Error! No text of specified style in document.
3
Error! No text of specified style in document.

Joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040278
Meeting #27, Miami, US, 10 - 14 May 2004
Source:
Lucent Technologies (Ransom Murphy, Musa Unmehopa)
Title:
Proposed API for new Messaging SCF

Agenda Item:
8 Messaging
Document for:
Discussion

Category:

Work Item ID:
 3GPP R6 / Parlay 5
Doc Summary:
Proposed API for new Messaging SCF

Specs involved:

1
Scope

The present document is part 15 of the Stage 3 specification for an Application Programming Interface (API) for Open Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality through an open standardised interface, i.e. the OSA APIs.

The present document specifies the Generic Communications Service (GCS) Capability Feature (SCF) aspects of the interface. All aspects of the Generic Communication SCF are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data Definitions

· IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the Unified Modelling Language (UML).

2
References

The references listed in clause 2 of ES 202 915-1 contain provisions which, through reference in this text, constitute provisions of the present document.

ETSI ES 202 915-1: "Open Service Access (OSA); Application Programming Interface (API); Part 1: Overview".

ETSI ES 202 915-2: "Open Service Access (OSA); Application Programming Interface (API); Part 2: Common Data Definitions".

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in ES 202 915-1 apply.

3.2
Abbreviations

For the purposes of the present document, the abbreviations defined in ES 202 915-1 apply.

4 Generic Communications SCF

The following clauses describe each aspect of the Generic Communications Service Capability Feature (SCF).

The order is as follows:

· The Sequence diagrams give the reader a practical idea of how each of the SCF is implemented.

· The Class relationships clause show how each of the interfaces applicable to the SCF, relate to one another.

· The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

· The State Transition Diagrams (STD) show the transition between states in the SCF. The states and transitions are well-defined; either methods specified in the Interface specification or events occurring in the underlying networks cause state transitions.

· The Data Definitions clause show a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part ES 202 915-2.

An implementation of this API which supports or implements a method described in the present document, shall support or implement the functionality described for that method, for at least one valid set of values for the parameters of that method. Where a method is not supported by an implementation of a Service interface, the exception P_METHOD_NOT_SUPPORTED shall be returned to any call of that method.

5 Sequence Diagrams

5.1 Open Mailbox

[image: image1.wmf]:

IpAppLogic

 :

IpCommunicationsManager

 : IpMailbox

1: openMailbox()

2: new()

1:
This message requests the object implementing the IpCommunicationsManager interface to create an object implementing the IpMailbox interface.

2:
Assuming that the criteria for creating an object implementing the IpMailbox interface is met, message 2 is used to create it.

5.2 Close Mailbox

[image: image2.wmf]:

IpAppLogic

 : IpMailbox

1: close()

1:
This message requests the object implementing the IpMailbox interface to de-assign.

5.3 Send a Message (Mailbox)

[image: image3.wmf]IpAppLogic

 : IpMailbox

 : IpAppMailbox

1: sendMessageReq()

2: sendMessageRes()

1:
The client requests the object implementing the IpMailbox interface to send a message to the southbound entity using the sendMessageReq method. The IpMailbox object accepts the request and sends it over the network.

2: If the message delivery was successful, the IpMailbox object informs the client using a sendMessageRes method.

5.4 Open Session

[image: image4.wmf]IpAppLogic

 :

IpCommunicationsManager

 :

IpCommunicationsSession

1: openSession()

2: new()

1:
This message requests the object implementing the IpCommunicationsManager interface to create an object implementing the IpCommunicationsSession interface.

2:
Assuming that the criteria for creating an object implementing the IpCommunicationsSession interface is met, message 2 is used to create it.

5.5 Close Session

[image: image5.wmf]IpAppLogic

 :

IpCommunicationsSession

1: close ()

1:
This message requests the object implementing the IpCommunicationsSession interface to de-assign.

5.6 Send a Message (Session)

[image: image6.wmf] :

IpCommunicationsSession

IpAppLogic

 :

IpAppCommunicationsSession

1: sendMessageReq()

2: sendMessageRes

1:
The client requests the object implementing the IpCommunicationsSession interface to send a message to the southbound entity using the sendMessageReq method. The IpCommunicationsSession object accepts the request and sends it over the network.

2: If the message delivery was successful, the IpCommunicationsSession object informs the client using a sendMessageRes method.

6 Class Diagrams

[image: image7.wmf]IpInterface

(from csapi)

<<Interface>>

IpAppCommunicationsManager

mailboxTerminated()

reportNotification()

(from comm)

<<Interface>>

IpCommunicationsManager

openMailbox()

openSession()

enableNotifications()

disableNotifications()

getNotifications()

createNotification()

changeNotification()

destroyNotification()

(from comm)

<<Interface>>

IpMailbox

close()

getInfoProperties()

setInfoProperties()

createFolder()

getFolders()

deleteFolder()

copyFolder()

putMessage()

getMessages()

deleteMessage()

sendMessageReq()

copyMessage()

moveMessage()

getInfoAmount()

moveFolder()

(from comm)

<<Interface>>

<<uses>>

IpCommunicationsSession

sendMessageReq()

cancelMessageReq()

queryStatusReq()

close()

(from comm)

<<Interface>>

IpAppCommunicationsSession

sendMessageRes()

cancelMessageRes()

queryStatusRes()

sendMessageErr()

cancelMessageErr()

queryStatusErr()

(from comm)

<<Interface>>

IpMessageManager

getMessageProperties()

setMessageProperties()

getMessagePartList()

getMessageParts()

(from comm)

<<Interface>>

<<uses>>

IpService

setCallback()

setCallbackWithSessionID()

(from csapi)

<<Interface>>

IpAppMailbox

sendMessageRes()

sendMessageErr()

(from comm)

<<Interface>>

<<uses>>

Figure 1: Package Overview : Service Interfaces
The application generic communications service package consists of only one IpAppCommunicationsManager interface.
The generic communications service package consists of one IpCommunicationsManager interface, zero or more IpMailbox interfaces and zero or more IpCommunicationsSession interfaces.
The class diagram in the figure shows the interfaces that make up the application generic communications service package and the generic communications service package. Communication between these packages is done via the +uses the IpCommunicationsManager channels. Communication with the IpMailbox and IpCommunicationsSession interfaces has to be done via the application logic (not shown).

<< We want to discuss if there are methods that would be common to both mailbox and non-mailbox oriented messages. For example, it makes sense to get headers and body parts from an email, but does that paradigm apply to SMS or IM. This relates to what methods fo into the IpMessagingManager>>

7 The Service Interface Specifications

7.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>.

7.1.2 Method descriptions

Each method (API method "call") is described. Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

7.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

7.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

	<<Interface>>

IpInterface

	

	

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

7.4 Generic Service Interface

7.4.1 Interface Class IpService

Inherits from: IpInterface
All service interfaces inherit from the following interface.

	<<Interface>>

IpService

	

	setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

7.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application. It is not allowed to invoke this method on an interface that uses SessionIDs.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
Raises

TpGCSonExceptions, P_INVALID_INTERFACE_TYPE

7.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an interface that does not use SessionIDs.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.
Raises

TpGCSonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

8 Generic Communications Interface Classes

The Generic Communications Service interface (GCS) is used by applications to send, store and receive messages either from within the context of a mailbox paradigm, or outside of it. GCS also supports voice mail and electronic mail as the messaging mechanisms in a manner similar to the GMS SCF which forms part 9 of the currently referenced series of specifications. The messaging service interface can be used by both.
A messaging system that is conformant with the mailbox paradigm is assumed to have the following entities:
· Mailboxes. This is the application's main entry point to the messaging system. The framework may or may not need to authenticate an application before it accesses a mailbox
· Folders. A mailbox has at least the inbox and the outbox as folders. The name of the inbox is "INBOX", and the name of the outbox is "OUTBOX". These folders may have sub-folders. The names of these sub-folders are appended to their parents' names with '/' as the delimiter. For instance, if there is a sub-folder in INBOX called 'Personal' and a sub-folder in that folder called 'archive' then the fully qualified names, which are required for all operations, of the four folders are 'INBOX', 'OUTBOX', 'INBOX/Personal', and 'INBOX/Personal/archive'. The names are case sensitive. A messaging service may have other folders other than the inbox and the outbox.

<< If a separate send message is provided, is it also necessary to maintain the concept of an OUTBOX? >>
· Messages. Messages are stored in folders. Messages usually have properties associated with them.
The GCS is represented by the IpCommunicationsManager, IpMailbox and IpCommunicationsSession interfaces to services provided by the network. To handle responses and reports, the developer must implement IpAppCommunicationsManager to provide the callback mechanism for the Communications service manager.

The GCS SCS also supports messaging in the context of Instant Messaging (IM), SMS, MMS, GSM USSD etc., These contexts, IM in particular, may support communication in either the page mode or the session mode. The reader is encouraged to refer to “The Message Session Relay Protocol” work [] being done in the IETF for more details.

Non-mailbox paradigm messaging is supported through the IpCommunicationsManager and IpCommunicationsSession interfaces.
8.1 Interface Class IpCommunicationsManager

Inherits from: IpService
This interface is the 'service manager' interface for the Generic Communications Service. The generic communications manager interface provides the management functions to the generic communications service. The application programmer can use this interface to open mailbox objects, communications session objects, and also to enable or disable event notifications on them.

	<<Interface>>

IpCommunicationsManager

	

	openMailbox(mailboxID : in TpAddress, authenticationInfo : in TpString, appMailbox : in IpAppMailboxRef) : TpMailboxIdentifier

openSession(userIDSet : in TpAddressSet, protocol : in TpString, appCommSession : in IpAppCommunicationsSessionRef) : TpSessionID
createNotification(appCommunicationsManager : in IpAppCommunicationsManager, eventCriteria : in TpMessagingEventCriteria) : TpAssignmentID

changeNotification(assignmentID : in TpAssignmentID, eventCriteria : in TpGCSEventCriteria) : void

getNotifications() : TpGCSEventCriteriaSet

destroyNotification(assignmentID : in TpAssignmentID) : void

enableNotifications(appCommunicationsManager : in IpAppCommunicationsManager) : TpAssignmentID

disableNotifications() : void

8.1.1 Method openMailbox()

This method opens a mailbox for the application. The session ID and reference to the IpMailbox interface for use by the application is returned. Authentication information may be needed to open the mailbox.

The application can open more than one mailbox at the same time. The application is not allowed to open the same mailbox more than once at the same time.

Returns: mailboxIndentifier

Specifies the reference to the opened mailbox and the session ID.

Parameters

mailboxID : in TpAddress

Specifies the identity of the mailbox. If the mailbox chosen is invalid, the P_INVALID_MAILBOX exception is thrown.
authenticationInfo : in TpString

Authentication information needed for the application to open a mailbox in the messaging system, such as a key or password. If the authentication process is considered strong enough for the application to gain access to the mailbox, then the authentication information will be an empty string. If the authentication information is not valid, the error code P_INVALID_AUTHENTICATION_INFORMATION is returned.

appMailbox : in IpAppMailboxRef

Specifies the client callback interface to be used with this mailbox session. P_INVALID_INTERFACE_TYPE is thrown if the reference is not an IpAppMailbox.
Returns

TpMailboxIdentifier

Raises

TpGCSonExceptions,P_INVALID_MAILBOX, P_INVALID_AUTHENTICATION_INFORMATION, P_INVALID_INTERFACE_TYPE
8.1.2 Method openSession()
This method is used to open a communications session that can be used for generic page mode or for session mode messaging. The userIDSet is used to identify the set of users that a given message is to be sent to. If no address is provided in the userIDSet, then the session can be reused across multiple users with a target address specified in the variableInfo parameter of the associated sendMessageReq() method invoked within the communications context so established.

Returns: sessionIdentifier

Specifies the reference to the opened communications session and session ID.

Parameters

userIDSet : in TpAddressSet

Specifies the identity of the users involved in the session, using one of the addressing schemes supported by the specification for encoding TpAddress.
protocol : in TpString

This identifies the protocol to be used for the messaging downstream to end-user terminals. The same protocol will be used to convey the message to all users in the set. The protocol choice would be limited to one supported by the SCS implementation. If an unsupported protocol is specified, the error code P _INVALID_PROTOCOL is returned.

<< Is this better as a string or an enumerated type>>

appCommunicationsSession : in IpAppCommunicationsSessionRef

If this parameter is set (i.e. not NULL) it specifies a reference to the communications session application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method. P_INVALID_INTERFACE_TYPE is thrown if the reference is not an IpAppCommunicationsSession.
Returns

TpSessionID

Raises

TpGCSonExceptions, P_INVALID_INTERFACE_TYPE, P _INVALID_PROTOCOL
8.1.3 Method createNotification()

This method is used to enable communications notifications so that events can be sent to the application.

Returns: assignmentID

Specifies the ID assigned by the communications manager interface for this newly-created event notification.

Parameters

appCommunicationsManager : in IpAppCommunicationsManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method. P_INVALID_INTERFACE_TYPE is thrown if the reference is not an IpAppCommunicationsManager.
eventCriteria : in TpGCSEventCriteria

Specifies the event specific criteria used by the application to define the event required.
Returns

TpAssignmentID

Raises

TpGCSonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE
8.1.4 Method changeNotification()

This method is used by the application to modify or change a notification previously set using createNotificaiton. The assignment ID tied to the original notification is not changed by this operation.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic communications manager interface when the previous createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the service manager will return the error code P_INVALID_ASSIGNMENT_ID.
eventCriteria : in TpGCSEventCriteria

Specifies the event specific criteria used by the application to define the event required.
Raises

TpGCSonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA
8.1.5 Method getNotifications()

This method is used by the application to query the event criteria set with createNotification or changeNotification. The returned TpGCSEventCriteriaSet could be empty if no notifications were previously set.

Returns: eventCriteriaSet

Specifies the event specific criteria that the application had set notifications on.
Parameters

None.

Returns

TpGCSEventCriteriaSet

Raises

TpGCSonExceptions
8.1.6 Method destroyNotification()

This method is used by the application to destroy or delete a notification previously set using createNotification. The notification tied to the assignment ID is deleted by this operation.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic communications manager interface when the previous createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the service manager will return the error code P_INVALID_ASSIGNMENT_ID.
Raises

TpGCSonExceptions, P_INVALID_ASSIGNMENT_ID.
8.1.7 Method enableNotifications()

This method is used to indicate that the application is able to receive notifications which are provisioned from within the network (i.e. these notifications are NOT set using createNotification() but via, for instance, a network management system). If notifications provisioned for this application are created or changed, the application is unaware of this until the notification is reported.

If the same application requests to enable notifications for a second time with a different IpAppCommunicationsManager reference (i.e. without first disabling them), the second callback will be treated as an additional callback. The gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used.

When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on the same interface as long as the criteria in the network and provided by createNotification() do not overlap. However, it is NOT recommended to use both mechanisms on the same service manager.

The methods changeNotification(), getNotification(), and destroyNotification() do not apply to notifications provisioned in the network and enabled using enableNotifications(). These only apply to notifications created using createNotification().

Parameters

appCommunicationsManager : in IpAppCommunicationsManager

Specifies a reference to the generic communications manager callback interface that would be used by the server to report any notifications of interest to the client application for which it has previously registered interest. Invoking this method with no new notifications created has no effect. This method returns an assignmentID that can then be used to turn off the notifications at a later time.

Returns

assignmentID

Specifies the ID assigned by the manager interface for this operation. This ID is contained in any reportNotification() that relates to notifications provisioned from within the network.
Raises

TpGCSonExceptions
8.1.8 Method disableNotifications()

This method is used to indicate that the application is not able to receive notifications for which the provisioning has been done from within the network. (i.e. these notifications that are NOT set using createNotification() but via, for instance, a network management system). After this method is called, no such notifications are reported anymore.

Parameters

none

Raises

TpGCSonExceptions
8.2 Interface Class IpAppCommunicationsManager

Inherits from: IpInterface
The client application developer implements the generic messaging manager application interface to handle mailbox termination, mailbox fault and messaging event notifications.

	<<Interface>>

IpAppCommunicationsManager

	

	mailboxTerminated(mailboxSessionID : in TpSessionID) : void

reportNotification(eventInfo : in TpGCSEventInfo) : void

8.2.1 Method mailboxTerminated()

This method indicates to the application that the mailbox has terminated or closed abnormally. No further communication will be possible between the mailbox and application.

Parameters

mailboxSessionID : in TpSessionID

Specifies the session ID of the mailbox that has terminated.
Raises

none

8.2.2 Method reportNotification()

This method notifies the application of the arrival of a messaging-related event.

Parameters

eventInfo : in TpGCSEventInfo

Specifies data associated with this event.
Raises

none

8.3 Interface Class IpMailbox

Inherits from: IpService

	<<Interface>>

IpMailbox

	

	close(mailboxSessionID : in TpSessionID) : void

getInfoAmount(mailboxSessionID : in TpSessionID) : TpInt32

getInfoProperties(mailboxSessionID : in TpSessionID, firstProperty : in TpInt32, numberOfProperties : in TpInt32) : TpMailboxInfoPropertySet

setInfoProperties(mailboxSessionID : in TpSessionID, firstProperty : in TpInt32, mailboxInfoProperties : in TpMailboxInfoPropertySet) : void

createFolder(mailboxSessionID : in TpSessionID, folderID : in TpString) : void

getFolders(mailboxSessionID : in TpSessionID) : TpStringList

deleteFolder(mailboxSessionID : in TpSessionID, folderID : in TpString) : void

copyFolder(mailboxSessionID : in TpSessionID, fromFolderID : in TpString, toFolderID : in TpString) : void

moveFolder(mailboxSessionID : in TpSessionID, fromFolderID : in TpString, toFolderID : in TpString) : void

putMessage(mailboxSessionID : in TpSessionID, folderID : in TpString, message : in TpString) : void

copyMessage(mailboxSessionID : in TpSessionID, fromFolderID : in TpString, toFolderID : in TpString, messageID : in TpString) : void

moveMessage(mailboxSessionID : in TpSessionID, fromFolderID : in TpString, toFolderID : in TpString, messageID : in TpString) : void

deleteMessage(mailboxSessionID : in TpSessionID, folderID : in TpString, message : in TpString) : void

sendMessageReq(mailboxSessionID : in TpSessionID, responseRequested : in TpBoolean, message : in TpMessage, variableInfo : in TpGCSVariableInfoSet) : TpAssignmentID

getMessages(mailboxSessionID : in TpSessionID, folderID : in TpString, filterCriteria: in TpMessageProperties) : TpStringList

8.3.1 Method close()

This method closes the mailbox. After closing, the interfaces to the mailbox and any associated folders are automatically de-assigned and are no longer valid.

Parameters

mailboxSessionID : in TpSessionID

The session ID of the open mailbox previously opened by openMailbox. From now on, the session ID is no longer valid. If by coincidence an identical session ID is returned by a subsequent openMailbox, the session ID will be associated with the new session and has nothing to do with the closed session. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
Raises

TpGCSonExceptions, P_INVALID_SESSION_ID
8.3.2 Method getInfoAmount()

This method returns the number of mailbox information properties of the specified mailbox.

Returns: numberOfProperties

The number of properties associated with the folder. The number of properties is zero or positive.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
Returns

TpInt32

Raises

TpGCSonExceptions,P_INVALID_SESSION_ID
8.3.3 Method getInfoProperties()

This method returns the properties of a mailbox.

Returns: mailboxInfoProperties

The mailbox information properties (names and values) present in the folder.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
firstProperty : in TpInt32

This is the first property of interest. This number represents the starting point where the first property of the list to be retrieved from the mailbox is located. Properties are numbered from zero.
numberOfProperties : in TpInt32

The number of properties to return. If the value of this parameter is zero, then all properties will be returned. Otherwise, the value must be a positive number. If the number is not positive, the error code P_NUMBER_NOT_POSITIVE is returned.
Returns

TpMailboxInfoPropertySet

Raises

TpGCSonExceptions,P_INVALID_SESSION_ID,P_NUMBER_NOT_POSITIVE
8.3.4 Method setInfoProperties()

Sets the properties of a mailbox.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
firstProperty : in TpInt32

This is the first property of interest. This number represents the starting point where the first property of the list to be updated in the mailbox is located. Properties are numbered from zero.
mailboxInfoProperties : in TpMailboxInfoPropertySet

This specifies the mailbox information properties (names and values) to be set in the mailbox. If the properties cannot be changed, then the error code P_PROPERTY_NOT_SET is returned.
Raises

TpGCSonExceptions,P_INVALID_SESSION_ID,P_PROPERTY_NOT_SET

8.3.5 Method createFolder()

This method creates a new folder in the mailbox opened by that Mailbox Session. The name of the new folder may be passed in. If the operation fails, a P_INVALID_FOLDER_ID exception is thrown (e.g. folder with that name already exists, folder name is not permitted, unpermitted characters in folder name etc.,)

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
FolderID : in TpString

This is the proposed name of the new folder to be created.
Raises

TpGCSonExceptions,P_INVALID_SESSION_ID,P_INVALID_FOLDER_ID

8.3.6 Method getFolders()

This method returns as a string list, all the folder names associated with the given mailbox session. This only returns the top level folders.

<< Want to provide a mechanism for supporting a hierarchy of folders without having a folder object. We’ve considered using unix style directory names such as “/folderX/folderY/folderZ” to represent such hierarchies. Requires further discussion.>>

Returns: TpStringList

Specifies the list of folders contained within the specified mailbox.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
Returns

TpStringList

Raises

TpGCSonExceptions,P_INVALID_SESSION_ID
8.3.7 Method deleteFolder()

This method removes a folder from the currently open mailbox session. The operation is carried out even for non-empty folders (i.e. folders with subtended folders or email messages within them).

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.

folderID : in TpString

Specifies the name of the folder to be deleted. If the specified folder is not in the mailbox, exception P_INVALID_FOLDER_ID is thrown.
Raises

TpGCSonExceptions,P_INVALID_SESSION_ID, P_INVALID_FOLDER_ID
8.3.8 Method copyFolder()

This method copies a folder from a mailbox session context, including all its contents into a new folder with the provided name but in the same mailbox context. If either the source or destination folder names are invalid, for whatever reason (source does not exist, destination name is same as existing folder name, destination name has unpermitted characters etc.,) the method throws the P_INVALID_FOLDER_ID exception.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.

fromFolderID : in TpString

The name of the source folder for the copy.

toFolderID : in TpString

The name of the destination folder for the copy.

Raises

TpGCSonExceptions,P_INVALID_SESSION_ID, P_INVALID_FOLDER_ID
8.3.9 Method moveFolder()

This method moves a folder from a mailbox session context, including all its contents into a new folder with the provided name but in the same mailbox context. If either the source or destination folder names are invalid, for whatever reason (source does not exist, destination name is same as existing folder name, destination name has unpermitted characters etc.,) the method throws the P_INVALID_FOLDER_ID exception.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.

fromFolderID : in TpString

The name of the source folder for the move.

toFolderID : in TpString

The name of the destination folder for the move.

Raises

TpGCSonExceptions,P_INVALID_SESSION_ID, P_INVALID_FOLDER_ID
8.3.10 Method putMessage()

This method puts a message into an open mailbox folder. The message and the headers are transferred to the Messaging service. The message will be taken as is. No checking is done on the message. Furthermore, the message is assumed to be a simple message, that is, with no attachments. If the application knows the messaging system and understands the format to send attachments, it can do so. The service will not flag any inconsistencies if the formatting of the message is not correct.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
message : in TpMessage

The message to put into the mailbox.
folderID : in TpString

This specifies the name of the folder into which the message is to be deposited.
Raises

TpGCSonExceptions, P_INVALID_SESSION_ID, P_INVALID_FOLDER_ID
8.3.11 Method moveMessage()

This method moves a message with the specified ID from its current position into the folder specified by the folderID. The message will be moved as is.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
fromFolderID : in TpString

This specifies the name of the folder from which the message is to be moved.

toFolderID : in TpString

This specifies the name of the folder into which the message is to be deposited.

message : in TpString

The ID of the message to be moved into the specified folder. If a message with the specified message ID cannot be located, the exception P_INVALID_MESSAGE_ID is thrown.
Raises

TpGCSonExceptions, P_INVALID_SESSION_ID, P_INVALID_FOLDER_ID, P_INVALID_MESSAGE_ID

8.3.12 Method copyMessage()

This method copies a message with the specified ID from its current position into the folder specified by the folderID. The message will be copied as is. This effects a deep copy, not just a cloning of pointers to the message.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
fromFolderID : in TpString

This specifies the name of the folder from which the message is to be copied.

toFolderID : in TpString

This specifies the name of the folder into which the message is to be deposited.

message : in TpString

The ID of the message to be moved into the specified folder. If a message with the specified message ID cannot be located, the exception P_INVALID_MESSAGE_ID is thrown.
Raises

TpGCSonExceptions, P_INVALID_SESSION_ID, P_INVALID_FOLDER_ID, P_INVALID_MESSAGE_ID

8.3.13 Method deleteMessage()

This method deletes the message with the specified ID from its current position in the folder. If the messaging system supports a file or folder structure with a “Trash” folder, the message may be put into that folder. In other systems, the message may be permanently deleted. If this method is invoked on a message in the trash folder, it is permanently deleted.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
folderID : in TpString

This specifies the name of the folder into which the message is to be deleted.

messageID : in TpStringID

The ID of the message to be moved into the specified folder. If a message with the specified message ID cannot be located, the exception P_INVALID_MESSAGE_ID is thrown.
Raises

TpGCSonExceptions, P_INVALID_SESSION_ID, P_INVALID_FOLDER_ID, P_INVALID_MESSAGE_ID

8.3.14 Method sendMessageReq()

This method sends a message to the specified destination.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
responseRequested : in TpBoolean

This indicates if the client wants a response to indicate the result of the sendMessageReq.

message : in TpMessage

This indicates the message that is to be sent.
variableInfo : in TpGCSVariableInfoSet

This indicates any variable parameters that should be used when delivering the message. This may include destination address, source address, etc.

Return

TpAssignmentID

Raises

TpGCSonExceptions, P_INVALID_SESSION_ID

8.3.15 Method getMessages()

This method returns an enumerated list of message IDs for all messages from the mailbox. The application can then walk through this list to get to particular messages, check which ones are unread by looking at the message headers, etc., message and the headers are transferred to the Messaging service.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open folder. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
folderID : in TpString

This specifies the name of the folder into which the message is to be deposited.
filterCriteria : in TpMessageInfoPropertySet

This indicates the filter criteria to be used to select a subset of the messages from the folder to be returned into the application view.
Returns

TpStringList

Raises

TpGCSonExceptions, P_INVALID_SESSION_ID, P_INVALID_FOLDER_ID
8.4 Interface Class IpAppMailbox

Inherits from: IpInterface
The client application developer implements the IpAppMailbox application interface to handle callbacks that occur as a result of mailbox related operations.

	<<Interface>>

IpAppMailbox

	

	sendMessageRes(mailboxSessionID : in TpSessionID, assignmentID : in TpAssignmentID, result : in TpMessageResult) : void

sendMessageErr(mailboxSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpMessageError) : void

8.4.1 Method sendMessageRes()

This method is a callback invoked by the SCS on the client application to indicate that a previously invoked sendMessageReq() with the specified assignment ID was successful. The success status and other details are indicated in the TpMessageStatus datatype.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the mailbox.
assignmentID : in TpAssignmentID

This specifies the assignment ID associated with the sendMessageReq() to which this callback is a report.
result : in TpMessageResult

This indicates the result status of the message.

Raises

none

8.4.2 Method sendMessageErr()

This method is a callback invoked by the SCS on the client application to indicate that a previously invoked sendMessageReq() with the specified assignment ID failed. The failure reason and other details are indicated in the TpMessageStatus datatype.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the mailbox.
assignmentID : in TpAssignmentID

This specifies the assignment ID associated with the sendMessageReq() to which this callback is a report.
error : in TpMessageError

This indicates the error status of the message.

Raises

none

8.5 Interface Class IpCommunicationsSession

Inherits from: IpService

This interface supports methods that enable messages to be sent or received when the mailbox paradigm is not in use. Mechanisms such as SMS, MMS, GSM USSD, etc., could be used in this context for either page mode, or session mode messaging.

	<<Interface>>

IpCommunicationsSession

	

	sendMessageReq(sessionID : in TpSessionID, responseRequested : in TpBoolean, registeredDelivery : in TpBoolean, message : in TpMessage, variableInfo : in TpGCSVariableInfoSet) : TpAssignmentID

cancelMessageReq(sessionID : in TpSessionID, assignmentID : in TpAssignmentID) : void

queryStatusReq(sessionID : in TpSessionID, assignmentID : in TpAssignmentID) : void

close(sessionID : in TpSessionID) : void

8.5.1 Method sendMessageReq()

This method requests the underlying network infrastructure to send the message being passed in through the TpMessage parameter as one of the data elements, to the set of identified targets specified using the supported addressing schemes from the specification. This method returns a TpAssignmentID reference to the request for later use by the application.

Parameters

sessionID : in TpSessionID

This is the session ID of the open communications session. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
responseRequested : in TpBoolean
This specifies whether or not a response is requested from the party receiving the message, as the message is sent. If so, when the response is returned to the underlying infrastructure, a sendMessageRes() may be invoked as a callback to so inform the client application.

registeredDelivery : in TpBoolean

This specifies whether or not an indication of successful delivery to the target end-point is requested. If so, and if the underlying protocol permits it, a delivery notification will be transmitted to the sending application upon successful message delivery.

message : in TpMessage

The message to be sent over the network.

variableInfo : in TpGCSVariableInfoSet

This indicates any variable parameters that should be used when delivering the message. This may include destination address, source address, etc.

Returns

TpAssignmentID

Raises

TpGCSonExceptions, P_INVALID_SESSION_ID
8.5.2 Method cancelMessageReq()

This method requests the underlying network infrastructure to cancel an undelivered message previously sent in a sendMessageReq.

Parameters

sessionID : in TpSessionID

This is the session ID of the open communications session. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
AssignmentID : in TpAssignmentID

This specifies the assignment ID associated with the sendMessageReq that was previously issued by the client application on the SCS and which now needs to be cancelled. If an invalid assignment ID is issued, a P_INVALID_ASSIGNMENT_ID exception is thrown.

Raises

TpGCSonExceptions, P_INVALID_SESSION_ID, P_INVALID_ASSIGNMENT_ID

8.5.3 Method queryStatusReq()

This method requests the underlying network infrastructure to query the status of messages already sent using the sendMessageReq(). A session ID and an assignment ID are used to identify individual messages. Implementations may choose to use the same assignment ID in different sessions to reference different messages, but the specification merely requires that assignment IDs in individual sessions be unique.

Parameters

sessionID : in TpSessionID

This is the session ID of the open communications session. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
assignmentID : in TpAssignmentID

This specifies the assignment ID associated with the sendMessageReq that was previously issued by the client application on the SCS and which now needs to be cancelled. If an invalid assignment ID is issued, a P_INVALID_ASSIGNMENT_ID exception is thrown.

Raises

TpGCSonExceptions, P_INVALID_SESSION_ID, P_INVALID_ASSIGNMENT_ID

8.5.4 Method close()

This method requests the SCS to close a previously opened session. Once closed, the application can no longer send new messages, query the status of already sent messages, nor cancel the transmission of pending messages on that session.

Parameters

sessionID : in TpSessionID

This is the session ID of the open communications session. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
Raises

TpGCSonExceptions, P_INVALID_SESSION_ID
8.6 Interface Class IpAppCommunicationsSession

Inherits from: IpInterface

This interface provides methods that may be invoked by the SCS on the client application as callbacks to asynchronously inform it of the status of pending requests, etc., for requests issued within the context of non-mailbox messaging systems employed for either page mode or session mode messaging.

	<<Interface>>

IpAppCommunicationsSession

	

	sendMessageRes(sessionID : in TpSessionID, assignmentID : in TpAssignmentID, result : in TpMessageResult) : void

cancelMessageRes(sessionID : in TpSessionID, assignmentID : in TpAssignmentID, result : in TpMessageResult) : void

queryStatusRes(sessionID : in TpSessionID, assignmentID : in TpAssignmentID, result : in TpMessageResult) : void

sendMessageErr(sessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpMessageError) : void

cancelMessageErr(sessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpMessageError) : void

queryStatusErr(sessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpMessageError) : void

8.6.1 Method sendMessageRes()

This method indicates successful execution of a sendMessageReq() method by the SCS.

Parameters

sessionID : in TpSessionID

This is the session ID of the open communications session.
AssignmentID : in TpAssignmentID

This specifies the assignment ID associated with the sendMessageReq that was previously issued by the client application on the SCS.
result : in TpMessageResult
The result of the message.

Raises

none
8.6.2 Method cancelMessageRes()

This method indicates successful execution of a cancelMessageReq() method by the SCS.

Parameters

sessionID : in TpSessionID

This is the session ID of the open communications session.
AssignmentID : in TpAssignmentID

This specifies the assignment ID associated with the cancelMessageReq that was previously issued by the client application on the SCS.
result : in TpMessageResult
The result of the message.

Raises

none

8.6.3 Method queryStatusRes()

This method indicates successful execution of a queryStatusReq() method by the SCS, and provides the status along with the response indication.

Parameters

sessionID : in TpSessionID

This is the session ID of the open communications session. If the session ID is not a valid session ID in the application view, the error code P_INVALID_SESSION_ID is returned.
AssignmentID : in TpAssignmentID

This specifies the assignment ID associated with the queryStatusReq that was previously issued by the client application on the SCS.
result : in TpMessageResult
The result of the message.

Raises

none

8.6.4 Method sendMessageErr()

This method indicates a failure in the execution of the sendMessageReq() method by the SCS.

Parameters

sessionID : in TpSessionID

This is the session ID of the open communications session.
AssignmentID : in TpAssignmentID

This specifies the assignment ID associated with the sendMessageReq that was previously issued by the client application on the SCS.
error : in TpMessageError
The error code indicating the failure of the message.

Raises

none

8.6.5 Method cancelMessageErr()

This method indicates a failure in the execution of the cancelMessageReq() method by the SCS.

Parameters

sessionID : in TpSessionID

This is the session ID of the open communications session.
AssignmentID : in TpAssignmentID

This specifies the assignment ID associated with the cancelMessageReq that was previously issued by the client application on the SCS.
error : in TpMessageError
The error code indicating the failure of the message.

Raises

none
8.6.6 Method queryStatusErr()

This method indicates a failure in the execution of the queryStatusReq() method by the SCS.

Parameters

sessionID : in TpSessionID

This is the session ID of the open communications session
AssignmentID : in TpAssignmentID

This specifies the assignment ID associated with the queryStatusReq that was previously issued by the client application on the SCS.
error : in TpMessageError
The error code indicating the failure of the message.

Raises

none
8.7 Interface Class IpMessageManager

Inherits from: IpService
Note that there is no IpAppMessageManager class. This class is provided as a means to extract information from a message.

	<<Interface>>

IpMessageManager

	

	getMessageProperties(sessionID : in TpSessionID, folderID : in TpString, messageID : in TpString) : TpMessageInfoPropertyList

setMessageProperties(sessionID : in TpSessionID, folderID : in TpString, messageID : in TpString, properties : in TpMessageInfoPropertyList) : void

getMessagePartList(sessionID : in TpSessionID, folderID : in TpString, messageID : in TpString) : TpMessagePartInfoList

getMessageParts(sessionID : in TpSessionID, folderID : in TpString, messageID : in TpString, partIDs: in TpStringList) : TpMessagePartList

8.7.1 Method getMessageProperties()

This method returns the message properties for the message specified by the message ID.

Returns: TpMessageInfoPropertyList

The properties are returned to the client application as an enumerated list. The client application may then walk through this list of returned properties to extract more information relating to the message. Each TpMessageInfoProperty type will ecode at least one message attribute and associated value. The number of returned properties may be zero or positive.

Parameters

sessionID : in TpSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
folderID : in TpString

This specifies the name of the folder into which the message is to be deposited. If the folder name is not a valid folder name, then the P_INVALID_FOLDER_ID exception is returned.
messageID : in TpString

The ID of the message whose properties are to be returned. If a message with the specified message ID cannot be located, the exception P_INVALID_MESSAGE_ID is thrown.

Returns

properties : in TpMessageInfoPropertyList

The list of properties provided as AVPs (Attribute-Value Pairs) of elements encoded into TpMessageInfoProperty types.
Raises

TpGCSonExceptions, P_INVALID_SESSION_ID, P_INVALID_FOLDER_ID, P_INVALID_MESSAGE_ID

8.7.2 Method setMessageProperties()

This method sets the modifiable message properties for the message specified by the message ID. If the application attempts to set read-only properties as part of the provided TpMessageInfoPropertyList, those updates (for the subset of read-only properties) will be silently discarded with no effect on the message, while all other suggested changes will be applied. If the List contains only read-only property updates, then the method will fail and throw a P_TASK_REFUSED exception.

The properties are specified by the client application as an enumerated list. The SCF implementation may then walk through this list of submitted properties to apply updates relating to the message as required. Each TpMessageInfoProperty type will ecode at least one message attribute and associated value. The number of provided properties may be one or more.

Parameters

sessionID : in TpSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
folderID : in TpString

This specifies the name of the folder into which the message is to be deposited. If the folder name is not a valid folder name, then the P_INVALID_FOLDER_ID exception is returned.
messageID : in TpString

The ID of the message whose properties are to be returned. If a message with the specified message ID cannot be located, the exception P_INVALID_MESSAGE_ID is thrown.

properties : in TpMessageInfoPropertyList

The list of properties provided as AVPs (Attribute-Value Pairs) of elements encoded into TpMessageInfoProperty types.
Raises

TpGCSonExceptions, P_INVALID_SESSION_ID, P_INVALID_FOLDER_ID, P_INVALID_MESSAGE_ID

8.7.3 Method getMessagePartList()

This method returns, as a TpMessagePartInfoList, the list of various part IDs of a message including headers, partitioned content etc., as separate TpStrings that may then be parsed or used as appropriate by the client application.

Returns: TpMessagePartInfoList

Parameters

sessionID : in TpSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
folderID : in TpString

This specifies the name of the folder which the message is stored. If the folder name is not a valid folder name, then the P_INVALID_FOLDER_ID exception is returned.
messageID : in TpString

The ID of the message whose parts are to be returned. If a message with the specified message ID cannot be located, the exception P_INVALID_MESSAGE_ID is thrown.

Returns

MessagePartIDs : in TpMessagePartInfoList

The list of message parts as a list of strings.
Raises

TpGCSonExceptions, P_INVALID_SESSION_ID, P_INVALID_FOLDER_ID, P_INVALID_MESSAGE_ID

8.7.4 Method getMessageParts()

This method returns the specific parts of the specific message being requested.

Returns: TpMessagePartList

Parameters

sessionID : in TpSessionID

This is the session ID of the open mailbox. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
folderID : in TpString

This specifies the name of the folder which the message is stored. If the folder name is not a valid folder name, then the P_INVALID_FOLDER_ID exception is returned.
messageID : in TpString

The ID of the message whose part is to be returned. If a message with the specified message ID cannot be located, the exception P_INVALID_MESSAGE_ID is thrown.

partIDs : in TpStringList

The list of IDs of the message parts to be returned. If the message does not have a part with that ID, a P_INVALID_MESSAGE_PART_ID exception is thrown.

Returns

MessagePart : in TpMessagePartList

The identified message part.
Raises

TpGCSonExceptions, P_INVALID_SESSION_ID, P_INVALID_FOLDER_ID, P_INVALID_MESSAGE_ID, P_INVALID_MESSAGE_PART_ID

9 State Transition Diagrams

<< This is deferred for later attention. >>

10 Data Definitions

This clause provides the generic messaging service data definitions necessary to support the API specification. All data types referenced but not defined in this clause are common data definitions which may be found in ES 202 915-2.

10.1 Event notification Definitions

10.1.1 TpGCSEventName

Defines the name of event being notified. In phase 2 of the APIs, only the following events are supported.

	Name
	Value
	Description

	P_EVENT_GCS_NAME_UNDEFINED
	0
	Undefined

	P_EVENT_GCS_NEW_MESSAGE_INBOX
	1
	New Message Arrived in the inbox folder of the mailbox.

	P_EVENT_GCS_NEW_MESSAGE
	2
	A new incoming message as arrived. This event is for use with the IpCommunicationsSession only.

	P_EVENT_GCS_MESSAGE_READ
	3
	A message has been read.

	P_EVENT_GCS_DEVICE_AVAILABLE
	4
	A device has become available in the network that was previously unavailable.

10.1.2 TpGCSEventCriteria

Defines the Tagged Choice of Data Elements that specify the criteria for an event notification to be generated.

	
	Tag Element Type
	

	
	TpGCSEventName
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_EVENT_GCS_NEW_MESSAGE_INBOX
	TpGCSNewMessageInboxCriteria
	EventNewMessageInbox

	P_EVENT_GCS_NEW_MESSAGE
	TpGCSNewMessageCriteria
	EventNewMessage

	P_EVENT_GCS_MESSAGE_READ
	TpGCSMessageReadCriteria
	EventMessageRead

	P_EVENT_GCS_DEVICE_AVAILABLE
	TpGCSDeviceAvailableCriteria
	EventDeviceAvailable

10.1.3 TpGCSEventCriteriaSet

Defines a Numbered Set of Data Elements of TpGCSEventCriteria.
10.1.4 TpGCSEventCriteriaResult

Defines the Sequence of Data Elements that specify the criteria for a GMS New Message Arrived event.

	Sequence Element Name
	Sequence Element Type

	AssignmentID
	TpAssignmentID

	EventCriteria
	TpGCSEventCriteria

10.1.5 TpGCSEventCriteriaResultSet

Defines a Numbered Set of Data Elements of TpGCSEventCriteriaResult.
10.1.6 TpGCSEventInfo

Defines the Tagged Choice of Data Elements that specify the information returned to the application in an event notification.

	
	Tag Element Type
	

	
	TpGCSEventName
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_EVENT_GCS_NAME_UNDEFINED
	TpString
	EventNameUndefined

	P_EVENT_GCS_NEW_MESSAGE_INBOX
	TpNewMessageInboxInfo
	EventNewMessageInbox

	P_EVENT_GCS_NEW_MESSAGE
	TpNewMessageInfo
	EventNewMessage

	P_EVENT_GCS_MESSAGE_READ
	TpMessageReadInfo
	EventMessageRead

	P_EVENT_GCS_DEVICE_AVAILABLE
	TpDeviceAvailableInfo
	EventDeviceAvailable

10.1.7 TpGCSNewMessageInboxCriteria

Defines the Sequence of Data Elements that specify the criteria for a New Message Inbox event.

	Sequence Element Name
	Sequence Element Type

	MailboxID
	TpAddress

	AuthenticationInfo
	TpString

10.1.8 TpGCSNewMessageCriteria

Defines the Sequence of Data Elements that specify the criteria for a New Message event.

	Sequence Element Name
	Sequence Element Type

	SourceAddress
	TpAddress

	DestinationAddress
	TpAddress

10.1.9 TpGCSMessageReadCriteria

Defines the Sequence of Data Elements that specify the criteria for a Message Read event.

	Sequence Element Name
	Sequence Element Type

	SourceAddress
	TpAddress

	DestinationAddress
	TpAddress

10.1.10 TpGCSDeviceAvailableCriteria

Defines the Sequence of Data Elements that specify the criteria for a Device Available event.

	Sequence Element Name
	Sequence Element Type

	DeviceAddress
	TpAddress

10.1.11 TpNewMessageInboxInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a New Message Inbox event.

	Sequence Element Name
	Sequence Element Type

	MailboxID
	TpAddress

	FolderID
	TpString

	MessageID
	TpString

	NumberOfProperties
	TpInt32

10.1.12 TpNewMessageInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a New Message event.

	Sequence Element Name
	Sequence Element Type

	SourceAddress
	TpAddress

	DestinationAddress
	TpAddress

	MessageID
	TpString

10.1.13 TpMessageReadInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Message Read event.

	Sequence Element Name
	Sequence Element Type

	SourceAddress
	TpAddress

	DestinationAddress
	TpAddress

	MessageID
	TpString

	SessionID
	TpSessionID

10.1.14 TpDeviceAvailableInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a Device Available event.

	Sequence Element Name
	Sequence Element Type

	DeviceAddress
	TpAddress

10.2 Generic Messaging Data Definitions

10.2.1 IpCommunicationsManager

Defines the address of an IpCommunicationsManager Interface.

10.2.2 IpCommunicationsManagerRef

Defines a Reference to type IpCommunicationsManager.

10.2.3 IpAppCommunicationsManager

Defines the address of an IpAppCommunicationsManager Interface.

10.2.4 IpAppCommunicationsManagerRef

Defines a Reference to type IpAppCommunicationsManager.

10.2.5 IpMessageManager

Defines the address of an IpMessageManager Interface.

10.2.6 IpMessageManagerRef

Defines a Reference to type IpMessageManager.

10.2.7 IpMailbox

Defines the address of an IpMailbox Interface.

10.2.8 IpMailboxRef

Defines a Reference to type IpMailbox.

10.2.9 IpAppMailbox

Defines the address of an IpAppMailbox Interface.

10.2.10 IpAppMailboxRef

Defines a Reference to type IpAppMailbox
10.2.11 IpCommunicationsSession

Defines the address of an IpCommunicationsSession Interface.

10.2.12 IpCommunicationsSessionRef

Defines a Reference to type IpCommunicationsSession.

10.2.13 IpAppCommunicationsSession

Defines the address of an IpAppCommunicationsSession Interface.

10.2.14 IpAppCommunicationsSessionRef

Defines a Reference to type IpAppCommunicationsSession
10.2.15 TpGCSInfoData

Defines the Tagged Choice of Data Elements that specify the information.

	
	Tag Element Type
	

	
	TpGCSInfoType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_GCS_INFO_UNDEFINED
	TpString
	InfoUndefined

	P_GCS_INFO_ADDRESS
	TpAddress
	InfoAddress

	P_GCS_INFO_AU_DATA
	TpOctetList
	InfoAuData

	P_GCS_INFO_BIN_DATA
	TpOctetList
	InfoBinData

	P_GCS_INFO_TEXT_DATA
	TpString
	InfoTextData

	P_GCS_INFO_MIME_DATA
	TpString
	InfoMimeData

	P_GCS_INFO_UU_ENC_DATA
	TpString
	InfoUuEncData

	P_GCS_INFO_WAVE_DATA
	TpOctetList
	InfoWaveData

10.2.16 TpGCSInfoDataList

Defines a Numbered List of Data Elements of TpGCSInfoData
10.2.17 TpGCSInfoType

Defines a specific communications information type.

	Name
	Value
	Description

	P_GCS_INFO_UNDEFINED
	0
	Undefined

	P_GCS_INFO_ADDRESS
	1
	An address such as a url.

	P_GCS_INFO_AU_DATA
	2
	Binary audio data if the au format.

	P_GCS_INFO_BIN_DATA
	3
	Unspecified binary data.

	P_GCS_INFO_TEXT_DATA
	4
	Unspecified text data.

	P_GCS_INFO_MIME_DATA
	5
	Text data in mime format.

	P_GCS_INFO_UU_ENC_DATA
	6
	Binary data in UUEncoded format.

	P_GCS_INFO_WAVE_DATA
	7
	Binary audio data in the wav format.

10.2.18 TpGCSVariableInfo

Defines the Sequence of Data Elements that identify the communications information.

	Sequence Element Name
	Sequence Element Type

	infoName
	TpGCSVariableInfoName

	infoData
	TpGCSVariableInfoData

10.2.19 TpGCSVariableInfoSet

Defines a Numbered Set of Data Elements of TpGCSVariableInfo.
10.2.20 TpGCSVariableInfoData

Defines the Tagged Choice of Data Elements that specify the information.

	
	Tag Element Type
	

	
	TpGCSVariablePartType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_GCS_VARIABLE_PART_UNDEFINED
	TpString
	VariablePartUndefined

	P_GCS_VARIABLE_PART_ADDRESS
	TpAddress
	VariablePartAddress

	P_GCS_VARIABLE_PART_INT
	TpInt32
	VariablePartInt

	P_GCS_VARIABLE_PART_DATE
	TpDate
	VariablePartDate

	P_GCS_VARIABLE_PART_TIME
	TpTime
	VariablePartTime

	P_GCS_VARIABLE_PART_PRICE
	TpPrice
	VariablePartPrice

	P_GCS_VARIABLE_PART_TEXT
	TpString
	VariablePartText

10.2.21 TpGCSVariableInfoName

Defines the name of a variable information part. This data type is the same as TpString. The following values are supported:

	Name
	Description
	TpGCSVariableInfoPartType to be Used

	P_GCS_VARIABLE_INFO_NAME_SOURCE_ADDRESS
	The source address to set in the message.
	P_GCS_VARIABLE_PART_ADDRESS

	P_GCS_VARIABLE_INFO_NAME_DESTINATION_ADDRESS
	The destination address to send the message to.
	P_GCS_VARIABLE_PART_ADDRESS

	P_GCS_VARIABLE_INFO_NAME_VALIDITY_TIME
	The time indicating the end of the message validity period.
	P_GCS_VARIABLE_PART_TIME

	P_GCS_VARIABLE_INFO_NAME_VALIDITY_DATE
	The date indicating the end of the message validity period.
	P_GCS_VARIABLE_PART_DATE

	P_GCS_VARIABLE_INFO_NAME_PROTOCOL
	The protocol to used for this message if more than one is available.
	P_GCS_VARIABLE_PART_TEXT

	P_GCS_VARIABLE_INFO_NAME_DELIVERY_TIME
	The time indicating when the message should be delivered.
	P_GCS_VARIABLE_PART_TIME

	P_GCS_VARIABLE_INFO_NAME_DELIVERY_DATE
	The data indicating when the message should be delivered.
	P_GCS_VARIABLE_PART_DATE

10.2.22 TpGCSVariablePartType

Defines a specific communications information type.

	Name
	Value
	Description

	P_GCS_VARIABLE_PART_UNDEFINED
	0
	Undefined

	P_GCS_VARIABLE_PART_ADDRESS
	1
	An address such as a url.

	P_GCS_VARIABLE_PART_INT
	2
	An integer

	P_GCS_VARIABLE_PART_DATE
	3
	A date

	P_GCS_VARIABLE_PART_TIME
	4
	A time

	P_GCS_VARIABLE_PART_PRICE
	5
	A price

	P_GCS_VARIABLE_PART_TEXT
	6
	text

IpMailboxFolder

Defines the address of an IpMailboxFolder Interface.

10.2.23 IpMailboxFolderRef

Defines a Reference to type IpMailboxFolder.

10.2.24 IpMessage

Defines the address of an IpMessage Interface.

10.2.25 IpMessageRef

Defines a Reference to type IpMessage.

10.2.26 TpFolderInfoProperty

Defines the Tagged Choice of Data Elements that specify the information properties of a folder.

	
	Tag Element Type
	

	
	TpFolderInfoPropertyName
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_GCS_FOLDER_ID
	TpString
	FolderID

	P_GCS_FOLDER_MESSAGE
	TpString
	FolderMessage

	P_GCS_FOLDER_DATE_CREATED
	TpDateAndTime
	FolderDateCreated

	P_GCS_FOLDER_DATE_CHANGED
	TpDateAndTime
	FolderDateChanged

10.2.27 TpFolderInfoPropertyName

Defines a specific folder information property name.

	Name
	Value
	Description

	P_GCS_FOLDER_UNDEFINED
	0
	Undefined

	P_GCS_FOLDER_ID
	1
	The fully qualified ID of this folder
(i.e. including parent folder ID and mailbox ID)

	P_GCS_FOLDER_MESSAGE
	2
	Indicates the ID of a message

	P_GCS_FOLDER_DATE_CREATED
	3
	Indicates the date created

	P_GCS_FOLDER_DATE_CHANGED
	4
	Indicates the date last changed

10.2.28 TpFolderInfoPropertySet

Defines a Numbered Set of Data Elements of TpFolderInfoProperty.

10.2.29 TpMailboxIdentifier

Defines the Sequence of Data Elements that identify a mailbox.

	Sequence Element Name
	Sequence Element Type

	Mailbox
	IpMailboxRef

	SessionID
	TpSessionID

10.2.30 TpMailboxInfoProperty

Defines the Tagged Choice of Data Elements that specify the information properties of a mailbox.

	
	Tag Element Type
	

	
	TpMailboxInfoPropertyName
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_GCS_MAILBOX_ID
	TpAddress
	MailboxID

	P_GCS_MAILBOX_OWNER
	TpString
	MailboxOwner

	P_GCS_MAILBOX_FOLDER
	TpString
	MailboxFolder

	P_GCS_MAILBOX_DATE_CREATED
	TpDateAndTime
	MailboxDateCreated

	P_GCS_MAILBOX_DATE_CHANGED
	TpDateAndTime
	MailboxDateChanged

10.2.31 TpMailboxInfoPropertyName

Defines a specific mailbox information property name.

	Name
	Value
	Description

	P_GCS_MAILBOX_UNDEFINED
	0
	Undefined

	P_GCS_MAILBOX_ID
	1
	The ID of the Mailbox

	P_GCS_MAILBOX_OWNER
	2
	The owner of the mailbox

	P_GCS_MAILBOX_FOLDER
	3
	The fully qualified ID of a folder (i.e. including parent folder ID and mailbox ID)

	P_GCS_MAILBOX_DATE_CREATED
	4
	Indicates the date created

	P_GCS_MAILBOX_DATE_CHANGED
	5
	Indicates the date last changed

10.2.32 TpMailboxInfoPropertySet

Defines a Numbered Set of Data Elements of TpMailboxInfoProperty.

10.2.33 TpMessage

This data type is identical to a TpGCSInfoDataList, and defines the message content.

10.2.34 TpMessageInfoProperty

Defines the Tagged Choice of Data Elements that specify the information properties of a message.

	
	Tag Element Type
	

	
	TpMessageInfoPropertyName
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_GCS_MESSAGE_ID
	TpString
	MessageID

	P_GCS_MESSAGE_SUBJECT
	TpString
	MessageSubject

	P_GCS_MESSAGE_DATE_SENT
	TpDateAndTime
	MessageDateSent

	P_GCS_MESSAGE_DATE_RECEIVED
	TpDateAndTime
	MessageDateReceived

	P_GCS_MESSAGE_DATE_CHANGED
	TpDateAndTime
	MessageDateChanged

	P_GCS_MESSAGE_SENT_FROM
	TpAddress
	MessageSentFrom

	P_GCS_MESSAGE_SENT_TO
	TpAddress
	MessageSentTo

	P_GCS_MESSAGE_CC_TO
	TpAddress
	MessageCCTo

	P_GCS_MESSAGE_BCC_TO
	TpAddress
	MessageBCCTo

	P_GCS_MESSAGE_SIZE
	TpInt32
	MessageSize

	P_GCS_MESSAGE_PRIORITY
	TpMessagePriority
	MessagePriority

	P_GCS_MESSAGE_PROTOCOL
	TpString
	MessageProtocol

	P_GCS_MESSAGE_FORMAT
	TpMessageFormat
	MessageFormat

	P_GCS_MESSAGE_FOLDER
	TpString
	MessageFolder

	P_GCS_MESSAGE_STATUS
	TpMessageStatus
	MessageStatus

10.2.35 TpMessageInfoPropertyName

Defines a specific message information property name.

	Name
	Value
	Description

	P_GCS_MESSAGE_UNDEFINED
	0
	Undefined

	P_GCS_MESSAGE_ID
	1
	The identity of the message

	P_GCS_MESSAGE_SUBJECT
	2
	The subject of the message

	P_GCS_MESSAGE_DATE_SENT
	3
	Indicates the date send

	P_GCS_MESSAGE_DATE_RECEIVED
	4
	Indicates the date received

	P_GCS_MESSAGE_DATE_CHANGED
	5
	Indicates the date last changed

	P_GCS_MESSAGE_SENT_FROM
	6
	Indicates the sender

	P_GCS_MESSAGE_SENT_TO
	7
	Indicates the Sent To addressees

	P_GCS_MESSAGE_CC_TO
	8
	Indicates the Copied To addressees

	P_GCS_MESSAGE_BCC_TO
	9
	Indicates the Copied Blind addressees

	P_GCS_MESSAGE_SIZE
	10
	Indicates the size of the message in bytes

	P_GCS_MESSAGE_PRIORITY
	11
	Indicates the priority of the message

	P_GCS_MESSAGE_FORMAT
	12
	Indicates the format of the message

	P_GCS_MESSAGE_FOLDER
	13
	The fully qualified ID of the folder in which the message is stored

	P_GCS_MESSAGE_STATUS
	14
	The status of the message

10.2.36 TpMessageInfoPropertySet

Defines a Numbered Set of Data Elements of TpMessageInfoProperty.

10.2.37 TpMessagePart

Defines the Sequence of Data Elements that identify a message part.

	Sequence Element Name
	Sequence Element Type

	ID
	TpString

	Type
	TpMessagePartType

	Data
	TpGCSInfoData

10.2.38 TpMessagePartList

Defines a Numbered List of Data Elements of TpMessagePart
10.2.39 TpMessagePartInfo

Defines the Sequence of Data Elements that identify a message part.

	Sequence Element Name
	Sequence Element Type

	ID
	TpString

	Type
	TpMessagePartType

10.2.40 TpMessagePartInfoList

Defines a Numbered List of Data Elements of TpMessagePartInfo

10.2.41 TpMessagePartType

Defines the type of a message part.

	Name
	Value
	Description

	P_GCS_MESSAGE_PART_UNDEFINED
	0
	Undefined

	P_GCS_MESSAGE_PART_HEADER
	1
	Message part is a header

	P_GCS_MESSAGE_PART_BODY
	2
	Message part is part of the message body

<< Further discussion of more specific message part types is needed.>>

10.2.42 TpMessagePriority

Defines the priority of a message.

	Name
	Value
	Description

	P_GCS_MESSAGE_PRIORITY_UNDEFINED
	0
	Undefined/Normal

	P_GCS_MESSAGE_PRIORITY_HIGH
	1
	High priority

	P_GCS_MESSAGE_PRIORITY_LOW
	2
	Low priority

10.2.43 TpMessageResult

Defines the status of a message.

	Name
	Value
	Description

	P_GCS_RESULT_UNDEFINED
	0
	Undefined

	P_GCS_RESULT_MESSAGE_SENT
	1
	Message sent

	P_GCS_RESULT_MESSAGE_DELIVERY_CONFIRMED
	2
	Message was delivered and delivery was confirmed.

10.2.44 TpMessageError

Defines the status of a message.

	Name
	Value
	Description

	P_GCS_ERROR_UNDEFINED
	0
	Undefined

	P_GCS_ERROR_MESSAGE_NOT_SENT
	1
	Message could not be sent due to an internal error.

	P_GCS_ERROR_RESOURCE_TIMEOUT
	2
	No response was received from the network element.

	P_GCS_ERROR_ILLEGAL_INFO
	3
	Unsupported or invalid info data.

	P_GCS_ERROR_RESOURCE_UNAVAILABLE
	4
	Network element was unavailable.

10.2.45 TpMessageStatus

Defines the status of a message.

	Name
	Value
	Description

	P_GCS_MSG_STATUS_READ_MSG
	0
	Read message

	P_GCS_MSG_STATUS_UNREAD_MSG
	1
	Unread message

	P_GCS_MSG_STATUS_FORWARDED_MSG
	2
	Forwarded message

	P_GCS_MSG_STATUS_REPLIED_TO_MSG
	3
	Replied to message

	P_GCS_MSG_STATUS_SAVED_OR_UNSENT_
MSG
	4
	Saved or unsent message

	P_GCS_MSG_STATUS_NOTIFICATION_MSG_WAS_DELIVERED
	5
	Notification of a delivered message

	P_GCS_MSG_STATUS_NOTIFICATION_MSG_WAS_READ
	6
	Notification of a read message

	P_GCS_MSG_STATUS_NOTIFICATION_MSG_WAS_NOT_DELIVERED
	7
	Notification of a message that was not delivered

	P_GCS_MSG_STATUS_NOTIFICATION_MSG_WAS_NOT_READ
	8
	Notification of a message that was not read

11 Exception Classes

The following are the list of exception classes which are used in this interface of the API.

	Name
	Description

	P_INSUFFICIENT_PRIVILEGE
	The application has insufficient privilege to perform this action

	P_INVALID_AUTHENTICATION_INFORMATION
	Authentication Information is not valid

	P_INVALID_FOLDER_ID
	The folder ID is invalid (does not exist if opening a folder, already exists if creating a folder)

	P_INVALID_MAILBOX
	Chosen Mailbox Address is invalid

	P_INVALID_MESSAGE_ID
	The message ID is invalid / does not exist

	P_INVALID_MESSAGE_PART_ID
	The message part ID is invalid/does not exist

	P_INVALID_PROTOCOL
	The protocol specified is invalid or is not supported

	P_MESSAGE_NOT_REMOVED
	The message cannot be removed

	P_NUMBER_NOT_POSITIVE
	A negative number of properties was requested

	P_PROPERTY_NOT_SET
	The property cannot be changed

Each exception class contains the following structure:

	Structure Element Name
	Structure Element Type
	Structure Element Description

	ExtraInformation
	TpString
	Carries extra information to help identify the source of the exception, e.g. a parameter name

	
	

	

	
	

	
	

	

	
	

	
	

	

	
	

	
	

	

	
	

	
	

	

	
	

	
	

	

	
	

	
	

	

	
	

	
	

	

	
	

	
	

	

	
	

	
	

	

	
	

	
	

	

	
	

	
	

	

	
	

	
	

	

	
	

	
	

	

	
	

	
	

	

	
	

	
	

	

	
	

	
	

	

	
	

	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

ETSI

