joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040322

Meeting #27, Miami, FL, USA, 10-14 May 2004

Source:
Eamonn Murray, AePONA
Title:
Overview of HA changes for OSA

Agenda Item:
OSA3 (3GPP Rel-6 / Parlay 5 / ETSI OSA 3)

Document for:
Information

For the record, we will restate our general opposition to the proposed API changes. As mentioned previously, Lucent feels that it is not appropriate to put constructs into the API in support of HA that imply a given SCS or client application architecture, especially when HA can be supported with the existing API and appropriate middleware support. We are not opposed to API changes that facilitate solving particular shortcomings in the API or its semantics in order to support high availability. We will attempt to differentiate these two areas as we comment on documents N5-040322 through N5-040326.
AePONA recognise and note the view repeated here by Lucent. However AePONA would also clarify that the motivation and nature of the changes proposed is not to imply a given SCS or client architecture. On the contrary, the view that the existing API and appropriate middleware support can provide a HA solution is, AePONA feels, implicitly assuming a given implementation and architecture. Indeed in the case of the client in particular, AePONA are aware of several vendor products and applications deployed that do not wish to avail of a middleware based solution to achieve HA, for both technical and commercial reasons. In such deployment architectures, which must be possible given that OSA does not dictate the architecture, the existing API, AePONA believes exhibits a number of shortcomings. It is the purpose of these submissions, only to address such shortcomings, so that vendors aren’t forced to implement proprietary extensions to the APIs to support such deployments.
Note that we have intermixed both our technical and philosophical objections to the submissions as we feel these two areas cannot be separated and still give a reasonable discussion of the issue at hand.

AePONA recognise that this is a difficult topic to comment and review without a mix of technical and philosophical opinion being expressed. The intent however is to progress the stage 3 material submitted in response to the agreed stage 1 requirement that now exists. AePONA feels further discussions on the rights and wrongs of the stage 1 requirement which tend to be more philosophical should not be used to reject the materials out of hand, but rather technical comments and/or alternate stage 3 materials that demonstrate how the requirement can be met should be put forward. AePONA recognise that this may present difficulties with respect to vendor IPR etc., however we feel that this is the only real process available to conclude these discussions satisfactorily.

1. Overall Description:

AePONA have submitted a number of release 6 CRs to this meeting suggesting modifications to the framework and a sample service (GCCS in this case) that may be required to support the stage 1 requirement for high availability.

This document provides a brief summary of the solution being proposed in order to provide a context for review and understanding of the submissions.

2. Problem Description:

The current OSA API specifications support a limited set of API features that may be used to provide elements of a HA solution for applications, however these features exhibit limitations with respect to adequately supporting HA deployments. Examples of such limitations (not exhaustive) include:

· It should be possible to run multiple identical application images. Those SCS service managers that support event criteria allow 2 callbacks to be registered. The framework however does not support an equivalent view.

The Integrity Management APIs are a nicety and are not required to be supported by the Framework or by client applications. Not all client access sessions will have load, fault, heartbeat or OA&M management capabilities implemented, and do not take advantage of this even if the Framework were so empowered.
AePONA agrees that the Integrity Management APIs are not mandatory, and see this as a valid example of an optional feature of the API specification. The decision to use these features and implement the solutions is left entirely to the vendors and developers. However AePONA also feels that the definition of such features must be complete and unambiguous. As things stand currently there is insufficient detail regarding how the framework shall behave and support multiple deployments of an application concurrently, and although this extends to the support for integrity management it is not restricted to this feature as SLA management and access session management is also required. This should be an entirely valid deployment architecture capable of being supported consistently between applications and framework and applications and SCSs. Today only some features and behaviour of SCSs are defined, creating a complete and equivalent level of support for the framework is required.
· It is not currently possible to reset or refresh application callbacks related to event criteria, in the event of an application crash and restart.

On the contrary, the application can do this. The point being made is that this does not happen automatically and that the client has to do this explicitly which may be inconvenient and time consuming.
The point that AePONA was trying to make is that there is no mechanism that allows recovering applications to refresh/update/reset existing notification criteria with a new callback reference. AePONA was not suggesting that such recovery should be automatic, and sees that the application must take some form of explicit action when recovering. The question then is what action should that be. Currently no semantics are documented, although the application could disable and then re-enable the notification criteria if it wished to use the same service manager (if possible), or else terminate the previous SLA and establish a new service session and enable notifications. AePONA are proposing an option in which the existing service session and existing notification criteria can be used, and merely the callback references updated. Therefore there may be multiple stage 3 solutions that clarify the behaviour and operation of recovering applications. AePONA have merely suggested one option which we feel offers a convenient and desirable solution. We are happy to look at the pros and cons of various solutions but would argue that some clear definition in the stage 3 specification is required.
 But let us look at some of the surrounding arguments. If the client set all the triggers to be notified about events and then died and came back up with a fresh memory (no knowledge of the past service session), would it have the intelligence to know what to do with triggers set in its previous life-time or incarnation?
AePONA considers the process of recovery to be similar in many ways to initialisation. We are assuming that when recovering, the functionality and purpose of the application is not fundamentally different from that prior to failure (otherwise it is really a different application?). In such circumstances, the application should be capable of providing functionality to deal with the SCS notifications – this is the core logic of the application in question. We agree that there is no need to carry forward session knowledge, however the trigger criteria are static provisioning rather than transient events, the solution sought is a mechanism to reuse such static provisioning rather than recreate in the SCS what was already in existence in the SCS prior to the application failure.
Let’s look at the converse to this argument. If a client application died and then came back and had knowledge of its past life, would it know to trust the service that its failure was not detected and that the service did not take appropriate clean-up actions between its failure and its recovery? Even if the trigger was still turned on from a service perspective, can the client be certain it is on in the network because of its request, or because of another client’s request that came in after it was dead but before it recovered?
There are several questions above, however AePONA believes that application recovery should be governed by the same rules as application initialisation. In so doing it should be possible to indicate to the recovering application whether the previous SLA and service session remains for the application to re-attach and refresh or whether the previous service agreement has been terminated and therefore a standard initialisation is only possible. The question of how the network and trigger management are resolved is, AePONA feels, independent of whether the application is recovering or not and relates more to whether the SCS and network implementation allows multiple overlapping criteria.

And finally, can we predict how long clients may take to recover? They may be subject to different kinds of failures and different kinds of recovery times. Indeed, they may not recover at all. Do we want the service to keep these stale trigger requests in a database, or leave them turned on in the network forever? This will increase the amount of traffic relating to “stale triggers” and will amount to a service actually creating a “denial of service” upon itself.

This is not the point being made and indeed this issue exists in the API as defined today, regardless of whether a callback refresh mechanism is introduced or not. AePONA agrees that there should be clear mechanisms for SCSs to protect themselves from stale triggers and denial of service, and see the terminate service agreement mechanism as a suitable method for doing so. The API could probably be improved by clearer textual description of how and when an SCS/Framework shall invoke this. However in all client server models there is a balance required between efficient housekeeping and wasteful communication. AePONA believes that it should be possible for an application to attempt to recover in an efficient manner, rather than mandate that in the event of an application failure the Gateway shall always assume the worst!

There are several things that may happen after an application fails, and before it recovers. If the Framework is monitoring the application, it may detect the failure (failed heartbeat) and may use this to tell the SCS to kill that service manager. The SCS may detect failed callbacks, and report inactivity of a client to the Framework and terminate its service manager and perform other cleanup. All these mechanisms are already in place in the specification.
AePONA believe that it should be possible and practical to support a range of options that allow configuration and tuning of the platforms to achieve optimum operation. Note we also see the issue of SCS detection of failed callbacks as the major cause of existing confusion and ambiguity. For example, Lucent have described one course of action, using the optional integrity management and applying internal housekeeping as a valid approach that is not explicitly stated in the documentation. However the current documentation describes the use of alternate callback references in the case where an SCS detects a failed application callback as a valid course of action. In the latter case the behaviour of service agreements and interaction of the framework needs to be more completely and accurately specified.
It is easy to try to add more to the specification to fix perceived drawbacks in the existing model for HA. But in doing so, especially if alternative optional mechanisms are proposed, one needs to be careful to ensure that the solution does not cause more feature interference between applications and gateway elements. This will be hard to detect, even harder to undo once additions (even “optional” ones) are made to the spec.
AePONA share some of these concerns also, and have sincerely attempted to limit and restrict the degree of change sought. Rather than propose a wide range of extensions the solutions proposed seek to complete limitations in existing API features.
· In the event of failure and restart of certain SCSs, recovery of the SCS may result in excessive messaging to indicate failure of individual sessions.

Not necessarily. If the client applications are even minimally intelligent, they would detect the service failure and then, depending on the criticality of the application, they would try to set up service sessions with other SCSs providing the same service to be able to continue serving their end-user population.

Again AePONA are not sure that this is exactly the same point as being made. Regardless of how the application may behave, the existing SCS state model may be interpreted to suggest that the SCS needs to inform the application of sessions that have aborted/terminated abnormally. It could be argued that the SCS should not do this and that the application is responsible for detecting SCS failures and applying internal housekeeping. This is an alternate solution to that proposed by AePONA, however in either case improved description of expected behaviour is required to indicate how and when existing methods shall be invoked.

The way the standards have it now is best. Why try to complicate state management between two communicating state machines?
AePONA agrees that there is much in the existing APIs that is very good and sufficient, where we disagree is in the completeness of some of these features to a satisfactory level. Also AePONA are not seeking to ensure synchronisation between communicating state machines, rather ensure that a minimum level of understanding exists in order to prevent divergence. In so doing each domain can take responsibility for its own housekeeping, albeit sometimes in response to events or actions from the other domain.

 If there is a failure, each end should have the clarity of purpose, even the flexibility this brings, in being able to make its own decisions regarding how to react to perceived failures on the other end. Neither end can know what really happened at the other, nor can it necessarily predict what state the other end is in. By “failing safe”, these kinds of state management issues across two different network elements that are distinct, most probably provided by two different vendors etc., can be avoided. After all, isn’t one of the primary goals of Parlay openness of the standards? Do we not want to promote support for multi-vendor environments (MVEs)? This purpose is best supported through simple, not complicated mechanisms for HA. HA support should be intuitive, it should be simple, it should be as transparent as possible, and it should not involve more work (by invoking non-essential methods) – neither at the service end, nor at the client end. Complexity will only hurt the adoption of OSA/Parlay technologies, and we want these technologies to take off more quickly, and gain even more acceptance going forward.

Again AePONA do not disagree with any of the above and again state that we are seeking simple HA support to complete gaps in the existing specification. Purely middleware based HA solutions may impact multi-vendor environments through an implicit architecture and interoperability of middleware features and functionality. AePONA agrees that openness of the standards is all important, and also that a complete and unambiguous specification of features and method semantics is necessary to ensure this. The existing callback HA features and description of certain methods is currently open to interpretation and confusion. Satisfactorily resolving these issues is the objective of this stage 3 activity.

The purpose of this contribution and the related CRs submitted to this meeting is not to restate or review the philosophical arguments on the needs for solutions for HA to be included in the API, or alternatively that HA is to be provided by the middleware alone. This set of contributions suggests modifications that should be made to the APIs in order that the API based HA features can be satisfactorily completed to the point that multi-vendor interoperability using these features can be supported.
Please indicate WHY the current state of the API hurts interoperability. Specific examples of the kinds of errors that occur, along with reasons why the existing mechanisms, implemented per the letter and spirit of the specification fail to provide adequate support for HA would help establish the need for more API changes. As we said before, changes that make client development more complicated, or only solve the perceived limitations in a certain subset of cases would make the matters worse, not better, unless all perceived limitations in the new proposals were fixed.
The existing additional callback mechanism is not complete in defining how the additional application gains access to and use of the SCS, nor how the SCS can uniquely discriminate between each application and how multiple subsequent callbacks are to be handled. Although previously described as optional, the role of integrity management which is nevertheless a defined package of the Framework specification, is no longer unambiguous, as there is an implicit identification scheme in place between SCS-FW-Client in order to support this. Furthermore the question of application development complexity needs to be balanced with the assumption that an alternate middleware based HA solution using existing API definitions is simple and efficiently produced. It is recognised that middleware HA features are supported in an optional manner and in a range of ways such that ensuring end-to-end HA in middleware alone is not a simple or straightforward exercise that allows an easy decoupling between the client and server domain. Indeed it is largely for these reasons that a range of application vendors and operators have sought to avoid a purely middleware based approach. AePONA does agree that an all-embracing solution is not required, merely one sufficient to improve the current state of affairs and certainly not to add further problems.

The diagrams below represent a number of possible deployment configurations based on the existing API and the features that it supports.

[image: image1.wmf]

Appn

A

Appn

A’

FW

SCS

Mgr

[image: image2.wmf]

Appn

A’

FW

SCS

Mgr

Appn

FW

Appn

A

Application

Currently it is possible for an application to register additional callbacks with some SCS managers in order to provide the SCS with visibility of a failover application instance. Where this is specified in the API it is described that this feature is intended for use to aid application high availability.
It is intended to be used to provide a “backup” callback reference so that when the primary callback reference fails, the secondary is still available. Whether this callback reference is actually tied to a different “shadow” application instance is not specified, nor should it be, since that is more of an implementation issue, and the API focuses on the interface as it should, and not the implementation.
Indeed this was the intention of the two diagrams above to indicate that in the first case this could be separate instances whereas in the second a single instance with an additional object reference. However AePONA believes that the API should be capable of supporting either (and more) implementation choices.
Any proposed changes to the API should similarly focus on the interface aspects primarily, not the underlying implementation. Those that build services and applications should have some freedom as to how they want to do it. Of course, if individual corporations want to add more capabilities into their implementation and make these capabilities available as “proprietary extensions”, they are welcome to do so, and to couple their proprietary mechanisms into their own implementation as they choose. Support for those kinds of interfaces would be truly “optional” from a client application development perspective. If they interface to that vendor’s gateway, clients that are aware of, and want to use these proprietary interfaces would benefit therefrom, and other clients, ignorant of these advances and enhancements would behave as they normally would, get the regular behaviour, and get the standards defined experience.
AePONA recognise the above argument as the current experience. However, this experience is neither a truly optional/proprietary experience or a standard experience but a combination of both. The fact that existing API defined behaviour provides part of a solution and that this in turn is then supplemented by vendor proprietary workarounds is inappropriate and an interoperability headache. AePONA propose to provide a complete definition on the API to prevent this, an alternative would clearly be to remove existing functionality from the API such that a purely proprietary approach would be required. AePONA felt that it was more correct to complete what existed rather than remove features that have gained acceptance in the vendor community.

It is much harder (perhaps not even possible, though saying that may be presumptuous) to have a change defined, incorporated into the specification, and then expect that tagging it “optional” will enhance interoperability.
AePONA don’t necessarily agree with this argument, as Lucent have described previously that they see the Framework integrity management as an optional nicety. Clearly if two parties both implement an optional package it should provide a clear definition that ensures interoperability. If one party decides not to support that feature of the API then clearly there is no requirement nor possibility to support interoperability of that function.
In either case the Framework is aware of a single access session with the application and is unaware of the additional application image that is visible to the service manager. In addition to presenting a possible security loophole to the use of the service, such deployments do not support the use of framework features associated with the application access session, such as service level agreement, integrity management etc, to be applied consistently to the application as a whole and the individual images. In addition in the event of application failover and recovery the OSA association between application, framework and service instance that is based on the access sessions cannot be readily supported with the existing specifications.
As stated in the above paragraph, the standard makes no reference to “application images” as it stands. Whether developers choose to implement more resilient callbacks through application images or some other mechanism is their choice, and this is as it should be.
Apologies, AePONA have used the term image to indicate a logical distinction that is related to the additional callback feature rather than a prescribed physical implementation. In either case ensuring the integrity of the logical model that supports the features of the API is essential. AePONA does not believe this to be the current situation.

Standards should set a level playing field and promote, not stifle innovation. As they stand, they do exactly this (promote innovation by specifying the interface, not the implementation, and providing a playing field that is open).
Agreed. The level playing field sought is to ensure apps vendors can choose between middleware or non –middleware approaches, and in the case of the latter that a clear and unambiguous implementation is possible.
The security loophole being alluded to is not due to the interface specified in the standard, but is associated with a specific interpretation of the same. Interpreted and implemented differently, depending on the model followed, the loophole that is referenced may be minimized, mitigated, or may go away entirely. That again is an implementation issue, not an interface issue necessarily.
AePONA agree, however would also point out that the Gateway cannot be informed of the physical implementation in order to determine whether the application vendor implementation represents a security risk or not. The only truly safe course of action is to assume the worst-case scenario and take appropriate steps.
Failure and recovery of access sessions can proceed independently of service sessions, since there is no strong binding between the two. In fact, there is no firm requirement that the access session be open all the while that a service session is. The HA requirements for access and service sessions therefore, while being related, are not necessarily the same.
Again AePONA agree with the comment above, the access and service sessions are related but not dependent. Ensuring the integrity of the relationship is important when considering the HA solution sought.

The solution proposed in the related contributions. N5-040323 through N5-040326 may be summarised as follows:

· The solution shall not be mandatory but rather an optional ‘profile’ that is complimentary to the existing APIs and that can be supported with minimal disruption to existing behaviour and implementations. This shall allow vendors freedom to choose between API based, middleware based, or proprietary solutions to the issue of high availability.

For an API to be optional in a stage 3 document is not easy. In fact, please point to a precedent for this, where an API specification indicated optional functionality in a stage 3 specification document where this is marked as such in the standard, and where the standard was accepted.
AePONA were not suggesting that the API changes be specified as optional. Rather, as is the case with the existing API developers and vendors are free to choose to implement as much or as little of the API as meets their requirements and objectives. The ETSI PICS state which methods are mandatory and those that are not. As mentioned above, Lucent already recognise that elements of the Framework such as Integrity management are optional to implement, and AePONA would see the proposed HA features as similar. The only mandatory features of the API remain the authentication etc. If this is an issue with regard to where and how the changes appear in the class structure, AePONA are happy to consider all alternatives suggested.
A standard, by its very definition, is supposed to define the interface or communication protocol or some such characteristic that promotes seamless interoperation. If something is marked “optional” in the standard, can clients that support this, talk to servers that do not, or vice versa once this specificaiton is issued? If so, do we not have seamless interoperability already? So does the argument that the additions promote greater interoperability really have merit?
AePONA had not considered marking the changes as optional per se. However as pointed out, and indeed with any existing API features, interoperation requires equivalent support on both sides of the API. Where greater interoperability results, we believe is in removing the demand for proprietary workarounds and solutions to existing limitations.
Similarly, with multiple “options” defined in the standard, gateway vendors that wish to interoperate with the widest client application base will find that they have to support each option. This adversely impacts both the production and maintenance costs for gateway suppliers and affects gateway performance.
AePONA recognise this issue, but would argue that this exists currently to a much greater level and that this will be improved as a result of the changes proposed. Through specification, the current ambiguities and demands for proprietary workarounds can be removed, reducing the range of options that an implementation may be required to support. Note also the range of options is not restricted to the API HA features alone, as varying degrees of functionality and support for middleware HA features may also require vendors to support a range of middleware solutions. AePONA believes that a clearly specified API HA solution shall allow a broad level of HA interoperability to be accomplished. Whether applications continue to use this solution or migrate to a middleware based approach based on Gateway vendor or operator demand is a business decision, however an initial deployment should be possible using the API alone.
· The existing mechanism that allows an application to enable multiple notification callbacks to a service manager shall be removed. In its place, each instance of the same application shall be required to establish a unique access session with the framework and a unique session with a service manager.

This conflicts with the earlier defined “goal” of this effort which indicates that the existing behaviour indicated in the specifications will not be impacted. Then the new additions are not really “optional” are they? Existing clients that want to set multiple callbacks and have the second one used as a backup cannot really observe this behaviour do they?
AePONA see the existing behaviour of the second callback as the source of ambiguity resulting in proprietary solutions to complete the use of this feature. It is proposed to remove this feature in order to simplify and limit the remaining changes, however in review of the stage 3 solution we are open to further discussions on whether there is demand for this feature and how it is intended to be used.
Also, if each application “image” (which, as we said before, is not something the standard itself explicitly mentions, but is only one of many ways in which it may be interpreted to build a HA solution), establishes its own access session with the Framework and service sessions, what distinguishes several application instances of a single application from multiple distinct applications each of which supports the same user functionality?

AePONA would welcome further discussion on this topic to determine whether there is indeed a need to distinguish between multiple instances of a single application or multiple applications with the same functionality (and overlapping event criteria). The modifications proposed are based on providing a client instance identifier in order to support the multiple application instances. It may be possible to support multiple applications, however do you think that a common domain ID could be reused or would separate provisioning, service level agreements etc be required? Also if an alternate implementation is possible, does this adequately support Integrity Management?
And lastly, one must ensure that if multiple images are supported, that the registration for events where there are exclusivity characteristics associated with them, are properly addressed. More will be said about this in response to the contribution proposing changes (as examples) to the GCCS specification.

AePONA agrees with this comment, and are basing the contributions submitted on the fact that this issue must be addressed irrespective of any consideration regarding HA.

· Duplicate event notification criteria for each application image shall be treated in the same way as currently for overlapping criteria between existing applications. That is to say, that this is left to the underlying service implementation to handle and resolve the criteria to ensure that Multiple Points of Control over a single call is prevented or treated in accordance with network capabilities.

This requires a service to be cognizant of different application instances. What happens in case of implementations that choose to use a different mechanism for HA implementation at each end of the wire? So long as they conform to the standards specified interfaces, the specification does not preclude them from using other mechanisms besides the “application images” construct for high availability, does it?

AePONA do not see this issue as being restricted to HA solutions or given solution architectures. Rather the SCS needs to consider how it shall treat the multiple point of control principle, and in so doing a by product of this feature may be to support HA.

· The HA behaviour supported by the Framework and Services can be defined by the methods supported and the service properties of the services themselves. In the case of the services this can be accomplished through common service properties or alternatively through the use of service sub-types. AePONA has a preference for common service properties as this is then explicitly defined in the API and completes the specification.

What is meant by “completes the specification”?

By completes, AePONA means that a clear specification of all functionality is provided in the documentation, rather than an indication in the specification that requires developers to interpret and implement accordingly.

· The contributions include N5-040323 that outlines the set of Framework changes that are required. This is primarily to introduce a new initial authentication mechanism that allows multiple images of an application client to independently gain access to framework and services and be managed independently. In addition a number of syntax and behaviour changes are outlined.

The Framework interfaces are getting very complicated. Backwards compatibility and the deprecation rules being defined require support for old (deprecated) methods for at least one major release beyond the one in which they are first marked deprecated. In the Framework, the changes have been substantial, and almost require the support of two different handshakes already, when deprecation and backwards compatibility is factored in. There are already multiple modes of authentication. As more changes (optional or mandatory) are added to this element, one which is intended to provide security to the service mediation gateway to begin with, and as the security model is more and more overloaded, it becomes all the more likely that the Framework would be more susceptible to security loopholes. Changes that touch the security model should be carefully considered. Any errors here could severely hurt the adoption of Parlay technology, and that would not be good for either the gateway, or the application vendors.
AePONA agree with this statement, and have therefore based the proposal on re-using the existing approach rather than a fundamentally different approach.

Again we must reiterate the question of what distinguishes several application instances of a single application from multiple distinct applications each of which supports the same user functionality in this case?
Again based on further discussions, AePONA would welcome an approach that could resolve this distinction and in so doing provide application vendors with a suitable mechanism for HA support not based on middleware.
· N5-040324 outlines related changes for a sample service (GCCS) that modifies the use of the enableCallNotification method and how multiple application images can establish independent callback references. The existing secondary call back behaviour is removed.

Comments within this document will point out limiting technical issues as well as raise questions about why the proposed capabilities are not supportable with the current API.
· N5-040325 details minor clarification to the call control service common definition to clarify that the setcallback methods cannot be used to create a set of callback addresses.

Earlier comment talks to why these changes are not as “seamless” as stated previously. Comments within this document relate to the backward compatibility issues associated with removing this method as well as the need for this change.
· N5-040326 introduces further modifications to the sample service that demonstrate how a recovering application image can refresh callback references for notification criteria, and how a recovering service can publicise the abort of multiple call sessions to an application.

Trying to influence the behaviour of two communicating state machines is difficult in the best of times. When one or the other is recovering from catastrophic failure, this becomes that much more difficult. For this to be properly done, we will next have to indicate all the state of a client and server, making allowances for states in which they recover, what kind of failure it was, what memory it has from the previous incarnation, how the failure and recovery are to take place, etc., In the absence of a complete model, each side would have to have logic that makes a best guess regarding how it thinks the other end functions, and how the other end thinks it thinks it functions and so on and so forth. The cascading probabilities of correct interpretation of exchanges between two such entities are mind-boggling, and getting these correct in software is no small achievement if it can even be done.

One could argue that there may be a monitor process that tracks the failure and recovery of an element on that side of the network divide, and that this monitor would then have interfaces the other party could talk to, to extract state information. But who would monitor the monitors? What happens if the monitor fails but the process its monitoring remains sane or vice versa? What happens if both the monitor and process fail (if they are closely coupled)? What happens if the monitor to monitored process interfaces fail? There is no easy solution to this problem either. Every solution that is proposed has some issues with it. Whether these issues can be solved effectively and whether the solution is viable in true MVEs needs to be judged carefully before they are adopted and marked “standard”.

AePONA agrees with much of the above, and indeed the motivation of the changes proposed was to provide a limited set of useful features on the API rather than define a full state synchronisation model. If there is no demand or support for such features then clearly the existing API is what will result, however AePONA would argue that even the existing behaviour of some of the methods would benefit from further clarification, as today the method descriptions are open to interpretation resulting in assumption on the part of application developers and SCS developers.

The net result of the changes proposed is a solution model as follows:

[image: image3.wmf]

Appn

A

Appn

A’

FW

SCS

Mgr1

SCS

Mgr2

Therefore those wishing to use features of the API to support a HA configuration can deploy multiple identical images of an application resulting in multiple managed sessions between that application image, the framework and a unique call manager. Alternatively those that wish to employ a middleware based approach to accomplishing HA may do so through the use of a single application image and access session with the framework and service.
How is the figure different from when multiple clients are used as opposed to instances?
The figure is no different, the distinction we believe relates to whether the same client domainID can be used or not, but again we would welcome further discussions on this to determine whether the degree of change currently proposed is actually necessary or whether less significant change can result in the same model.

In the above picture, what happens if the Framework itself fails? For an SCS, you have an SCS’ (another manager) for a client, you have a client’ (another image). If we make assumptions around the Framework implementation that assumes it is somehow highly available, what precludes us from making similar assumptions on how HA is implemented in the SCS or client application cases as well?
I am not sure I follow the argument here. AePONA are not attempting to make assumptions regarding how any entity is implemented. However the existing dual callback mechanism is the only API feature that is currently specified, and yet results in ambiguity. AePONA have ignored the Framework HA issue, as we believe there is no current indication in the specification that details how to support this, and that any attempts to add this to the API will be significant and strongly opposed. The motivation of the AePONA contributions has been to resolve the use of dual callbacks for applications to a satisfactory level and to ensure a clear behaviour between clients and services in the event of failure and recovery. As the Framework is non traffic bearing the overall HA requirements are quite different we believe and AePONA are not proposing introducing solutions for such.
As remarked earlier, supporting multiple images is one convenient interpretation of the specification, not what the specification insists on. If the current model is not conducive to effective support of multiple images, rather than change the model, perhaps alternative HA mechanisms can be considered for implementation?
AePONA agree here and would welcome alternate stage 3 solutions. However the comment regarding the model is also valid, hence the suggestion to modify/update the use of the callback procedures to clarify the intent. Currently the specification indicates that multiple images can be employed, if this is not the case nor do we suggest it then we should clearly indicate this.

 Besides, just having multiple application or service images does not solve the HA problem in and of itself. These images need to have state synchronization between them; this is not a trivial requirement. They need to be able to transparently pick up where the other element left off. And finally, they should be able to serve their clients seamlessly for pending transactions their clients had open to the other failed components. These are the real issues that merit more consideration, and any solution that claims to solve HA related problems should also solve (though these solutions should not require changes to the specification, since these are predominantly implementation specific). Does the API extension proposal address these issues completely?
Again AePONA propose to merely solve the existing limitation and issue rather than introduce significantly additional features. AePONA agree with Lucent that there are many more interesting issues to solve, however specifying these in the API is not desired given the degree of change that would undoubtedly result. However the existing API specifies an incomplete model for limited HA that encourages application developers to employ without sufficient detail regarding how it fully works.
_1137484609.doc

Appn

A

Appn

A’

FW

Application

SCS Mgr

Appn

FW

_1145366683.doc

Appn

A

Appn

A’

FW

SCS Mgr1

SCS Mgr2

_1137482179.doc

Appn

A

Appn

A’

FW

SCS Mgr

