joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040322

Meeting #27, Miami, FL, USA, 10-14 May 2004

Source:
Eamonn Murray, AePONA
Title:
Overview of HA changes for OSA

Agenda Item:
OSA3 (3GPP Rel-6 / Parlay 5 / ETSI OSA 3)

Document for:
Information

For the record, we will restate our general opposition to the proposed API changes. As mentioned previously, Lucent feels that it is not appropriate to put constructs into the API in support of HA that imply a given SCS or client application architecture, especially when HA can be supported with the existing API and appropriate middleware support. We are not opposed to API changes that facilitate solving particular shortcomings in the API or its semantics in order to support high availability. We will attempt to differentiate these two areas as we comment on documents N5-040322 through N5-040326.
Note that we have intermixed both our technical and philosophical objections to the submissions as we feel these two areas cannot be separated and still give a reasonable discussion of the issue at hand.

1. Overall Description:

AePONA have submitted a number of release 6 CRs to this meeting suggesting modifications to the framework and a sample service (GCCS in this case) that may be required to support the stage 1 requirement for high availability.

This document provides a brief summary of the solution being proposed in order to provide a context for review and understanding of the submissions.

2. Problem Description:

The current OSA API specifications support a limited set of API features that may be used to provide elements of a HA solution for applications, however these features exhibit limitations with respect to adequately supporting HA deployments. Examples of such limitations (not exhaustive) include:

· It should be possible to run multiple identical application images. Those SCS service managers that support event criteria allow 2 callbacks to be registered. The framework however does not support an equivalent view.

The Integrity Management APIs are a nicety and are not required to be supported by the Framework or by client applications. Not all client access sessions will have load, fault, heartbeat or OA&M management capabilities implemented, and do not take advantage of this even if the Framework were so empowered.

· It is not currently possible to reset or refresh application callbacks related to event criteria, in the event of an application crash and restart.

On the contrary, the application can do this. The point being made is that this does not happen automatically and that the client has to do this explicitly which may be inconvenient and time consuming. But let us look at some of the surrounding arguments. If the client set all the triggers to be notified about events and then died and came back up with a fresh memory (no knowledge of the past service session), would it have the intelligence to know what to do with triggers set in its previous life-time or incarnation?
Let’s look at the converse to this argument. If a client application died and then came back and had knowledge of its past life, would it know to trust the service that its failure was not detected and that the service did not take appropriate clean-up actions between its failure and its recovery? Even if the trigger was still turned on from a service perspective, can the client be certain it is on in the network because of its request, or because of another client’s request that came in after it was dead but before it recovered?
And finally, can we predict how long clients may take to recover? They may be subject to different kinds of failures and different kinds of recovery times. Indeed, they may not recover at all. Do we want the service to keep these stale trigger requests in a database, or leave them turned on in the network forever? This will increase the amount of traffic relating to “stale triggers” and will amount to a service actually creating a “denial of service” upon itself.

There are several things that may happen after an application fails, and before it recovers. If the Framework is monitoring the application, it may detect the failure (failed heartbeat) and may use this to tell the SCS to kill that service manager. The SCS may detect failed callbacks, and report inactivity of a client to the Framework and terminate its service manager and perform other cleanup. All these mechanisms are already in place in the specification.

It is easy to try to add more to the specification to fix perceived drawbacks in the existing model for HA. But in doing so, especially if alternative optional mechanisms are proposed, one needs to be careful to ensure that the solution does not cause more feature interference between applications and gateway elements. This will be hard to detect, even harder to undo once additions (even “optional” ones) are made to the spec.

· In the event of failure and restart of certain SCSs, recovery of the SCS may result in excessive messaging to indicate failure of individual sessions.

Not necessarily. If the client applications are even minimally intelligent, they would detect the service failure and then, depending on the criticality of the application, they would try to set up service sessions with other SCSs providing the same service to be able to continue serving their end-user population.

The way the standards have it now is best. Why try to complicate state management between two communicating state machines? If there is a failure, each end should have the clarity of purpose, even the flexibility this brings, in being able to make its own decisions regarding how to react to perceived failures on the other end. Neither end can know what really happened at the other, nor can it necessarily predict what state the other end is in. By “failing safe”, these kinds of state management issues across two different network elements that are distinct, most probably provided by two different vendors etc., can be avoided. After all, isn’t one of the primary goals of Parlay openness of the standards? Do we not want to promote support for multi-vendor environments (MVEs)? This purpose is best supported through simple, not complicated mechanisms for HA. HA support should be intuitive, it should be simple, it should be as transparent as possible, and it should not involve more work (by invoking non-essential methods) – neither at the service end, nor at the client end. Complexity will only hurt the adoption of OSA/Parlay technologies, and we want these technologies to take off more quickly, and gain even more acceptance going forward.

The purpose of this contribution and the related CRs submitted to this meeting is not to restate or review the philosophical arguments on the needs for solutions for HA to be included in the API, or alternatively that HA is to be provided by the middleware alone. This set of contributions suggests modifications that should be made to the APIs in order that the API based HA features can be satisfactorily completed to the point that multi-vendor interoperability using these features can be supported.
Please indicate WHY the current state of the API hurts interoperability. Specific examples of the kinds of errors that occur, along with reasons why the existing mechanisms, implemented per the letter and spirit of the specification fail to provide adequate support for HA would help establish the need for more API changes. As we said before, changes that make client development more complicated, or only solve the perceived limitations in a certain subset of cases would make the matters worse, not better, unless all perceived limitations in the new proposals were fixed.
The diagrams below represent a number of possible deployment configurations based on the existing API and the features that it supports.

[image: image1.wmf]

Appn

A

Appn

A’

FW

SCS

Mgr

[image: image2.wmf]

Appn

A’

FW

SCS

Mgr

Appn

FW

Appn

A

Application

Currently it is possible for an application to register additional callbacks with some SCS managers in order to provide the SCS with visibility of a failover application instance. Where this is specified in the API it is described that this feature is intended for use to aid application high availability.
It is intended to be used to provide a “backup” callback reference so that when the primary callback reference fails, the secondary is still available. Whether this callback reference is actually tied to a different “shadow” application instance is not specified, nor should it be, since that is more of an implementation issue, and the API focuses on the interface as it should, and not the implementation.

Any proposed changes to the API should similarly focus on the interface aspects primarily, not the underlying implementation. Those that build services and applications should have some freedom as to how they want to do it. Of course, if individual corporations want to add more capabilities into their implementation and make these capabilities available as “proprietary extensions”, they are welcome to do so, and to couple their proprietary mechanisms into their own implementation as they choose. Support for those kinds of interfaces would be truly “optional” from a client application development perspective. If they interface to that vendor’s gateway, clients that are aware of, and want to use these proprietary interfaces would benefit therefrom, and other clients, ignorant of these advances and enhancements would behave as they normally would, get the regular behaviour, and get the standards defined experience. It is much harder (perhaps not even possible, though saying that may be presumptuous) to have a change defined, incorporated into the specification, and then expect that tagging it “optional” will enhance interoperability.
In either case the Framework is aware of a single access session with the application and is unaware of the additional application image that is visible to the service manager. In addition to presenting a possible security loophole to the use of the service, such deployments do not support the use of framework features associated with the application access session, such as service level agreement, integrity management etc, to be applied consistently to the application as a whole and the individual images. In addition in the event of application failover and recovery the OSA association between application, framework and service instance that is based on the access sessions cannot be readily supported with the existing specifications.
As stated in the above paragraph, the standard makes no reference to “application images” as it stands. Whether developers choose to implement more resilient callbacks through application images or some other mechanism is their choice, and this is as it should be. Standards should set a level playing field and promote, not stifle innovation. As they stand, they do exactly this (promote innovation by specifying the interface, not the implementation, and providing a playing field that is open).

The security loophole being alluded to is not due to the interface specified in the standard, but is associated with a specific interpretation of the same. Interpreted and implemented differently, depending on the model followed, the loophole that is referenced may be minimized, mitigated, or may go away entirely. That again is an implementation issue, not an interface issue necessarily.

Failure and recovery of access sessions can proceed independently of service sessions, since there is no strong binding between the two. In fact, there is no firm requirement that the access session be open all the while that a service session is. The HA requirements for access and service sessions therefore, while being related, are not necessarily the same.
The solution proposed in the related contributions. N5-040323 through N5-040326 may be summarised as follows:

· The solution shall not be mandatory but rather an optional ‘profile’ that is complimentary to the existing APIs and that can be supported with minimal disruption to existing behaviour and implementations. This shall allow vendors freedom to choose between API based, middleware based, or proprietary solutions to the issue of high availability.

For an API to be optional in a stage 3 document is not easy. In fact, please point to a precedent for this, where an API specification indicated optional functionality in a stage 3 specification document where this is marked as such in the standard, and where the standard was accepted.

A standard, by its very definition, is supposed to define the interface or communication protocol or some such characteristic that promotes seamless interoperation. If something is marked “optional” in the standard, can clients that support this, talk to servers that do not, or vice versa once this specificaiton is issued? If so, do we not have seamless interoperability already? So does the argument that the additions promote greater interoperability really have merit?
Similarly, with multiple “options” defined in the standard, gateway vendors that wish to interoperate with the widest client application base will find that they have to support each option. This adversely impacts both the production and maintenance costs for gateway suppliers and affects gateway performance.

· The existing mechanism that allows an application to enable multiple notification callbacks to a service manager shall be removed. In its place, each instance of the same application shall be required to establish a unique access session with the framework and a unique session with a service manager.

This conflicts with the earlier defined “goal” of this effort which indicates that the existing behaviour indicated in the specifications will not be impacted. Then the new additions are not really “optional” are they? Existing clients that want to set multiple callbacks and have the second one used as a backup cannot really observe this behaviour do they?

Also, if each application “image” (which, as we said before, is not something the standard itself explicitly mentions, but is only one of many ways in which it may be interpreted to build a HA solution), establishes its own access session with the Framework and service sessions, what distinguishes several application instances of a single application from multiple distinct applications each of which supports the same user functionality?

And lastly, one must ensure that if multiple images are supported, that the registration for events where there are exclusivity characteristics associated with them, are properly addressed. More will be said about this in response to the contribution proposing changes (as examples) to the GCCS specification.

· Duplicate event notification criteria for each application image shall be treated in the same way as currently for overlapping criteria between existing applications. That is to say, that this is left to the underlying service implementation to handle and resolve the criteria to ensure that Multiple Points of Control over a single call is prevented or treated in accordance with network capabilities.

This requires a service to be cognizant of different application instances. What happens in case of implementations that choose to use a different mechanism for HA implementation at each end of the wire? So long as they conform to the standards specified interfaces, the specification does not preclude them from using other mechanisms besides the “application images” construct for high availability, does it?

· The HA behaviour supported by the Framework and Services can be defined by the methods supported and the service properties of the services themselves. In the case of the services this can be accomplished through common service properties or alternatively through the use of service sub-types. AePONA has a preference for common service properties as this is then explicitly defined in the API and completes the specification.

What is meant by “completes the specification”?

· The contributions include N5-040323 that outlines the set of Framework changes that are required. This is primarily to introduce a new initial authentication mechanism that allows multiple images of an application client to independently gain access to framework and services and be managed independently. In addition a number of syntax and behaviour changes are outlined.

The Framework interfaces are getting very complicated. Backwards compatibility and the deprecation rules being defined require support for old (deprecated) methods for at least one major release beyond the one in which they are first marked deprecated. In the Framework, the changes have been substantial, and almost require the support of two different handshakes already, when deprecation and backwards compatibility is factored in. There are already multiple modes of authentication. As more changes (optional or mandatory) are added to this element, one which is intended to provide security to the service mediation gateway to begin with, and as the security model is more and more overloaded, it becomes all the more likely that the Framework would be more susceptible to security loopholes. Changes that touch the security model should be carefully considered. Any errors here could severely hurt the adoption of Parlay technology, and that would not be good for either the gateway, or the application vendors.
Again we must reiterate the question of what distinguishes several application instances of a single application from multiple distinct applications each of which supports the same user functionality in this case?
· N5-040324 outlines related changes for a sample service (GCCS) that modifies the use of the enableCallNotification method and how multiple application images can establish independent callback references. The existing secondary call back behaviour is removed.

Comments within this document will point out limiting technical issues as well as raise questions about why the proposed capabilities are not supportable with the current API.
· N5-040325 details minor clarification to the call control service common definition to clarify that the setcallback methods cannot be used to create a set of callback addresses.

Earlier comment talks to why these changes are not as “seamless” as stated previously. Comments within this document relate to the backward compatibility issues associated with removing this method as well as the need for this change.
· N5-040326 introduces further modifications to the sample service that demonstrate how a recovering application image can refresh callback references for notification criteria, and how a recovering service can publicise the abort of multiple call sessions to an application.

Trying to influence the behaviour of two communicating state machines is difficult in the best of times. When one or the other is recovering from catastrophic failure, this becomes that much more difficult. For this to be properly done, we will next have to indicate all the state of a client and server, making allowances for states in which they recover, what kind of failure it was, what memory it has from the previous incarnation, how the failure and recovery are to take place, etc., In the absence of a complete model, each side would have to have logic that makes a best guess regarding how it thinks the other end functions, and how the other end thinks it thinks it functions and so on and so forth. The cascading probabilities of correct interpretation of exchanges between two such entities are mind-boggling, and getting these correct in software is no small achievement if it can even be done.

One could argue that there may be a monitor process that tracks the failure and recovery of an element on that side of the network divide, and that this monitor would then have interfaces the other party could talk to, to extract state information. But who would monitor the monitors? What happens if the monitor fails but the process its monitoring remains sane or vice versa? What happens if both the monitor and process fail (if they are closely coupled)? What happens if the monitor to monitored process interfaces fail? There is no easy solution to this problem either. Every solution that is proposed has some issues with it. Whether these issues can be solved effectively and whether the solution is viable in true MVEs needs to be judged carefully before they are adopted and marked “standard”.

The net result of the changes proposed is a solution model as follows:

[image: image3.wmf]

Appn

A

Appn

A’

FW

SCS

Mgr1

SCS

Mgr2

Therefore those wishing to use features of the API to support a HA configuration can deploy multiple identical images of an application resulting in multiple managed sessions between that application image, the framework and a unique call manager. Alternatively those that wish to employ a middleware based approach to accomplishing HA may do so through the use of a single application image and access session with the framework and service.
How is the figure different from when multiple clients are used as opposed to instances?
In the above picture, what happens if the Framework itself fails? For an SCS, you have an SCS’ (another manager) for a client, you have a client’ (another image). If we make assumptions around the Framework implementation that assumes it is somehow highly available, what precludes us from making similar assumptions on how HA is implemented in the SCS or client application cases as well?

As remarked earlier, supporting multiple images is one convenient interpretation of the specification, not what the specification insists on. If the current model is not conducive to effective support of multiple images, rather than change the model, perhaps alternative HA mechanisms can be considered for implementation? Besides, just having multiple application or service images does not solve the HA problem in and of itself. These images need to have state synchronization between them; this is not a trivial requirement. They need to be able to transparently pick up where the other element left off. And finally, they should be able to serve their clients seamlessly for pending transactions their clients had open to the other failed components. These are the real issues that merit more consideration, and any solution that claims to solve HA related problems should also solve (though these solutions should not require changes to the specification, since these are predominantly implementation specific). Does the API extension proposal address these issues completely?
_1137484609.doc

Appn

A

Appn

A’

FW

Application

SCS Mgr

Appn

FW

_1145366683.doc

Appn

A

Appn

A’

FW

SCS Mgr1

SCS Mgr2

_1137482179.doc

Appn

A

Appn

A’

FW

SCS Mgr

