Joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040072

Meeting #26, Atlanta, GA, USA, 16-20 February 2004

Source:
Musa Unmehopa, Mark Hooper, Lucent Technologies
Title:
GMS SCF Re-Architecture Stage-3 method-level discussion

Agenda Item:
OSA 3 (3GPP Rel-6 / Parlay 5 / ETSI OSA 3)

Document for:
Discussion
Introduction:

In various OSA standards meetings leading up to the ad-hoc meeting for the GMS SCF re-architecture effort held at Sophia Antipolis during 29-30 January, various proposals to enhance the GMS SCF definition or correct flaws in that API were proposed as input contributions.

Given the work done during the Sophia meeting and the agreement to pursue Stage 3 work at Atlanta, here is a Lucent contribution that provides a high-level abstracted view of the API capabilities and structure as input to discussions. This contribution may be considered as a companion contribution to N5-040071.

Functional API proposal:

IpCommunicationsManager:

OpenMailbox (userID, serverName); //userID is string name of user email

OpenSession (userIDSet, protocol); //userID is some TpAddress representation

enableCommNotifications (paradigm, notificationTypeInParadigm): returns NoteID

 // do we need a separate createNotification? In other words, is the notification lifecycle

 // create->enable->change->disable->destroy? Or are create and enable synonymous.

 //define the kinds of notifications supported, pass in a TpCriteria as argument (notification

 //may be on message, or on larger scope item like user session or generic session (where

 //page mode messaging is used e.g. applies to all messages) not recommended for use in

 //reporting delivery status.

disableCommNotifications (NoteID);

getCommNotifications ();

 //returns an ennumerated list of notifications that an application may have set.

destroyCommNotifications ()

 //need an argument? or is this a blunt method to destroy all notifications set? we prefer the former.

changeCommNotifications (TpAssignmentID);

 //AssignmentID associated with a notification that was previously set.

IpMailbox //folds the IpMailbox folder interface into this interface

getFolders //returns ennumeration of subtended folders

createFolder (folderName, properties) //need to decide on properties to support

deleteFolder (folderName);

openFolder (folderName);

closeFolder (folderName);

copyFolder (folderName1, newFolderName);

 //deep copy of folder contents. option to consider once the method signature constraints become

 //known is to support a single method for folder operations with a parameter that indicates what

 //the method intent is. i.e. generic folder op with method parameter indicating create, open, close,

 //copy etc., balancing the forces of fan-out vs. method name clarity. Preference is clarity.

getInfoProperties //what properties to support in the generic sense?

setInfoProperties //apply to both folders and mailboxes

putMessage(folder, MessageObject); //if folder is not specified, goes to outbox by default

getMessage(folder, MessageID);

sendMessage(MessageObject);

 //Should this be included? Should copying a message to the OUTBOX folder be considered

 //sufficient. If not, should there be just a single send that is common to both Mailboxes and

 //Non-Call-Related (NCR) UI in the Comm SCF?

IpCommSession //for all session mode and page messaging

sendMessage (userIDSet, MessageObject, Protocol); returns PendingID

 //if protocol is not specified, SCS will use default. Same protocol will be used to send to all

 //recipients. individual failures will be reported separately in enum structure in response similar

 //to how things happen in UL/US

sendAndStoreMessage

 //sends message, but stores it in mailbox even if non-mailbox paradigm is used –

 //Q: store in same mailbox? Another repository? Intent is to provide user with traceability

 //This is a nice-to-have feature, not critical to the API. Might be wiser to remove this for now.

 //An alternative could be to add storeMessage as parameter to the sendMessage method.

cancelDelivery (PendingID); //delivery cancelled if still pending

QueryStatus (PendingID);

 //Inform the asker about status of message. can be used both with messages that have

 //delivery receipt and otherwise.

Common IpMessage interface for both folder and non-folder paradigms.

getMessageInfo

 //information about message - need to create a new data structure that contains message

 //information and specify this as a return type.

getMessageProperties

setMessageProperties

getMessageProtocol //for received messages if a common send is used.

deleteMessage

createMessage

getListOfMessageParts

 //returns a list of pointers to each individual subtended message component.

 //assumes header is the first element of the list.

getMessagePart(componentPtr);

 //deals with MIME attachments assumes that componentPtr#1 == header

 //SMPP and WAP may be exceptions since they have only a single block including headers

 //and text.

Summary:

We respectfully request that this input and related issues be discussed and factored into the design of the new Comm SCF as Stage 3 work continues.

