rather than creating a new service manager etc.

Lucent agrees that additional semantics for this operation are needed, however as indicated previously, we do not agree with the modified version of proposal 7.
POSSIBLE Change no: AUTONUMLGL
8.3.1 Service Registration Interface Classes
Before a service can be brokered (discovered, subscribed, accessed, etc.) by an enterprise, it has to be registered with the Framework. Services are registered against a particular service type. Therefore service types are created first, and then services corresponding to those types are accepted from the Service Suppliers for registration in the framework. The framework maintains a repository of service types and registered services.

In order to register a new service in the framework, the service supplier must select a service type and the "property values" for the service. The service discovery functionality described in the next section enables the service supplier to obtain a list of all the service types supported by the framework and their associated sets of service property values.

The Framework service registration-related interfaces are invoked by third party service supplier's administrative applications. They are described below. Note that these methods cannot be invoked until the authentication methods have been invoked successfully.

8.3.1.1 Interface Class IpFwServiceRegistration

Inherits from: IpInterface.
The Service Registration interface provides the methods used for the registration of network SCFs at the framework. This interface and at least the methods registerService(), announceServiceAvailability(), unregisterService() and unannounceService() shall be implemented by a Framework.

	<<Interface>>

IpFwServiceRegistration

	

	registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList) : TpServiceID

announceServiceAvailability (serviceID : in TpServiceID, serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef) : void

unregisterService (serviceID : in TpServiceID) : void

describeService (serviceID : in TpServiceID) : TpServiceDescription

unannounceService (serviceID : in TpServiceID) : void

<<new>> registerServiceSubType (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList, extendedServicePropertyList : in TpServiceTypePropertyValueList) : TpServiceID

8.3.1.1.1 Method registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent discovery by the enterprise applications. Registration can only succeed when the Service type of the service is known to the Framework (ServiceType is 'available'). A service-ID is returned to the service supplier when a service is registered in the Framework. When the service is not registered because the ServiceType is 'unavailable', a P_SERVICE_TYPE_UNAVAILABLE is raised. The service-ID is the handle with which the service supplier can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context of the Framework that generated it.

This method should be used for registration of service super types only. For registering service sub types, the registerServiceSubType() method should be used.

Returns <serviceID> : This is the unique handle that is returned as a result of the successful completion of this operation. The Service Supplier can identify the registered service when attempting to access it via other operations such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to discover a service of this type.

If a service is registered with the property P_COMPATIBLE_WITH_SERVICE in its servicePropertyList, then the Framework shall notify all applications using instances of services identified by this property, using the P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE event, if they have registered for such a notification. If an incorrect combination of properties is included in conjunction with P_COMPATIBLE_WITH_SERVICE, a P_MISSING_MANDATORY_PROPERTY exception is raised.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey the rules for identifiers, then a P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but the Framework is able to unambiguously determine that it is not a recognised service type, then a P_UNKNOWN_SERVICE_TYPE exception is raised.
servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being registered. This description typically covers behavioural, non-functional and non-computational aspects of the service. Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:
a. mandatory - a service associated with this service type must provide an appropriate value for this property when registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may not be modified.

Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified. Examples of such properties are those which form part of a service agreement and hence cannot be modified by service suppliers during the life time of service.

If the type or the semantics of the type of any of the property values is not the same as the declared type (declared in the service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised. If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a P_MISSING_MANDATORY_PROPERTY exception is raised. If two or more properties with the same property name are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.
Returns

TpServiceID

Raises

TpCommonExceptions, P_PROPERTY_TYPE_MISMATCH, P_DUPLICATE_PROPERTY_NAME, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE, P_MISSING_MANDATORY_PROPERTY, P_SERVICE_TYPE_UNAVAILABLE
8.3.1.1.2 Method announceServiceAvailability()

The registerService() method described previously does not make the service discoverable. The announceServiceAvailability() method is invoked after the service is authenticated and its service instance lifecycle manager is instantiated at a particular interface. This method informs the framework of the availability of "service instance lifecycle manager" of the previously registered service, identified by its service ID, at a specific interface. After the receipt of this method, the framework makes the corresponding service discoverable.

There exists a "service manager" instance per service instance. Each service implements the IpServiceInstanceLifecycleManager interface. The IpServiceInstanceLifecycleManager interface supports a method called the createServiceManager(application: in TpClientAppID, serviceProperties : in TpServicePropertyList, serviceInstanceID : in TpServiceInstanceID) : IpServiceRef. When the service agreement is signed for some serviceID (using signServiceAgreement()), the framework calls the createServiceManager() for this service, gets a serviceManager and returns this to the client application.
If multiple instances of the same application client can be supported by the Framework and Service, then each application instance that establishes a service agreement with the framework for the use of that service, shall result in a separate framework call to createServiceManager(), ensuring that a unique serviceManager is returned to each client application instance.
Can different client application instances all select the same SCS instance, and then have service managers created on the same physical process? If so, how does this provide the desired HA improvement? If not, how is the checking, validation and enforcement of this condition carried out?
By SCS instance above AePONA assumes that physical process is considered. This is indeed the intention/option however AePONA consider a service instance to be a direct correlation to a service manager for which an SLA applies. It is also important to note that AePONA sees the HA requirement necessary to complete the support for application HA alluded to via the additional callback mechanism rather than how SCS HA is guaranteed to the application. Clearly if a Gateway offers multiple SCS processes then an application may decide to utilise multiple gateway SCSs if permitted to do so. By supporting multiple service instances for an application within a physical SCS process, in the event of an application failure, the SCS can continue to communicate with another application that it is aware of.
AePONA Proposal

Some semantic clarification is required here to be clear on whether the same service manager or a new and unique service manager is provided. Again are unique tokens needed, can the serviceInstance be reused, does the call to createServiceManager create a new manager or return an existing one. Some of these issues are already partly documented elsewhere, however a clear end to end position is difficult to identify and therefore it is open to some interpretation.
Lucent agrees that additional semantics for this operation are needed, however as indicated previously, we do not agree with the modified version of proposal 7.
Parameters

serviceID : in TpServiceID

The service ID of the service that is being announced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then a P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.
serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef

The interface reference at which the service instance lifecycle manager of the previously registered service is available.
Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID, P_INVALID_INTERFACE_TYPE
8.3.1.1.3 Method unregisterService()

The unregisterService() operation is used by the service suppliers to remove a registered service from the Framework. The service is identified by the "service-ID" which was originally returned by the Framework in response to the registerService() operation. The service must be in the SCF Registered state. All instances of the service will be deleted.

Parameters

serviceID : in TpServiceID

The service to be withdrawn is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for service identifiers, then a P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.
Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID
8.3.1.1.4 Method describeService()

The describeService() operation returns the information about a service that is registered in the framework. It comprises, the "type" of the service , and the "properties" that describe this service. The service is identified by the "service-ID" parameter which was originally returned by the registerService() operation.

The SCS may register various versions of the same SCF, each with a different description (more or less restrictive, for example), and each getting a different serviceID assigned.

Returns <serviceDescription> : This consists of the information about an offered service that is held by the Framework. It comprises the "type" of the service , and the properties that describe this service.

Parameters

serviceID : in TpServiceID

The service to be described is identified by the "serviceID" parameter which was originally returned by the registerService() operation. If the string representation of the "serviceID" does not obey the rules for object identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then a P_UNKNOWN_SERVICE_ID exception is raised.
Returns

TpServiceDescription

Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID
8.3.1.1.5 Method unannounceService()

This method results in the service no longer being discoverable by applications. It is, however, still registered and the service ID is still associated with it. Applications currently using the service can continue to use the service but no new applications should be able to start using the service. Also, all unused service tokens relating to the service will be expired. This will prevent anyone who has already performed a selectService() but not yet performed the signServiceAgreement() from being able to obtain a new instance of the service.

Parameters

serviceID : in TpServiceID

The service ID of the service that is being unannounced. If the string representation of the "serviceID" does not obey the rules for service identifiers, then an P_ILLEGAL_SERVICE_ID exception is raised. If the "serviceID" is legal but there is no service offer within the Framework with that ID, then an P_UNKNOWN_SERVICE_ID exception is raised.
Raises

TpCommonExceptions, P_ILLEGAL_SERVICE_ID, P_UNKNOWN_SERVICE_ID
8.3.1.1.6 Method <<new>> registerServiceSubType()

The registerServiceSubType() operation is the means by which an extended service is registered in the Framework, for subsequent discovery by the enterprise applications. Registration only succeeds if the service type is known to the Framework (ServiceType is 'available'). A service-ID is returned to the service supplier when a service is registered in the Framework. When the service is not registered because the ServiceType is 'unavailable', a P_SERVICE_TYPE_UNAVAILABLE exception is raised. The service-ID is the handle with which the service supplier can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context of the Framework that generated it.

This method should be used for registration of service sub types only. For registering service super types, the registerService () method should be used.

Service sub-types shall be used to extend the set of standardised service properties that apply to a given service. A sub-type of a service shall be fully compatible with the standard properties defined for that service. Example of the use of service sub-types include but are not limited to:

SLA properties related to the use of a service. An additional service property may be added to support this.
Client application access mode to service. An additional service property may be added to indicate whether the application may use the service in simplex, duplex or multiplex mode (i.e to indicate whether multiple application instances may simultaneously gain access to the service). In the case of a multiplex mode, and additional property may also be added to indicate the number of simultaneous application connections to a service.
Is duplex the same as multiplex with multi==2?
AePONA agrees that we should be clear and unambiguous in use of such terms. Traditionally Duplex has been used to refer to an active standby deployment rather than dual active. Multiplex on the other hand usually means multiple active deployments. Therefore Duplex is not the same as Multiplex == 2. However the above text may not capture all desired options??
AePONA Proposal:

Suggest that whether the sub-types approach or service properties is preferable, there should be some way of advertising to the client domain in an unambiguous way what the SCS and Framework implementation in the Gateway are capable of providing.
While not agreeing with the modified proposal 7, should it be accepted, these changes would be required.
Returns <serviceID> : This is the unique handle that is returned as a result of the successful completion of this operation. The Service Supplier can identify the registered service when attempting to access it via other operations such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to discover a service of this type.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey the rules for identifiers, then a P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but the Framework is able to unambiguously determine that it is not a recognised service type, then a P_UNKNOWN_SERVICE_TYPE exception is raised.
servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs corresponding to the service properties applicable to the standard service. They describe the service being registered.
If the type or the semantics of the type of any of the property values is not the same as the declared type (declared in the service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised.
If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a P_MISSING_MANDATORY_PROPERTY exception is raised.
If two or more properties with the same property name are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.
extendedServicePropertyList : in TpServiceTypePropertyValueList

The "extendedServicePropertyList" parameter is a list of property name, mode, type, and property value tuples corresponding to the service properties applicable to the extended standard service. They describe the service being registered.
If two or more properties with the same property name are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.
Returns

TpServiceID

Raises

TpCommonExceptions, P_PROPERTY_TYPE_MISMATCH, P_DUPLICATE_PROPERTY_NAME, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE, P_MISSING_MANDATORY_PROPERTY, P_SERVICE_TYPE_UNAVAILABLE

POSSIBLE Change no: AUTONUMLGL
8.3.2 Service Instance Lifecycle Manager Interface Classes
The IpServiceInstanceLifecycleManager interface allows the framework to get access to a service manager interface of a service. It is used during the signServiceAgreement, in order to return a service manager interface reference to the application instance. Each service has a service manager interface that is the initial point of contact for the service. E.g., the generic call control service uses the IpCallControlManager interface.

8.3.2.1 Interface Class IpServiceInstanceLifecycleManager

Inherits from: IpInterface.
The IpServiceInstanceLifecycleManager interface allows the Framework to create and destroy Service Manager Instances. This interface and the createServiceManager() and destroyServiceManager() methods shall be implemented by a Service.

	<<Interface>>

IpServiceInstanceLifecycleManager

	

	createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList, serviceInstanceID : in TpServiceInstanceID) : IpServiceRef

destroyServiceManager (serviceInstance : in TpServiceInstanceID) : void

8.3.2.1.1 Method createServiceManager()

This method returns a new service manager interface reference for the specified application. The service instance will be configured for the client application using the properties agreed in the service level agreement.

In case there is already a service manager available for the specified application and serviceInstanceID this reference is returned and no new service manager is created.
In the case where the service implementation supports more than one client application instance to access the service at a given time (note: this service property or profile may be controlled via registering properties and a suitable sub-type as in 8.3.1.1.6, or with additional common service properties as in 9.3.14), each client application instance shall be provided with a unique service instance. Therefore in the case where a service manager exists for a specified application and a new serviceInstanceID is provided, a new serviceManager is created and the reference returned. Thereafter applications registering notification criteria with the service manager can do so independently at is left to the implementation of the underlying service to resolve service behaviour and overlapping conditions, for example as a redundant failover configuration, dynamic load balancing etc.
It is not clear how a service instance knows that it is taking to client instance or a client. There are implied semantics on how the service instance and service managers behave depending on which choice is made, however this is not specified.

The resulting SCS implementation is immediately doubled in complexity because it must support both architectural paradigms.
Not sure we would agree with this point totally. What is being proposed is that an SCS implementation should be free to decide on the level of complexity it wishes to implement and to advertise what its HA capabilities are to the application in question. In so doing if the SCS decides not to support additional API HA features then any attempt by an application to make use of these would be existing API behaviour. AePONA believe that in employing this solution it should be possible to largely overlook whether an application or application instance is gaining access to the service in question. The one area where AePONA would agree that further semantics definition is required is the nature of SLAs.
AePONA Proposal
Again the change above may not need to included as stated, however some form of semantic clarification would be necessary to avoid confusion.
While not agreeing with the modified proposal 7, should it be accepted, such semantic clarifications would be required.
Returns <serviceManager> : Specifies the service manager interface reference for the specified application ID.

Parameters

application : in TpClientAppID

Specifies the application for which the service manager interface is requested.
serviceProperties : in TpServicePropertyList

Specifies the service properties and their values that are to be used to configure the service instance. These properties form a part of the service level agreement. An example of these properties is a list of methods that the client application is allowed to invoke on the service interfaces.
serviceInstanceID : in TpServiceInstanceID

Specifies the Service Instance ID that the new Service Manager is to be identified by.
Returns

IpServiceRef

Raises

TpCommonExceptions, P_INVALID_PROPERTY
8.3.2.1.2 Method destroyServiceManager()

This method destroys an existing service manager interface reference. This will result in the client application instance being unable to use the service manager any more.

Parameters

serviceInstance : in TpServiceInstanceID

Identifies the Service Instance to be destroyed.
Raises

TpCommonExceptions
POSSIBLE Change no: AUTONUMLGL
8.3.4 Integrity Management Interface Classes
8.3.4.1 Interface Class IpFwFaultManager

Inherits from: IpInterface.
This interface is used by the service instance to inform the framework of events which affect the integrity of the API, and request fault management status information from the framework. The fault manager operations do not exchange callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

If the IpFwFaultManager interface is implemented by a Framework, at least one of these methods shall be implemented. If the Framework is capable of invoking the IpSvcFaultManager.svcActivityTestReq() method, it shall implement svcActivityTestRes() and svcActivityTestErr() in this interface. If the Framework is capable of invoking IpSvcFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface. If the Framework is capable of invoking IpSvcFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface.

	<<Interface>>

IpFwFaultManager

	

	activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void

svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appUnavailableInd () : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimeInterval, recordSubject : in TpSubjectType) : void

<<deprecated>> svcUnavailableInd (reason : in TpSvcUnavailReason) : void

svcActivityTestErr (activityTestID : in TpActivityTestID) : void

<<deprecated>> genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void

<<deprecated>> genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, serviceIDs : in TpServiceIDList) : void

<<deprecated>> generateFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord) : void

<<deprecated>> generateFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError) : void

<<new>> svcAvailStatusInd (reason : in TpSvcAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in TpFaultStatisticsError) : void

CUT…

8.3.4.1.11 Method <<new>> svcAvailStatusInd()

This method is used by the service instance to inform the framework that it is about to become unavailable for use according to the provided reason and as well to inform the Framework when the Service instance becomes available again. The framework should inform the client application using this service instance that it is unavailable and as well when it becomes available again for use (via the svcAvailStatusInd method on the IpAppFaultManager interface).

Parameters

reason : in TpSvcAvailStatusReason

Identifies the reason for the service instance's unavailability and also the reason SERVICE_AVAILABLE to be used to inform the Framework when the Service instance becomes available again.
Raises

TpCommonExceptions
AePONA Proposal

This change may or may not be required once we fully agree on semantics elsewhere.
POSSIBLE Change no: AUTONUMLGL
AePONA Proposal:

Changes detailed below shall depend on agreement elsewhere on clarification of existing semantics and further method semantics, and also whether there is indeed a need for the new authentication method in change 7. Likewise, 2 approaches for advertising SCS support for application HA are detailed, onace some agreement is reached only a single set of changes may be necessary.
While not agreeing with the modified proposal 7, should it be accepted, such semantic clarifications are necessary.
9 Service Properties

9.3 Service Super and Sub Types

Service Properties are used at service registration to indicate the capabilities of an SCF. They are normally used as an indication for limitations an SCF has. These limitations can come from the way an SCF is implemented or from limitations in the network. The service type of an SCF defines which properties the supplier shall provide at registration of the SCF.

An application uses Service Properties at service discovery to find services that have the required capabilities. The Framework validates the requested properties with the registered properties and provides the application with a list of SCFs that comply to the application’s request.

The capabilities of an SCF can be extended by providing service properties in addition to the ones defined in this standard. For this extended SCF, a dedicated sub-type of a service is defined. A sub-type of an SCF shall be fully compatible with the standard SCF, that is, an application shall be able to use the sub type as if it was the standard type. This implies that the interface to the SCF remains unchanged. Also SCF sub types can be further extended. This way a hierarchy of service types can be built with the standard type being the root.

An example of a sub type is a Multy Party Call Control service that allows the application to request a certain quality-of-service level. An additional service property is added for this.

A further example on the use of sub-types may be to support multiple application instances to access and use a common service. The service may defined with additional properties such as the configuration supported and number of application accesses supported etc. (note this is consistent with change highlighted in section 8.3.1.1.6, however an alternate solution based on general service properties is also presented below).
9.4 Service Property Types

At Service Registration the properties of a type shall be interpreted as the set of values that can be supported by the service. If a service type has a certain property (e.g. "CAN_DO_SOMETHING"), a service registers with a property value of {"true", "false"}. This means that the SCS is able to support Service instances where this property is used or allowed and instances where this property is not used or allowed. This clarifies why sets of values shall be used for the property values instead of primitive types.

At establishment of the Service Level Agreement the property can then be set to the value of the specific agreement. The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thus lead to a sub-set of the service property values. When the correct SCF is instantiated during the discovery and selection procedure (see Note), the Service Properties shall thus be interpreted as the requested property values.

NOTE:
This is achieved through the createServiceManager() operation in the Service Instance Lifecycle Manager interface.

All property values are represented by an array of strings. The following table shows all supported service property types.

	Service Property type name
	Description
	Example value (array of strings)
	Interpretation of example value

	BOOLEAN_SET
	set of Booleans
	{"FALSE"}
	The set of Booleans consisting of the Boolean "false".

	INTEGER_SET
	set of integers
	{"1", "2", "5", "7"}
	The set of integers consisting of the integers 1, 2, 5 and 7.

	STRING_SET
	set of strings
	{"Sophia", "Rijen"}
	The set of strings consisting of the string “Sophia" and the string "Rijen"

	ADDRESSRANGE_SET
	set of address ranges
	{"123??*", "*.ericsson.se"}
	The set of address ranges consisting of ranges 123??* and *.ericsson.se.

	INTEGER_INTERVAL
	interval of integers
	{"5", "100"}
	The integers that are between or equal to 5 and 100.

	STRING_INTERVAL
	interval of strings
	{"Rijen", "Sophia"}
	The strings that are between or equal to the strings "Rijen" and "Sophia", in lexicographical order.

	INTEGER_INTEGER_MAP
	map from integers to integers
	{"1", "10", "2", "20", "3", "30"}
	The map that maps 1 to 10, 2 to 20 and 3 to 30.

The bounds of the string interval and the integer interval types may hold the reserved value "UNBOUNDED". If the left bound of the interval holds the value "UNBOUNDED", the lower bound of the interval is the smallest value supported by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper bound of the interval is the largest value supported by the type.

When an SCF is registerd by the Service Supplier, Service Properties of type BOOLEAN_SET shall not contain an empty set. When a service is discovered by an application, this application shall specify either {TRUE} or {FALSE} as value for service properties of type BOOLEAN_SET.
9.5 General Service Properties

Each service instance has the following general properties:

· Service Name
· Service Version
· Service ID
· Service Description
· Product Name
· Product Version
· Supported Interfaces
· Operation Set
· Compatible Service

· Backward Compatibility Level

· Migration Required

· Data Migrated

· Migration Date and Time

Do we need to include the added properties here in this list?
Agreed.
The following sections describe these general service properties in more detail. The values for the mode are defined in the type TpServiceTypePropertyMode.

9.5.4 Service Name

	Property
	Type
	Mode
	Description

	P_SERVICE_NAME
	STRING_SET
	MANDATORY_READONLY
	This property contains the name of the service, e.g. “UserLocation”, “UserLocationCamel”, “UserLocationEmergency” or “UserStatus”.

9.5.5 Service Version

	Property
	Type
	Mode
	Description

	P_SERVICE_VERSION
	STRING_SET
	MANDATORY
	This property contains the version of the APIs, to which the service is compliant. It is a set of strings as specified in the TpVersion type.

9.5.6 Service ID

	Property
	Type
	Mode
	Description

	P_SERVICE_ID
	STRING_INTERVAL
	READONLY
	This property uniquely identifies a specific service. Note that the Framework generates this property value when the Service Supplier registers the service. This property should not be confused with the serviceInstanceID generated by the Framework when a Client Application signs a Service Agreement to obtain the Service Manager

9.5.7 Service Description

	Property
	Type
	Mode
	Description

	P_SERVICE_DESCRIPTION
	STRING_SET
	MANDATORY_READONLY
	This property contains a textual description of the service. It should not be interpreted as a description of a Service Instance (as identified by a serviceInstanceID generated by the Framework when a Client Application signs a Service Agreement to obtain the Service Manager).

9.5.8 Product Name

	Property
	Type
	Mode
	Description

	P_PRODUCT_NAME
	STRING_SET
	READONLY
	This property contains the name of the product that provides the service, e.g. “Find It”, “Locate.com”.

9.5.9 Product Version

	Property
	Type
	Mode
	Description

	P_PRODUCT_VERSION
	STRING_SET
	READONLY
	This property contains the version of the product that provides the service, e.g. “3.1.11”.

9.5.10 <<deprecated>> Supported Interfaces

This property contains a list of strings with interface names that the service supports, e.g. “IpUserLocation”, “IpUserStatus”. This property is deprecated and will be removed in a future version of the specification.

9.5.11 Operation Set

	Property
	Type
	Mode
	Description

	P_OPERATION_SET
	STRING_SET
	MANDATORY
	Specifies set of the operations the SCS supports.

The notation to be used is : {“Interface1.operation1”,”Interface1.operation2”, “Interface2.operation1”}, e.g.:

{“IpCall.createCall”,”IpCall.routeReq”}.

9.5.12 Compatible Service

	Property
	Type
	Mode
	Description

	P_COMPATIBLE_WITH_SERVICE
	STRING_SET
	READONLY
	Specifies the Set of Services, identified by their ServiceIDs, with which this new service is compatible.

This property should at least be accompanied with the properties P_BACKWARD_COMPATIBILITY_LEVEL, P_MIGRATION_REQUIRED.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties like Migration Required, Data Migrated, etc.

For all these properties the order of the Services shall be identical.

9.5.13 Backward Compatibility Level

	Property
	Type
	Mode
	Description

	P_BACKWARD_COMPATIBILITY_LEVEL
	BOOLEAN_SET
	READONLY
	Specifies if the new service is completely backwards compatible with each service identified in the P_COMPATIBLE_WITH_SERVICE property:

Value = TRUE: Service is completely backwards compatible

Value = FALSE: SCS is not completely backwards compatible.

This property requires the presence of P_COMPATIBLE_WITH_SERVICE property.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties.

For each service identified in P_COMPATIBLE_WITH_SERVICE, one value of this property shall be present in the value set of this property at service registration.

For all these properties the order of the Services shall be identical.

9.5.14 Migration Required

	Property
	Type
	Mode
	Description

	P_MIGRATION_REQUIRED
	BOOLEAN_SET
	READONLY
	Specifies if the new service is replacing the service identified in the P_COMPATIBLE_WITH_SERVICE property:

Value = TRUE: new service is replacing the existing one – migration is required before the date/time indicated in P_MIGRATION_DATE_AND_TIME property.

Value = FALSE: new service is not replacing the existing one – migration not required, the existing service is retained.

This property requires the presence of P_COMPATIBLE_WITH_SERVICE property. If the value set of P_MIGRATION_REQUIRED contains TRUE, P_DATA_MIGRATED and P_MIGRATION_DATE_AND_TIME properties shall also to be present.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties.

For each service identified in P_COMPATIBLE_WITH_SERVICE, one value of this property shall be present in the value set of this property at service registration.

For all these properties the order of the Services shall be identical.

9.5.15 Data Migrated

	Property
	Type
	Mode
	Description

	P_DATA_MIGRATED
	BOOLEAN_SET
	READONLY
	Indicates if the data (e.g. notifications) from the existing service identified in the P_COMPATIBLE_WITH_SERVICE property is also available in this Service.

Value = TRUE: all data is migrated

Value = FALSE: no data is migrated

This property requires the presence of P_COMPATIBLE_WITH_SERVICE and the P_MIGRATION_REQUIRED properties.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties.

For each service identified in P_COMPATIBLE_WITH_SERVICE, one value of this property shall be present in the value set of this property at service registration.

For all these properties the order of the Services shall be identical.

9.5.16 Migration Date And Time

	Property
	Type
	Mode
	Description

	P_MIGRATION_DATE_AND_TIME
	STRING_SET
	READONLY
	This property contains the date and time, in the format described in TpDateAndTime, by which point applications shall have migrated from existing services to this new service.

Migration to the new service requires the application to terminate the existing service agreement, and sign a new one.

Failure to do this by the migration date and time indicated in this property may result in the service agreement being terminated by the Framework, since the service supplier may choose to unregister the service following this date and time.

Only one value of TpDateAndTime is permitted to be present in this property at service registration.

This property requires the presence of P_COMPATIBLE_WITH_SERVICE, P_MIGRATION_REQUIRED and P_DATA_MIGRATED properties.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties.

For each service identified in P_COMPATIBLE_WITH_SERVICE, one value of this property shall be present in the value set of this property at service registration.

For all these properties the order of the Services shall be identical. For those services for which migration is not required (P_MIGRATION_REQUIRED set to FALSE), the corresponding value of this property shall be ignored.

9.5.17 Application Access Mode
	Property
	Type
	Mode
	Description

	P_SERVICE_APP_ACCESS_MODE
	STRING_SET
	MANDATORY_READONLY
	Specifies the access mode that the new service supports for application clients that use it.
Each of the descriptions below needs to indicate that it applies to application instances from the same overall application domain.
Agreed.

Value = SIMPLEX: a single application instance may only be used with the service.

SIMPLEX seems the same as the existing client application paradigm and does not seem to afford high availability. If a client wants this functionality, it should use the current paradigm.
Agree that SIMPLEX is current behaviour; however the service property is intended to define the range of behaviour that the SCS supports.
Value = DUPLEX: multiple application instances may access the service simultaneously however only a single instance may be active at any given time.

How does the service determine which client application is allowed to be ‘active’ at a given time?
AePONA consider that the SCS must elect the active application based on some logic such as timestamp for first active session. Thereafter failure of application may trigger a switchover to alternate application, in the knowledge that only a single app instance will be considered active by the SCS.
What are the implications on integrity management for multiple idle service sessions associated with a service manager?
Good point. However by using a unique service manager, the SCS implicitly indicates to the Framework which client is currently active and therefore the framework can support integrity management on the appropriate application instance access session.

How does the service switch from one active instance to another? Is that based on failure, or at the request of the client application?

Currently see this as based on when SCS detects app failure, either through Integrity management or via failed callbacks to app (note the SCS may attempt some retry etc if it feels the app may be temporarily unavailable, however in principle it is left to the SCS to decide what set of events shall result in a switchover to the alternate application).
DUPLEX is not a intuitive name for this function. There is no sense of “two” or “pair”.
Open to alternate more meaningful names!

Value = MULTIPLEX: multiple application instances may access the service simultaneously, each one actively using the service.
If this is to be supported, there must be semantic details indicated elsewhere that describe how the integrity management interfaces are supported, how SLAs are enforced across the instances, and how interrupt mode notifications are handled for these instances (both in the sense of how they are created and also how notifications are sent).
Agreed.
In the case where the P_SERVICE_APP_ACCESS_MODE is either DUPLEX or MULTIPLEX, the property P_SERVICE_APP_ACCESS_LIMIT must be specified.

What does this property mean in the non-client-instance context? Is it meaningless?
It’s a service property. If the application is a singleton instance, then this property of the SCS is not part of the application implementation choice.
Not sure what value this whole discussion adds. You can do much of what this proposal outlines today. All one needs is an application configured to support multiple service sessions with different SCS instances of the same type.
If it can be demonstrated how such an alternate configuration would completely work AePONA are open to completing such semantic details that would result in a full specification . However the same arguments regarding SLA, Integrity management and a clear understanding of the client subscription model that results would be necessary.
9.5.18 Application Access Limit
	Property
	Type
	Mode
	Description

	P_SERVICE_ACCESS_LIMIT
	INTEGER_SET
	MANDATORY
Should this be READONLY too? What happens if the SLA specifies a value out of range for the service?
Believe that SLA modifications can only be within the max specified, not possible to exceed the value for the SCS
	Indicates the upper limit on the number of simultaneous application instances that may gain access to the service at a given point in time.
Does the limit apply to the SCS as a whole or for each individual application domain?
SCS as a whole

POSSIBLE Change no: AUTONUMLGL
AePONA Proposal

If change 7 is not required, this is equally not applicable.
While not agreeing with the modified proposal 7, should it be accepted, Lucent agrees that this is not applicable.
10.3 Trust and Security Management Data Definitions

10.3.1 TpAccessType

This data type is identical to a TpString. This identifies the type of access interface requested by the client application. If they request P_OSA_ACCESS, then a reference to the IpAccess interface is returned. (Network operators can define their own access interfaces to satisfy client requirements for different types of access. These can be selected using the TpAccessType, but should be preceded by the string "SP_". The following value is defined:

	String Value
	Description

	P_OSA_ACCESS
	Access using the OSA Access Interfaces: IpAccess and IpClientAccess

10.3.2 TpAuthType

This data type is identical to a TpString. It identifies the type of authentication mechanism requested by the client. It provides Network operators and clients with the opportunity to use an alternative to the OSA API Level Authentication interface. This can for example be an implementation specific authentication mechanism, e.g. CORBA Security, or a proprietary Authentication interface supported by the Network Operator. OSA API Level Authentication is the default authentication method. Other Network operator specific capabilities may also be used, but should be preceded by the string “SP_”. The following values are defined:

	String Value
	Description

	P_OSA_AUTHENTICATION
	Authenticate using the OSA API Level Authentication Interfaces: IpAPILevelAuthentication and IpClientAPILevelAuthentication

	P_AUTHENTICATION
	Authenticate using the implementation specific authentication mechanism, e.g. CORBA Security.

10.3.3 TpEncryptionCapability

This data type is identical to a TpString, and is defined as a string of characters that identify the encryption capabilities that could be supported by the framework. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". Capabilities may be concatenated, using commas (,) as the separation character. The following values are defined.

	String Value
	Description

	NULL
	An empty (NULL) string indicates no client capabilities.

	P_DES_56
	A simple transfer of secret information that is shared between the client application and the Framework with protection against interception on the link provided by the DES algorithm with a 56-bit shared secret key. The ECB mode of DES is to be used.

	P_DES_128
	A simple transfer of secret information that is shared between the client entity and the Framework with protection against interception on the link provided by the DES algorithm with a 128-bit shared secret key. Use of the P_DES_128 value of TpEncryptionCapability is deprecated, as DES cannot be used with a 128-bit key.

	P_RSA_512
	A public-key cryptography system providing authentication without prior exchange of secrets using 512-bit keys.

	P_RSA_1024
	A public-key cryptography system providing authentication without prior exchange of secrets using 1024-bit keys.

	P_TDEA
	The Triple-DES or TDEA algorithm with three 56-bit secret keys. The key exchange is handled seperately, and may permit use of three, two or only one unique key. The TECB mode of Triple-DES is to be used.

10.3.4 TpEncryptionCapabilityList

This data type is identical to a TpString. It is a string of multiple TpEncryptionCapability concatenated using a comma (,)as the separation character.

10.3.5 TpEndAccessProperties

This data type is of type TpPropertyList. It identifies the actions that the Framework should perform when an application or service capability feature entity ends its access session (e.g. existing service capability or application sessions may be stopped, or left running).

10.3.6 TpAuthDomain

This is Sequence of Data Elements containing all the data necessary to identify a domain: the domain identifier, and a reference to the authentication interface of the domain

	Sequence Element

Name
	Sequence Element

Type
	Description

	DomainID
	TpDomainID
	Identifies the domain for authentication. This identifier is assigned to the domain during the initial contractual agreements, and is valid during the lifetime of the contract.

	AuthInterface
	IpInterfaceRef
	Identifies the authentication interface of the specific entity. This data element has the same lifetime as the domain authentication process, i.e. in principle a new interface reference can be provided each time a domain intends to access another.

10.3.7 TpAuthDomainInstance
This is Sequence of Data Elements containing all the data necessary to identify an instance of a domain: the domain identifier, a reference to the authentication interface of the domain, and an instance identifier for the domain
	Sequence Element

Name
	Sequence Element

Type
	Description

	DomainID
	TpDomainID
	Identifies the domain for authentication. This identifier is assigned to the domain during the initial contractual agreements, and is valid during the lifetime of the contract.

	AuthInterface
	IpInterfaceRef
	Identifies the authentication interface of the specific entity. This data element has the same lifetime as the domain authentication process, i.e. in principle a new interface reference can be provided each time a domain intends to access another.

	InstanceID
	TpInstanceID
	Identifies the instance of the domain in question. This is used to allow the framework to identify more than one instance of a client while tying them together to a common DomainID

10.3.8 TpInstanceID

This is Sequence of Data Elements that defines a domain instance identifier: namely an integer count, and a date and time stamp
	Sequence Element

Name
	Sequence Element

Type
	Description

	InstanceCount
	TpInt32
	Integer value by which the Framework recognises the specific instance of the client. The value –1 shall be used to indicate a previously unknown instance

	InstanceDate
	TpDateAndTime
	Timestamp detailing the point in time at which the Framework created the instance identifier associated with the InstanceCount.
What goes in this field if InstanceCount is –1?
Suggest that this is only meaningful in the event of being generated by the Framework

Using a string value instead of an integer would allow for more context in identifying the client application instance.
Open to improved alternate suggestions.
11 Exception Classes

POSSIBLE Change no: AUTONUMLGL
AePONA Proposal

If change 7 is not required, this is equally not applicable.

While not agreeing with the modified proposal 7, should it be accepted, Lucent agrees that this is not applicable.
The following are the list of exception classes which are used in this interface of the API.

	Name
	Description

	P_ACCESS_DENIED
	The client is not currently authenticated with the framework

	P_DUPLICATE_PROPERTY_NAME
	A duplicate property name has been received

	P_ILLEGAL_SERVICE_ID
	Illegal Service ID

	P_ILLEGAL_SERVICE_TYPE
	Illegal Service Type

	P_INVALID_ACCESS_TYPE
	The framework does not support the type of access interface requested by the client.

	P_INVALID_ACTIVITY_TEST_ID
	ID does not correspond to a valid activity test request

	P_INVALID_ADDITION_TO_SAG
	A client application cannot be added to the SAG because this would imply that the client application has two concurrent service profiles at a particular moment in time for a particular service.

	P_INVALID_AGREEMENT_TEXT
	Invalid agreement text

	P_INVALID_ENCRYPTION_CAPABILITY
	Invalid encryption capability

	P_INVALID_AUTH_TYPE
	Invalid type of authentication mechanism

	P_INVALID_CLIENT_APP_ID
	Invalid Client Application ID

	P_INVALID_DOMAIN_ID
	Invalid client ID

	P_INVALID_ENT_OP_ID
	Invalid Enterprise Operator ID

	P_INVALID_PROPERTY
	The framework does not recognise the property supplied by the client

	P_INVALID_SAG_ID
	Invalid Subscription Assignment Group ID

	P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT
	A SAG cannot be assigned to the service profile because this would imply that a client application has two concurrent service profiles at a particular moment in time for a particular service.

	P_INVALID_SERVICE_CONTRACT_ID
	Invalid Service Contract ID

	P_INVALID_SERVICE_ID
	Invalid service ID

	P_INVALID_SERVICE_PROFILE_ID
	Invalid service profile ID

	P_INVALID_SERVICE_TOKEN
	The service token has not been issued, or it has expired.

	P_INVALID_SERVICE_TYPE
	Invalid Service Type

	P_INVALID_SIGNATURE
	Invalid digital signature

	P_INVALID_SIGNING_ALGORITHM
	Invalid signing algorithm

	P_MISSING_MANDATORY_PROPERTY
	Mandatory Property Missing

	P_NO_ACCEPTABLE_ENCRYPTION_CAPABILITY
	No encryption mechanism, which is acceptable to the framework, is supported by the client

	P_NO_ACCEPTABLE_AUTHENTICATION_MECHANISM
	No authentication mechanism, which is acceptable to the framework, is supported by the client

	P_NO_ACCEPTABLE_SIGNING_ALGORITHM
	No signing algorithm, which is acceptable to the framework, is supported by the client

	P_PROPERTY_TYPE_MISMATCH
	Property Type Mismatch

	P_SERVICE_ACCESS_DENIED
	The client application is not allowed to access this service.

	P_SERVICE_NOT_ENABLED
	The service ID does not correspond to a service that has been enabled

	P_SERVICE_TYPE_UNAVAILABLE
	The service type is not available according to the Framework.

	P_UNKNOWN_SERVICE_ID
	Unknown Service ID

	P_UNKNOWN_SERVICE_TYPE
	Unknown Service Type

	P_INVALID_INSTANCE_ID
	Invalid Application Instance ID

What constitutes an invalid instance ID? Who checks the validity? How? How does one know that the ID used really does in fact belong to an instance that was in existence earlier, but died?
The Framework is responsible for generating and policing the instanceIDs. If the current definition does not ensure absolute integrity then alternate solution is clearly needed.
Annex E (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Mar 2001
	CN_11
	NP-010134
	047
	--
	CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158)
	3.2.0
	4.0.0

	Jun 2001
	CN_12
	NP-010330
	001
	--
	Corrections to OSA API Rel4
	4.0.0
	4.0.1

	Sep 2001
	CN_13
	NP-010466
	002
	--
	Changing references to JAIN
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	003
	--
	Update to the definitions of method svcUnavailableInd
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	004
	--
	Only one subject per method invocation for fault and load management
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	005
	--
	Fault management is missing some *Err methods
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	006
	--
	Method balance on Fault management interfaces
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	007
	--
	Change "TpString" into "TpOctetSets" in authentication and access
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	008
	--
	Replacement of register/unregisterLoadController
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	009
	--
	Redundant Framework Heartbeat Mechanism
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	010
	--
	Add a releaseInterface() method to IpAccess
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	011
	--
	Removal of serviceID from queryAppLoadReq()
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	012
	--
	Addition of listInterfaces() method
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	013
	--
	Introduction and use of new Service Instance ID
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	014
	--
	P_UNAUTHORISED_PARAMETER_VALUE thrown if non-accessible serviceID is provided
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	015
	--
	Introduction of Service Instance Lifecycle Management
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	016
	--
	Add support for multi-vendorship
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	017
	--
	Removal of P_SERVICE_ACCESS_TYPE
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	018
	--
	Confusing meaning of prescribedMethod
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	019
	--
	A client should only have one instance of a given service
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	020
	--
	Some methods on the IpApp interfaces should throw exceptions
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010596
	021
	--
	Replace Out Parameters with Return Types
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010596
	022
	--
	Correctionto Framework (FW)
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020105
	023
	--
	Add P_INVALID_INTERFACE_TYPE exception to IpService.setCallback() and IpService.setCallbackWithSessionID()
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	024
	--
	Replace erroneous mention of P_OSA_ACCESS by the correct value P_OSA_AUTHENTICATION
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	025
	--
	Add missing inheritance in service agreement management interfaces
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	026
	--
	Include Operation Set as part of General Service Properties
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	027
	--
	Improved description of activityTestReq with respect to ServiceInstanceID
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	028
	--
	OSA Framework - Generate statistics records on behalf of another entity using genFaultStatsRecordReq
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	029
	--
	Update the interface names for alignment between 3GPP and ETSI/Parlay
	4.3.0
	4.4.0

	Jun 2002
	CN_16
	NP-020179
	030
	--
	Solving the problem in the OSA Framework with method appUnavailableInd() in a scenario with multiple service sessions per access session
	4.4.0
	4.5.0

	Jun 2002
	CN_16
	NP-020179
	031
	--
	Adding missing mandatory method (authenticationSucceeded) to sequence flow
	4.4.0
	4.5.0

	Jun 2002
	CN_16
	NP-020186
	032
	--
	Remove redundant data type definition TpServiceSpecString
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020181
	033
	--
	Addition of support for Java API technology realisation
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020182
	035
	--
	Addition of support for WSDL realisation
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	036
	--
	Clarify semantics of service properties of type BOOLEAN_SET
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	037
	--
	Addition of version management support to the Framework (29.198-03) in run-time
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	038
	--
	Enhancements on subscription management error information
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	039
	--
	Delete conflicting description of P_APPLICATION_NOT_ACTIVATED
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	040
	--
	Note added for P_SERVICE_INSTANCE Choice Element Name
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	041
	--
	Correcting the method descriptions for abortAuthentication and for initiateAuthentication
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	042
	--
	Correcting the description of heartbeat failure
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	043
	--
	Correcting erroneous FW<->Service instance sequence diagrams
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	044
	--
	Correcting the scope of TpFwID, which currently is giving it false limitations
	4.5.0
	5.0.0

	Sep 2002
	CN_17
	NP-020428
	046
	
	Correction to description of TpServicePropertyTypeName
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	047
	
	Remove undefined exception in registerService
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	048
	
	Remove ServiceIDs from IpFwFaultManager.genFaultStatsRecordReq()
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	049
	
	Correct appUnavailableInd and related methods
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	050
	
	Remove unusable exception from IpFaultManager.appActivityTestRes()
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	051
	
	Clarify the sequence of events in signing the service agreement
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	052
	
	Correct use of electronic signatures
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	053
	
	Addition of Sequence Diagrams for terminateAccess
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	054
	
	Add indication what part of service agreement must be signed
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	055
	
	Add text to clarify requirements on support of methods
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	056
	
	Introduce types and modes for generic properties
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	057
	
	Correction on use of NULL in Framework API
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	058
	
	Add Negotiation of Authentication Mechanism for OSA level Authentication
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020395
	058
	
	Add text to clarify relationship between 3GPP and ETSI/Parlay OSA specifications
	5.0.0
	5.1.0

	Mar 2003
	CN_19
	NP-030019
	063
	-
	Correction to Initial Access Sequence Diagram
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	065
	-
	Enable creation/destruction of load level notifications at the request of Framework
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	067
	-
	Correction of Sequence for Framework – Service load management
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	074
	-
	Add Initial Load Notification report for Framework Integrity Management Load Notification model
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	068
	--
	Correction to Application's requirements for supporting methods
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	069
	--
	Correction of status of methods to interfaces in clause 7.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	070
	--
	Correction of status of methods to interfaces in clause 8.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	071
	--
	Correction of status of methods to interfaces in clause 6.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	075
	--
	Adding the appAvailStatusInd() and svcAvailStatusInd() methods
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	076
	--
	Remove race condition in signServiceAgreement
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	077
	--
	Change reference to deprecated method "authenticate" in TpAuthMechanism to "challenge"
	5.1.0
	5.2.0

	Jun 2003
	CN_20
	NP-030237
	079
	--
	Correction to TpEncryptionCapability to correct support for Triple-DES
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030237
	081
	--
	Correction of the Framework Service Instance Lifecycle Manager Sequence Diagram
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030237
	083
	--
	Correction of the use of TpDomainID in Framework initiateAuthentication method
	5.2.0
	5.3.0

	Sep 2003
	CN_21
	NP-030352
	085
	--
	Correction to Java Realisation Annex
	5.3.0
	5.4.0

	Dec 2003
	CN_22
	NP-030549
	086
	--
	Correction of the sequence diagram for Fault Management
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	087
	--
	Correction of State Transition Diagram for IpAccess
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	088
	--
	Correction of Correlation Behaviour in Load Management
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	089
	--
	Correction of Correlation Behaviour in Fault Management
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	090
	--
	Correction and Clarification of Framework Access Session Behaviour
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030553
	091
	--
	Add OSA API support for 3GPP2 networks
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	092
	--
	Add description for service super and sub types
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	093
	--
	Add support for registration of additional service property types and modes
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	094
	--
	Improve User Interaction message management functions
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	095
	--
	Add new values for TpServiceTypeName for Policy Management
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	096
	--
	Allow for applications to re-obtain the reference to the service manager
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	097
	--
	Add support in OSA to inform applications about new SCSs and their level of Backward compatibility – Align with SA1's 22.127
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	098
	--
	Add “Extended User Status” as service type name - Align with 29.198-06
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	099
	--
	Add P_USER_BINDING to TpServiceTypeName
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	100
	--
	Modify Framework Availability Indication in Fault Management
	5.5.0
	6.0.0

	Feb 2004
	--
	--
	--
	--
	Added Java code attachment 2919803J2EE.zip which was delivered late by outside developers. See Annex C.
	6.0.0
	6.0.1

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �Page: 1��� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �Page: 1��� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �Page: 1��� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �Page: 1��� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �Page: 1��� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �Page: 1��� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �Page: 2��� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �Page: 2��� This is an example of pop-up text.

3GPP

_1144671589.doc

Active

initiateAuthentication / return FW auth interface

initiateAuthenticationWithVersion / return FW auth interface

initiateAuthenticationInstance / return FW auth interface

_1144672446.doc

Idle

IpInitial.initiateAuthenticationWithVersion

Authenticating

Framework

FW Aborts

^IpClientAPILevelAuthentication.abortAuthentication

selectAuthenticationMechanism

challenge / Client

challenges FW

selectAuthenticationMechanism

Framework

Authenticated

FW Aborts

^IpClientAPILevelAuthentication.

abortAuthentication

authenticationSucceeded / Client

satisfied with FW response

selectAuthenticationMechanism

challenge / Client

re-challenges Framework

IpInitial.initiateAuthenticationInstance

_1144673129.doc

Idle

requestAccess

^P_ACCESS_DENIED

IpInitial.initiateAuthenticationWithVersion

Authenticating

Client

requestAccess

^P_ACCESS_DENIED

selectAuthenticationMechanism

selectAuthenticationMechanism

FW challenges Client

^IpClientAPILevelAuthentication.challenge

Invalid Client Response

abortAuthentication

/ Client Aborts

Client

Authenticated

FW satisfied with Client response

^IpClientAPILevelAuthentication.authenticationSucceeded

requestAccess / new IpAccess

selectAuthenticationMechanism

FW re-challenges Client

^IpClientAPILevelAuthentication.challenge

IpInitial.initiateAuthenticationInstance

_1144589059.doc

Client

 : IpInitial

 : IpAPILevelAuthentication

Framework

 : IpAccess

 :

IpClientAPILevelAuthentication

1: initiateAuthenticationInstance()

2: selectAuthenticationMechanism()

3: challenge()

5: challenge()

9: obtainInterface()

4: authenticationSucceeded()

6: authenticationSucceeded()

8: selectSigningAlgorithm()

7: requestAccess()

10: client Failure

11: client Recovery

12: initiateAuthenticationInstance()

13: repeat steps 2 - 9

