joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040273
Meeting #27, Miami, FL, USA, 10-14 May 2004

Source:
Telcordia (John-Luc Bakker)
Title:
J2EE Java source versus part one
Agenda Item:
OSA3

Document for:
Information
Introduction

Telcordia has had the pleasure to review the J2EE source found in the 29.198 series. We have identified a number of inconsistencies between the agreed J2EE production rules as found in 29.198-01 and the J2EE java source itself. Below we list the inconsistencies. We recommend that the java source be updated such that it reflects the J2EE production rules as found in 29.198-01.
List

Rule C.3.6.7
“An exception maps to a constructed exception, providing appropriate constructors and accessor methods for the data contained within the exception. “
We found exception that do not follow the rule above. Take for example: IdNotFoundException, it has the field below:
private Throwable cause = null;
This field cannot be accessed due to lack of access methods and the field is private. We recommend that rule 3.6.7 be consistently applied.

Rule C.3.6.7.5
“Additional abstract exceptions (See ETSI ES 202 915-2, Annex D) have been defined which are TpInvalidArgumentException, TpFrameworkException, TpMobilityException, TpDataSessionException, TpMessagingException, TpConnectivityException, TpAccountException, TpPAMException and TpPolicyException”
Not all exception listed in “29.198, annex D” are available, e.g. “FrameworkException”.
We recommend that rule 3.6.7.5 be fully applied.

Rule C.3.6.5

Java classes representing enumerations need to implement readResolve() in order for their objects to be de-serialized.
Find below a suggested change to the rulebook

NameValuePair data types are represented in Java as public final classes that implement java.io.Serializable, and have:

· two static final data members per name-value pair

· a value returning method, named getValue()

· a name returning method, named getValueText()

· an integer conversion method, named getObject()

· a private constructor

· readResolve(), hashCode and equals implementations

No default constructor is provided. One of the data members per name-value pair has the same name as the name-value pair name. The other has an underscore “_” prepended and is intended for use in switch statements. Values are assigned sequentially, starting with 0.

The getObject() method returns the name-value pair class with the specified value if the specified value corresponds to an element of the name-value pair data type. If the specified value is out of range, an InvalidEnumValueException exception is raised

Example 9:

package org.csapi.jr.se;

public final class AddressScreening implements java.io.Serializable {

private int _value;

private static int _size = 5;

private static AddressScreening[] _array = new AddressScreening[_size];

public static final int _ADDRESS_SCREENING_UNDEFINED = 0;

public static final AddressScreening ADDRESS_SCREENING_UNDEFINED = new AddressScreening(_ADDRESS_SCREENING_UNDEFINED);

public static final int _ADDRESS_SCREENING_USER_VERIFIED_PASSED = 1;

public static final AddressScreening ADDRESS_SCREENING_USER_VERIFIED_PASSED = new AddressScreening(_ADDRESS_SCREENING_USER_VERIFIED_PASSED);

public static final int _ADDRESS_SCREENING_USER_NOT_VERIFIED = 2;

public static final AddressScreening ADDRESS_SCREENING_USER_NOT_VERIFIED = new AddressScreening(_ADDRESS_SCREENING_USER_NOT_VERIFIED);

public static final int _ADDRESS_SCREENING_USER_VERIFIED_FAILED = 3;

public static final AddressScreening ADDRESS_SCREENING_USER_VERIFIED_FAILED = new AddressScreening(_ADDRESS_SCREENING_USER_VERIFIED_FAILED);

public static final int _ADDRESS_SCREENING_NETWORK = 4;

public static final AddressScreening ADDRESS_SCREENING_NETWORK = new AddressScreening(_ADDRESS_SCREENING_NETWORK);

private AddressScreening(int value) {

this._value = value;

this._array[this._value] = this;

}

private Object readResolve() throws java.io.ObjectStreamException {

return _array[_value];

}

public int getValue() {

return _value;

}

public String getValueText() {

switch (_value) {

case _ADDRESS_SCREENING_UNDEFINED:

return "ADDRESS_SCREENING_UNDEFINED";

case _ADDRESS_SCREENING_USER_VERIFIED_PASSED:

return "ADDRESS_SCREENING_USER_VERIFIED_PASSED";

case _ADDRESS_SCREENING_USER_NOT_VERIFIED:

return "ADDRESS_SCREENING_USER_NOT_VERIFIED";

case _ADDRESS_SCREENING_USER_VERIFIED_FAILED:

return "ADDRESS_SCREENING_USER_VERIFIED_FAILED";

case _ADDRESS_SCREENING_NETWORK:

return "ADDRESS_SCREENING_NETWORK";

default:

return "ERROR";

}

}

public static AddressScreening getObject(int value) throws org.csapi.jr.se.InvalidEnumValueException {

if(value >= 0 && value < _size) {

return _array[value];

} else {

throw new org.csapi.jr.se.InvalidEnumValueException();

}

}

public boolean equals(Object o) {

//equality logic

}

public int hashCode() {

//hash code calculation

}

}

We recommend that a CR be produced incorporating the above and causing the Java to be regenerated.

Rule C.5.2.1
“This interface implements java.io.Serializable. Since it is the root interface for all other interfaces, this makes all defined interfaces serializable.”

However, IpInterface does not extend Serializable as can be seen below.
package org.csapi.jr.ee;

public interface IpInterface

{

 static final long serialVersionUID = 31000002544L;

}
We recommend that rule 5.2.1 be applied.

No rule for serialVersionUID
The code above shows “static final long serialVersionUID = 31000002544L;”. There is no rule for inclusion of this field. There is no use for such a field when found in an interface.

We recommend that the serialVersionUID field be removed from all the java sources as there is no rule for its inclusion.

