joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040332

Meeting #27, Miami, US, 10-14 May 2004

Source:
Ericsson (Erwin van Rijssen, Erwin.van.Rijssen@ericsson.com)
Title:
Comments and questions for N5-040277 and N5-040278
Agenda Item:
Messaging
Document for:
Discussion and decision
Category:

Work Item ID:
3GPP R6 / Parlay 5
Doc Summary:
Comments and questions for N5-040277 and N5-040278

Specs involved:

Introduction

This contribution analyses Lucent contributions N5-040277 and N5-040278 and lists some questions and comments for discussion and decision in the JWG meeting.

General

1. As the purpose of this SCF is to provide messaging capabilities, we would prefer to use the term Messaging instead of Communication. This would also give a more specific hint to the specification’s user as to what the scope of the specification is. We feel the term Communication is too generic as there are more SCFs that can be used for “communication” (e.g. Call Control).
2. The contributions introduce the concept of Session. The purpose of the session seems to be to correlate a sequence of messages that are exchanged between the end points (e.g. application and end-user) within a certain context. For example, the messages exchanged between the end-points within the context of an Instant Messaging session. A look at 29.198-05 (User Interaction) shows that this is exactly the type of communication addressed by Non-call related User Interaction. Ericsson therefore believes that session related communications should be kept within User Interaction to avoid duplication of functionality across different SCFs. We propose JWG to analyze if the desired session based communication functionality requires an extension to the User Interaction SCF or can be realized with the User Interaction SCF as currently available.

3. From point 2) it is clear that session based communications (e.g. Instant Messaging) and single-shot messaging (e.g. SMS and MMS) are fundamentally different ways of communications. In the first case it makes sense to create a context within which the “messages” are correlated. In the second case the creation of a session is overkill since there is nothing to correlate (every message is totally independent from the previous one or the next one). As we believe the Messaging SCF will definitely be used a lot for SMS and MMS type of single-shot messaging, we believe that the Messaging SCF should provide efficient support for single-shot messaging. This means that we would like to avoid the definition of an SCF in which the sending of every single-shot message has to be preceded and followed by the Creation and Close of a session. As the User Interaction SCF is geared towards providing session based communication support, we therefore propose to use that SCF for session based communication and to focus the definition of the Messaging SCF to single-shot messaging support.

IpCommunicationManager

1. openSession: Ericsson believes that it is not sufficient to return the TpSessionId. Instead the method should return a SessionIdentifier carrying a TpSessionID and a IpCommSession reference. Further down in this contribution we will argue why we believe the IpCommunicationSession can be removed from the Messaging SCF. This then also implies that the openSession method can be removed.

2. createNotification: It is not so clear what the difference is between NewMessageInboxCriteria and NewMessageCriteria. The latter probably also needs the mailbox and credentials to be meaningful.

3. createNotification: “Device Available” criteria in TpGCSEventCriteria (see 10.1.2) is not meaningful with respect to notifications received from a mailbox. Our understanding is that Device Available is more related to the availability of the user and therefore it belongs to the User Status SCF. The User Status SCF however already supports this functionality. For session related device availability, the PAM SCF already provides the needed availability functionality that can typically be used together with Instant Messaging sessions.

4. getNotification: The amount of data that can be returned here can be enormous. For this reason the method is deprecated in MPCC and a new method is introduced that is called getNextNotification which contains a parameter that indicates if the next part of the list shall be returned or not.

IpAppCommunicationManager

1. reportNotification -> TpGCSEventInfo -> TpNewMessageInboxInfo

The TpNewMessageInboxInfo datatype does not provide useful information. The only information it gives the application is the number of properties in the message. What is useful for an application to get is a list of basic message parameters that help the application to decide whether the message should be retrieved now or later. With basic information we mean From, To, Subject, ReceivedData/Time and MessageSize. We therefore propose to use the datatype TpMessageDescription from the Ericsson contribution.

2. reportNotification -> TpGCSEventInfo -> TpNewMessageInfo

It is not clear if this is applicable for the mailbox as well? Without information about which mailbox it is coming from this notification is not useful, because the application does not know where to go to, in order to fetch the message. The same thing applies to Sessions: then the SessionIdentifier should also be communicated, unless the message can only be received on a Session specific callback interface, which does not seem to be the case.

3. reportNotification -> TpGCSEventInfo -> TpMessageReadInfo

 This one contains the SessionID, but not the reference to the Session interface.

4. reportNotification -> TpGCSEventInfo -> TpDeviceAvailableInfo

Device Availability is something that seems to be relevant only in relation to sessions (e.g. checking if a buddy is available before establishing an Instant Messaging session) and therefore using it in methods in the CommunicationManager interface does not seem to be appropriate. Furthermore, the PAM SCF already addresses this kind of availability, so in order avoid duplication we propose to remove this datatype.

IpMailBox

1. Ericsson believes that all methods that may involve network interaction should be implemented (at least) with asynchronous methods. Interaction with a mailbox is a good example of interaction that will require interaction with a network entity (the mail server) that could very well be physically remote from the Parlay/OSA Gateway. Therefore we believe that the methods in the mailbox interface should (at least) be asynchronous.

2. Could you provide an explanation of how the getInfoProperties mechanism with the numberOfProperties is supposed to work? We feel this method is not very handy.

3. We believe that including Folder management functionality (createFolder, moveFolder etc.) in the Messaging SCF results in the mixture of traffic and management functionality. In other APIs we have then always decided to split the functionality over a traffic SCF and management SCF (e.g. User interaction). Ericsson believes that if mailbox/folder management is deemed necessary that the functionality be provided in a separate SCF in the specification (e.g. Messaging SCF for traffic and Mailbox (or Folder) Management SCF for management purpose). Those two SCFs can be published in the same specification.

4. sendMessageReq method: the definition of this method states that it is intended to send messages to a specified destination. This is the one-shot type of messaging that is not related to the mailbox (for sending messages with involvement of the mailbox the putMessage method is already defined). As a result, the method belongs to the CommunicationManager interface rather than the Mailbox interface.

5. Other comments/questions with respect to the sendMessageReq method:

a. What is the purpose/benefit of the TpGCSVariableInfoSet?

b. Ericsson believes that the variableInfoType approach proposed by Lucent to avoid a long list of method parameters can be a useful approach, but in that case the question is why the responseRequested is still a parameter in the sendMessageReq? (why not include that parameter as well in the variableInfoType?). If the answer is that responseRequested info is a mandatory parameter then we either show all mandatory parameters in the sendMessageReq parameter list, or we create a mandatoryInfoType.

c. deliveryType, deliveryNotificationRequested, deliveryTime, validityTime are parameters that are missing from the method and that are important to include

6. TpMessage: in the way TpMessage is defined, it gives the same problem with respect to MIME support as what we have seen before in the GMS proposals and discussions. The BIG problem with this definition is that tit does not recognize that the MIME headers are needed in order to be able to interpret MIME content.

7. getMessages: the filter approach as defined in the getMessages method works fine when the application already knows what it is looking for (e.g. is there a mail from Sender XYZ?). However, it does not work if the application wants to get a snapshot of whether or not there interesting messages have been received. To cover that situation (which is one we believe frequently occurs) we propose to introduce the method listMessagesReq that returns a list of messageIDs, short message descriptions and general info like the total number of messages in the mailbox. The short message descriptions are identical to the basic information that we propose to include in reportNotification. This will allow the application to check what messages it is interested in before it has to retrieve all the messages or to retrieve all the headers of the messages one-by-one to see if the message is interesting. As the list of messages returned by listMessageReq/Res can be quite long, it should also be possible to retrieve a long list with multiple invocations of the listMessagesReq method. This would be in line with the OSA conventions used, for example in Call Control APIs with getNextNotifications.

8. getMessages: one of the criteria that is missing from the TpMessageInfoProperty is if the message is “unread” or has been read before.

9. We believe that besides the “API view” on the message there is also a need to enable the application to retrieve the entire raw message(see getFullMessageReqin Ericsson contribution).

IpCommunicationSession/IpAppCommunicationSession

A look at the definition of this interface also shows that by attempting to combine two fundamentally different types of messaging (session-based and single-shot) we end up with an “Session” interface that contains methods and parameters that are not relevant within the context of a session (just because it tries to serve as interface for single-short messaging as well). Some examples:

a. The sendMessageReq in this interface has properties like responseRequested and registeredDelivery. This kind of properties do not seem to have any meaning with respect to session-based messaging, despite the purpose the interface seems to have (i.e. “communication within a session”.) The reason these parameters are not useful within the context of a session is that a session is per definition an interactive way of communication (like a two-way phone call)

b. For the same reason given in a) it is not clear what the meaning of a cancelMessageReq is within a session in which messages are instantly delivered and the recipients are instantly responding. CancelMessageReq may be one useful for single-shot messages like WAP Push, SMS or MMS and it would therefore fit better in IpCommunicationManager
c. In the proposed definition of the Messaging SCF there is support for delivery notifications. This helps to make the application’s life easy by removing the need for polling for the status of a previously sent message: the network will automatically report as soon as a relevant event (e.g. delivery of the message to the recipient) has occurred. The question is therefore what the added value is of the queryStatusReq. This applies to session-based messages for the reason given in a), but also to single-shot messages for the reason given in this item c).

Our conclusion is that there is no reason for this interface to exist. Session-based support fits better in the User Interaction SCF and single-shot messaging is per definition not session based and therefore fits better in the IpCommunicationManager interface. Also, some methods (like cancelMessage and queryMessageStatus) are typically relevant for single-shot messaging and therefore have to be moved to the CommunicationManager, if we wish to support them at all.

IpMessageManager

1. The contribution states that this interface is common for mailbox and non-mailbox oriented messaging, but only the mailbox-oriented messaging extends it. This suggests there is no reason for defining a separate IpMessageManager, because the 4 methods can be included in the Mailbox interface. In other words, the methods can be included in the Mailbox interface instead and the MessageManager interface can be removed to avoid unnecessary introduction of new interfaces in the API.

2. All these methods need to be asynchronous as well!

3. getMessagePartList: the nesting level of body parts is lost in this list. This makes it impossible for an application to understand the structure of the message content it has received.

4. getMessagePartList: the TpMessagePart and TpMessagePartList datatypes used by method miss some important parameters that are needed for the application to be able to interpret the message. An example of crucial information missing is the encoding of the message that has been used by the sender. Without this information the application cannot do anything with the message. We propose to use TpBodyPartDescription from the Ericsson contribution instead.

5. getMessageParts: Ericsson believes that it would be sufficient to have a method that can retrieve message parts one by one. Retrieving multiple parts at once it maybe fancy but it goes beyond the basic functionality that an API should provide. It is very simple for an application to program a loop that retrieves the different parts one-by-one.

TpMessageInfoProperties

1. There is a number of important parameters missing from the data type:

· Sender,

· ReplyTo,

· RFC822_messag_id,

· in_reply_to,

· message_references,

· comments,

· keywords,

· trace_field,

· resent_field,

· mime_version,

· mime_content,

· mime_encoding,

· mime_id,

· mime_description,

· mime_disposition,

· mime_extension_field,

· message_extension_field

2. Priority: how can the priority be mapped onto frequently used messaging related standards like RFC(2)822?

3. Protocol: what does this parameter do?

4. Format: the definition of TpMessageFormat is missing, so what is the purpose of this parameter?

5. Folder: this is not a property of the message, so the folder parameter does not belong here

Conclusions

The conclusion from the analysis is that according to our understanding:

1. There is no need for a CommunicationSession interface. Session related functionality is provided by the existing User Interaction SCF, that can be extended if needed. To avoid duplication of functionality we should not define this session functionality again in the Messaging SCF.

2. There is no need for a MessageManager interface, because it currently only extends from the mailbox interface, so the methods in the MessageManager can equally well be included in the Mailbox interface (thereby reducing the number of interfaces and improving the clarity of the Messaging SCF).

3. Device Availability type of information is already defined in the PAM SCF, and to avoid duplication of functionality we should define that again in the Messaging SCF.

4. The methods in the Mailbox interface should be asynchronous because the mailbox might be physically separate and at a remote location from the Parlay/OSA Gateway, introducing time delays that require the need for asynchronous methods (or if some delegates believe synchronous methods are needed, we need to support both).

5. The sendMessageReq is a method that is needed in the CommunicationManager in order to provide the application with an efficient and easy access to the single-short send message functionality.

6. We suggest to replace getMessages by the listMessageReq from the Ericsson contribution (or support both)

