Page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040627

Meeting #28, Piscataway, New Jersey, USA, 10-14 May 2004

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	CRNum
	(

rev
	-
	(

Current version:
	6.1.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	x

	

	Title:
(

	Support High Availability at API Level

	
	

	Source:
(

	AePONA – Eamonn Murray

	
	

	Work item code:
(

	OSA3
	
	Date: (

	12/08/2004

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	Current application high availability that employs features of the OSA API is ambiguous and incomplete. Corrections and modifications are required to the Framework API in order to provide a complete specification that will support this feature in an unambigous and consistent fashion. These changes are submitted to fulfill the Release 6 stage 1 requirement for high availability for OSA at API level.

	
	

	Summary of change:
(

	Correct the framework API such that multiple identical application instances may establish an access session with the framework and thereafter obtain a reference to and use a common service manager.

The behaviour and operation of several framework methods have been clarified to indicate their ability to support a deployment choice utilising multiple application instances.

The changes are introduced in a manner that does not mandate the use of multiple application instances in order to achieve high availability, and vendors are free to implement an alternate high availability solution within their products.

	
	

	Consequences if
(

not approved:
	The Release 6 stage 1 requirements cannot be addressed.

	
	

	Clauses affected:
(

	5.4.1, 6.3.1.2.1, 6.3.1.3, 7.1.4, 7.3.1, 7.3.2.2, 8.1.3

	
	

	
	Y
	N
	
	

	Other specs
(

	
	x
	 Other core specifications
(

	

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

KEEP the History box of the TS to be changed (see end of the present document)

Change in 5.4.1

5.4.1 Interface Class IpService

Inherits from: IpInterface

All service interfaces inherit from the following interface.

	<<Interface>>

IpService

	

	setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

5.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application. It is not allowed to invoke this method on an interface that uses SessionIDs. Multiple invocations of this method on an interface shall result in multiple callback references being specified. The gateway shall use the most recent callback interface provided by the application using this method. Therefore in the event that a callback reference fails or is no longer available, the next most recent callback reference available shall be used.
Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.
Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

5.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an interface that does not use SessionIDs. Multiple invocations of this method on an interface shall result in multiple callback references being specified. The gateway shall use the most recent callback interface provided by the application using this method. Therefore in the event that a callback reference fails or is no longer available, the next most recent callback reference available shall be used.
Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks.
sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

End of Change in 5.4.1

Change in 6.3.1.2.1

6.3.1.2.1 Method terminateAccess()

The terminateAccess operation is used by the framework to end the client's access session.

After terminateAccess() is invoked, the client will no longer be authenticated with the framework. The client will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail. The framework shall also identify and terminate all remaining service instances that apply as a result of the client access termination. If at any point the framework's level of confidence in the identity of the client becomes too low, perhaps due to re-authentication failing, the framework should terminate all outstanding service agreements for that client, and should take steps to terminate the client's access session WITHOUT invoking terminateAccess() on the client. This follows a generally accepted security model where the framework has decided that it can no longer trust the client and will therefore sever ALL contact with it.

Parameters

terminationText : in TpString

This is the termination text describes the reason for the termination of the access session.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown to the client, the P_INVALID_SIGNING_ALGORITHM exception will be thrown. The list of possible algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).
digitalSignature : in TpOctetSet

This contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is made of the termination text. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the termination text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention. The framework uses this to confirm its identity to the client. The client can check that the terminationText has been signed by the framework. If a match is made, the access session is terminated, otherwise the P_INVALID_SIGNATURE exception will be thrown.
Raises

TpCommonExceptions, P_INVALID_SIGNING_ALGORITHM, P_INVALID_SIGNATURE
End of Change in 6.3.1.2.1

Change in 6.3.1.3

6.3.1.3 Interface Class IpInitial

Inherits from: IpInterface.
The Initial Framework interface is used by the client to initiate the authentication with the Framework. This interface shall be implemented by a Framework. The initiateAuthentication() and the initiateAuthenticationWithVersion() methods shall be implemented.

	<<Interface>>

IpInitial

	

	<<deprecated>> initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) : TpAuthDomain

<<new>> initiateAuthenticationWithVersion (clientDomain : in TpAuthDomain, authType : in TpAuthType, frameworkVersion : in TpVersion) : TpAuthDomain

6.3.1.3.1 Method <<deprecated>> initiateAuthentication()

This method is deprecated in this version, this means that it will be supported until the next major release of the present document.

This method is invoked by the client to start the process of authentication with the framework, and request the use of a specific authentication method.

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};
The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an instance of a service for which a client application has signed a service agreement (i.e. TpServiceInstanceID), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticate() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).
A client application (identifiable by a given TpClientAppID) may optionally initiate authentication with the Framework by invoking this method multiple times. The Framework may elect to reject these subsequent requests, or may choose to associate them together as independent sessions under the same TpClientAppID.
The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication which is used when an underlying distribution technology authentication mechanism is used.
Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE
6.3.1.3.2 Method <<new>> initiateAuthenticationWithVersion()

This method is invoked by the client to start the process of authentication with the framework, and request the use of a specific authentication method using the new method with support for backward compatibility in the framework. The returned fwDomain authInterface will be selected to match the proposed version from the Client in the Framework response. If the Framework cannot work with the proposed framework version the framework returns an error code (P_INVALID_VERSION).

Returns <fwDomain> : This provides the client with a framework identifier, and a reference to call the authentication interface of the framework.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework that is unique for each requesting client. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

Note, there are no identifiers used in the authentication interface to correlate requests and responses, therefore the authentication interface may not be shared amongst multiple clients.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};
The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an instance of a service for which a client application has signed a service agreement (i.e. TpServiceInstanceID), or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see challenge() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).
A client application (identifiable by a given TpClientAppID) may optionally initiate authentication with the Framework by invoking this method multiple times. The Framework may elect to reject these subsequent requests, or may choose to associate them together as independent sessions under the same TpClientAppID.
The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).
authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication that is used when an underlying distribution technology authentication mechanism is used.
frameworkVersion : in TpVersion

This identifies the version of the Framework implemented in the client. The TpVersion is a String containing the version number. Valid version numbers are defined in the respective framework specification.
Returns

TpAuthDomain

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE, P_INVALID_VERSION
End of Change in 6.3.1.3

Change in 7.1.4

7.1.4 Service Agreement Management Sequence Diagrams

7.1.4.1 Service Selection

The following figure shows the process of selecting an SCF.

After discovery the Application gets a list of one or more SCF versions that match its required description. It now needs to decide which service it is going to use; it also needs to actually get a way to use it.

This is achieved by the following two steps:

[image: image1.wmf] :

IpServiceAgreementManagement

 :

IpAppServiceAgreementManagement

Application

Framework

1: selectService()

3: signServiceAgreement()

4: signServiceAgreement()

2: initiateSignServiceAgreement()

1:
Service Selection: first step - selectService

In this first step the Application identifies the SCF version it has finally decided to use. This is done by means of the serviceID, which is the agreed identifier for SCF versions. The Framework acknowledges this selection by returning to the Application an identifier for the service chosen: a service token, that is a private identifier for this service between this Application and this network, and is used for the process of signing the service agreement.

Input is:

·
in serviceID

This identifies the SCF required.

And output:

·
out serviceToken

This is a free format text token returned by the framework, which can be signed as part of a service agreement. It contains operator specific information relating to the service level agreement. An application (identifiable by a given TpClientAppID) may select the same service on more than one occasion in which case the same serviceToken, that identifies the relationship between the Application and the network, and the service agreement that applies, shall be returned.
2:
Service Selection: second step - signServiceAgreement

In this second step an agreement is signed that allows the Application to use the chosen SCF version. And once this contractual details have been agreed, then the Application can be given the means to actually use it. The means are a reference to the manager interface of the SCF version (remember that a manager is an entry point to any SCF). By calling the createServiceManager operation on the lifecycle manager the Framework retrieves this interface and returns it to the Application. The service properties suitable for this application are also fed to the SCF (via the lifecycle manager interface) in order for the SCS to instantiate an SCF version that is suitable for this application.

The sequence of events indicated above, where the application initiates the signature process by calling initiateSignServiceAgreement, and where the framework calls signServiceAgreement on the application's IpAppServiceAgreementManagement interface before the application calls signServiceAgreement on the frameworks's IpServiceAgreementManagement, is the only sequence permitted.

Input:

·
in serviceToken

This is the identifier that the network and Application have agreed to privately use for a certain version of SCF.

·
in agreementText

This is the agreement text that is to be signed by the Framework using the private key of the Framework.

·
in signingAlgorithm

This is the algorithm used to compute the digital signature.

Output:

·
out signatureAndServiceMgr

This is a reference to a structure containing the digital signature of the Framework for the service agreement, and a reference to the manager interface of the SCF.
There must be only one service instance per client application. Therefore, in case an application (identifiable by a given TpClientAppID) attempts to select a service for which it has already signed a service agreement and this service agreement has not been terminated, the Framework may return a reference to the already existing service, or may raise an exception to the client indicating that this request is denied.
End of Change in 7.1.4

Change in 7.3.1

7.3.1 Service Discovery Interface Classes
7.3.1.1 Interface Class IpServiceDiscovery

Inherits from: IpInterface.
The service discovery interface, shown below, consists of four methods. Before a service can be discovered, the enterprise operator (or the client applications) must know what "types" of services are supported by the Framework and what service "properties" are applicable to each service type. The listServiceTypes() method returns a list of all "service types" that are currently supported by the framework and the "describeServiceType()" returns a description of each service type. The description of service type includes the "service-specific properties" that are applicable to each service type. Then the enterprise operator (or the client applications) can discover a specific set of registered services that both belong to a given type and possess the desired "property values", by using the "discoverService() method. Once the enterprise operator finds out the desired set of services supported by the framework, it subscribes to (a sub-set of) these services using the Subscription Interfaces. The enterprise operator (or the client applications in its domain) can find out the set of services available to it (i.e., the service that it can use) by invoking "listSubscribedServices()". The service discovery APIs are invoked by the enterprise operators or client applications. They are described below.

This interface shall be implemented by a Framework with as a minimum requirement the listServiceTypes(), describeServiceType() and discoverService() methods.

End of Change in 7.3.1

Change in 7.3.2.2

7.3.2.2 Interface Class IpServiceAgreementManagement

Inherits from: IpInterface.
This interface and the signServiceAgreement(), terminateServiceAgreement(), selectService() and initiateSignServiceAgreement() methods shall be implemented by a Framework.

	<<Interface>>

IpServiceAgreementManagement

	

	signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

selectService (serviceID : in TpServiceID) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

7.3.2.2.1 Method signServiceAgreement()

After the framework has called signServiceAgreement() on the application's IpAppServiceAgreementManagement interface, this method is used by the client application to request that the framework sign the service agreement, which allows the client application to use the service. A reference to the service manager interface of the service is returned to the client application. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned. If the client application invokes this method before processing (i.e. digital signature verification) the reponse of signServiceAgreement() on the application's IpAppServiceAgreementManagement interface completed, a TpCommonExceptions with ExceptionType P_INVALID_STATE may be raised to indicate that this method is currently unable to complete the method due to a race condition. In this case, the TpCommonExceptions with ExceptionType P_INVALID_STATE suggests the application to retry the method invocation after a reasonable amount of time has passed.

There must be only one service instance per client application. Therefore, in case the client attempts to select a service for which it has already signed a service agreement and this service agreement has not been terminated, a reference to the already existing service manager will be returned.
Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement, and a reference to the service manager interface of the service.

structure TpSignatureAndServiceMgr {

digitalSignature:
TpOctetSet;

serviceMgrInterface:
 IpServiceRef;

};

The digitalSignature contains a CMS (Cryptographic Message Syntax) object (as defined in RFC 2630) with content type Signed-data. The signature is calculated and created as per section 5 of RFC 2630. The content is the agreement text given by the client application. The "external signature" construct shall not be used (i.e. the eContent field in the EncapsulatedContentInfo field shall be present and contain the agreement text string). The signing-time attribute, as defined in section 11.3 of RFC 2630, shall also be used to provide replay prevention.

The serviceMgrInterface is a reference to the service manager interface for the selected service.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. It shall be identical to the one chosen by the framework in response to IpAccess.selectSigningAlgorithm(). If the signingAlgorithm is not the chosen one, is invalid, or unknown to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned. The list of possible algorithms is as specified in the TpSigningAlgorithm table. The identifier used in this parameter must correspond to the digestAlgorithm and signatureAlgorithm fields in the SignerInfo field in the digitalSignature (see below).
Returns

TpSignatureAndServiceMgr

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_AGREEMENT_TEXT, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNING_ALGORITHM, P_SERVICE_ACCESS_DENIED
End of Change in 7.3.2.2

Change in 8.1.3

8.1.3 Service Instance Lifecycle Manager Sequence Diagrams

8.1.3.1 Sign Service Agreement

This sequence illustrates how the application can get access to a specified service. It only illustrates the last part: the signing of the service agreement and the corresponding actions towards the service. For more information on accessing the framework, authentication and discovery of services, see the corresponding clauses.

[image: image2.wmf] : IpAppCallControlManager

AppLogic

 : IpInitial

 :

IpServiceAgreementManagement

 : IpCallControlManager

 :

IpAppServiceAgreementManagement

GenericCallControlService :

IpServiceInstanceLifecycleManager

1: selectService()

3: signServiceAgreement()

4: createServiceManager()

5: new()

6: new()

7: setCallback()

We assume that the application is already authenticated and discovered the service it wants to use

2: signServiceAgreement()

1:
The application selects the service, using a serviceID for the generic call control service. The serviceID could have been obtained via the discovery interface. A ServiceToken is returned to the application.

2:
The client application signs the service agreement.

3:
The framework signs the service agreement. As a result a service manager interface reference (in this case of type IpCallControlManager) is returned to the application.

4:
Provided the signature information is correct and all conditions have been fulfilled, the framework will request the service identified by the serviceID to return a service manager interface reference. The service manager is the initial point of contact to the service.

5:
The lifecycle manager creates a new manager interface instance (a call control manager) for the specified application. It should be noted that this is an implementation detail. The service implementation may use other mechanism to get a service manager interface instance.

Following the creation of the service manager outlined above, a unique instance of the service particular to the application client results. This service instance is assigned a serviceInstanceID by the Framework, which is provided to the Service Instance Lifecycle manager during the createServiceManager operation. If it is necessary that Framework Integrity Management functionality and operations are to be supported between the Framework and the service instance identified by the defined serviceInstanceID, it is then necessary for the new service instance to establish an access session with the Framework. This provides the Framework with the ability to manage and monitor the operation of the service instance that relates to a particular application client. The steps required to establish a Framework access session are outlined in chapter 6 of this specification.

6:
The application creates a new IpAppCallControlManager interface to be used for callbacks.

7:
The Application sets the callback interface to the interface created with the previous message.

An application (identifiable by a given TpClientAppID may carry out the sequence, as exemplified above, multiple times.
End of Change in 8.1.3

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 11

