[image: image14.wmf]

TD <>
Draft RES/TISPAN-06005-8-OSA V0.0.3 (2004-01)
ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);

Test Suite Structure and Test Purposes (TSS&TP);

Part 8: Data Session Control SCF;

(Parlay 3)

Reference

RES/TISPAN-06005-8-OSA

Keywords

API, OSA, TSS&TP

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, send your comment to:
editor@etsi.org
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2004.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Contents

4Intellectual Property Rights

Foreword
4
1
Scope
5
2
References
5
3
Definitions and abbreviations
5
3.1
Definitions
5
3.2
Abbreviations
6
4
Test Suite Structure (TSS)
6
5
Test Purposes (TP)
6
5.1
Introduction
6
5.1.1
TP naming convention
6
5.1.2
Source of TP definition
6
5.1.3
Test strategy
7
5.2
TPs for the Data Session Control SCF
7
5.2.1
Data Session Control, SCF side
7
5.2.1.1
IpDataSessionControlManager
7
5.2.1.2
IpDataSession
16
5.2.2
Data Session Control, application side
28
5.2.2.1
IpAppDataSessionControlManager
28
5.2.2.2
IpAppDataSession
32
5.2.2.2.1
General tests, Active state
32
5.2.2.2.2
Active state, Setup Sub-state
34
5.2.2.2.2
Active state, Established Sub-state
36
5.2.2.2.3
Network Released and Finished state
38
5.2.2.2.4
Application Released state
39
History
40

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES) has been produced by ETSI Technical Committee TISPAN.

The present document is part 8 of a multi-part deliverable. Full details of the entire series can be found in part 1 [6].

To evaluate conformance of a particular implementation, it is necessary to have a set of test purposes to evaluate the dynamic behaviour of the Implementation Under Test (IUT). The specification containing those test purposes is called a Test Suite Structure and Test Purposes (TSS&TP) specification.

1
Scope

The present document provides the Test Suite Structure and Test Purposes (TSS&TP) specification for the Data Session Control SCF of the Application Programming Interface (API) for Open Service Access (OSA) defined in ES 201 915‑8 [1] in compliance with the relevant requirements, and in accordance with the relevant guidance given in ISO/IEC 9646-2 [4] and ETS 300 406 [5].

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication and/or edition number or version number) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

[1]
ETSI ES 201 915-8: "Open Service Access (OSA); Application Programming Interface (API);
Part 8: Data Session Control SCF (Parlay 3)".

[2]
ETSI ES 202 170: "Open Service Access (OSA); Application Programming Interface (API); Implementation Conformance Statement (ICS) proforma specification for Framework and SCFs".

[3]
ISO/IEC 9646-1: "Information technology - Open Systems Interconnection - Conformance testing methodology and framework - Part 1: General concepts".

[4]
ISO/IEC 9646-2: "Information technology - Open Systems Interconnection - Conformance testing methodology and framework - Part 2: Abstract Test Suite specification".

[5]
ETSI ETS 300 406: "Methods for Testing and Specification (MTS); Protocol and profile conformance testing specifications; Standardization methodology".

[6]
ETSI ES 202 196-1: "Open Service Access (OSA); Application Programming Interface (API); Test Suite Structure and Test Purposes (TSS&TP); Part 1: Overview".

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in ES 201 915-8 [1], ISO/IEC 9646-1 [3] and ISO/IEC 9646-2 [4] and the following apply:

abstract test case: Refer to ISO/IEC 9646‑1 [3].

Abstract Test Method (ATM): Refer to ISO/IEC 9646‑1 [3].

Abstract Test Suite (ATS): Refer to ISO/IEC 9646‑1 [3].

Implementation Under Test (IUT): Refer to ISO/IEC 9646‑1 [3].

Lower Tester (LT): Refer to ISO/IEC 9646‑1 [3].

Implementation Conformance Statement (ICS): Refer to ISO/IEC 9646‑1 [3].

ICS proforma: Refer to ISO/IEC 9646‑1 [3].

Implementation eXtra Information for Testing (IXIT): Refer to ISO/IEC 9646‑1 [3].

IXIT proforma: Refer to ISO/IEC 9646‑1 [3].

Test Purpose (TP): Refer to ISO/IEC 9646‑1 [3].

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

API
Application Programming Interface

ATM
Abstract Test Method

ATS
Abstract Test Suite

CM
Control Manager

DS
Data Session

DSC
Data Session Control

ICS
Implementation Conformance Statement

IUT
Implementation Under Test

IXIT
Implementation eXtra Information for Testing

LT
Lower Tester

OSA
Open Service Access

TP
Test Purpose

TSS
Test Suite Structure

4
Test Suite Structure (TSS)

Data Session Control SCF

· IpDataSessionControlManager (CM)

· IpDataSession (DS)

5
Test Purposes (TP)

5.1
Introduction

For each test requirement a TP is defined.

5.1.1
TP naming convention

TPs are numbered, starting at 01, within each group. Groups are organized according to the TSS. Additional references are added to identify the actual test suite (see table 1).

Table 1: TP identifier naming convention scheme

Identifier:
<suite_id>_<group>_<nnn>

<suite_id>
= SCF name:
"DSC" for Data Session Control SCF

<group>
= group number:
two character field representing the group reference according to TSS

<nn>
= sequential number:
(01-99)

5.1.2
Source of TP definition

The TPs are based on ES 201 915‑8 [1].

5.1.3
Test strategy

As the base standard ES 201 915‑8 [1] contains no explicit requirements for testing, the TPs were generated as a result of an analysis of the base standard and the ICS specification ES 202 170 [2].

The TPs are only based on conformance requirements related to the externally observable behaviour of the IUT and are limited to conceivable situations to which a real implementation is likely to be faced (see ETS 300 406 [5]).

5.2
TPs for the Data Session Control SCF

All ICS items referred to in this clause are as specified in ES 202 170[2] unless indicated otherwise by another numbered reference.

All parameters specified in method calls are valid unless specified.

The procedures to trigger the SCF to call methods in the application are dependant on the underlying network architecture and are out of the scope of this test specification. Those method calls are preceded by the words "Triggered action".

5.2.1 Data Session Control, SCF side
5.2.1.1
IpDataSessionControlManager

Test DSC_CM_01
Summary:
IpDataSessionControlManager, mandatory methods, successful

Reference:
ES 201 915-8 [1], clause 8.4

Preamble:
Registration of the IUT (Data Session Control SCF) and the tester (application) to the framework. The
tester must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call createNotification()
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria
Check:
valid value of TpAssignmentID is returned

2.
Triggered Action: cause IUT to call reportNotification() method on the tester's (application's) IpAppDataSessionControlManager interface.
Parameters:
dataSessionReference, eventInfo, assignmentID

3.
Method call destroyNotification()
Parameters:
assignmentID
Check:
no exception is returned

[image: image1.wmf] :

IpAppDataSessionControlManager

 :

IpDataSessionControlManager

1. createNotification(appDataSessionControlManager, eventCriteria)

assignmentID

2. reportNotification(dataSessionReference, eventInfo, assignmentID)

appDataSession

3. destroyNotification(assignmentID)

Test DSC_CM_02
Summary:
IpDataSessionControlManager, all methods, successful

Reference:
ES 201 915-8 [1], clause 8.4

Precondition:
changeNotification() and getNotifications() implemented

Preamble:
Registration of the IUT (Data Session Control SCF) and the tester (application) to the framework. The
tester must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call createNotification()
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria
Check:
valid value of TpAssignmentID is returned

2.
Method call getNotifications()
Parameters:
none
Check:
value of TpDataSessionEventCriteriaResultSet containing event criteria as specified in 1. is
returned

3.
Method call changeNotification()
Parameters:
assignmentID, eventCriteria (different to 1.)
Check:
no exception is returned

4.
Method call getNotifications()
Parameters:
none
Check:
value of TpDataSessionEventCriteriaResultSet containing event criteria as specified in 3. is
returned

5.
Method call destroyNotification()
Parameters:
assignmentID
Check:
no exception is returned

6.
Method call destroyNotification()
Parameters:
assignmentID as received in1. and destroyed in 5.
Check:
P_INVALID_ASSIGMENT_ID or any suitable exception is returned

[image: image2.wmf] :

IpAppDataSessionControlManager

 :

IpDataSessionControlManager

1. createNotification(appDataSessionControlManager, eventCriteria1)

assignmentID

2. getNotification()

eventCriteria1

3. changeNotification(assignmentID, eventCriteria2)

4. getNotification()

eventCriteria2

5. destroyNotification(assignmentID)

6. destroyNotification(assignmentID)

P_INVALID_ASSIGMENT_ID

This method is used to check that the

assignmentID has been correctly

released after the destroyNotification()

method call; any other suitable

exception may be returned

Test DSC_CM_03
Summary:
IpDataSessionControlManager, createNotification(), P_INVALID_CRITERIA exception

Reference:
ES 201 915-8 [1], clauses 7.4.1 and 8.3

Preamble:
Registration of the IUT (Data Session Control SCF) and the tester (application) to the framework. The
tester must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call createNotification()
Parameters:
appDataSessionControlManager (non-NULL), invalid eventCriteria
Check:
P_INVALID_CRITERIA or any suitable exception is returned

[image: image3.wmf] :

IpAppDataSessionControlManager

 :

IpDataSessionControlManager

1. createNotification(appDataSessionControlManager, invalid eventCriteria)

P_INVALID_CRITERIA exception

Any other suitable

exception may be returned

Test DSC_CM_04
Summary:
IpDataSessionControlManager, destroyNotification(), P_INVALID_ASSIGMENT_ID exception

Reference:
ES 201 915-8 [1], clauses 7.4.1 and 8.3

Preamble:
Registration of the IUT (Data Session Control SCF) and the tester (application) to the framework. The
tester must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call createNotification()
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria
Check:
valid value of TpAssignmentID is returned

2.
Method call destroyNotification()
Parameters:
invalid assignmentID
Check:
P_INVALID_ASSIGMENT_ID or any suitable exception is returned

[image: image4.wmf] :

IpAppDataSessionControlManager

 :

IpDataSessionControlManager

2. destroyNotification(invalid assignmentID)

P_INVALID_ASSIGNMENT exception

Any other suitable

exception may be returned

1. createNotification(appDataSessionControlManager, eventCriteria)

assignmentID

Test DSC_CM_05
Summary:
IpDataSessionControlManager, changeNotification(), P_INVALID_ASSIGMENT_ID exception

Reference:
ES 201 915-8 [1], clauses 7.4.1 and 8.3

Precondition:
changeNotification() implemented

Preamble:
Registration of the IUT (Data Session Control SCF) and the tester (application) to the framework. The
tester must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call createNotification()
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria
Check:
valid value of TpAssignmentID is returned

2.
Method call changeNotification()
Parameters:
invalid assignmentID, eventCriteria
Check:
P_INVALID_ASSIGMENT_ID or any suitable exception is returned

[image: image5.wmf] :

IpAppDataSessionControlManager

 :

IpDataSessionControlManager

2. changeNotification(invalid assignmentID)

P_INVALID_ASSIGNMENT exception

Any other suitable

exception may be returned

1. createNotification(appDataSessionControlManager, eventCriteria)

assignmentID

Test DSC_CM_06
Summary:
IpDataSessionControlManager, changeNotification(), P_INVALID_CRITERIA exception

Reference:
ES 201 915-8 [1], clauses 7.4.1 and 8.3

Precondition:
changeNotification() implemented

Preamble:
Registration of the IUT (Data Session Control SCF) and the tester (application) to the framework. The
tester must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call createNotification()
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria
Check:
valid value of TpAssignmentID is returned

2.
Method call changeNotification()
Parameters:
assignmentID, invalid eventCriteria
Check:
P_INVALID_CRITERIA or any suitable exception is returned

[image: image6.wmf] :

IpAppDataSessionControlManager

 :

IpDataSessionControlManager

1. createNotification(appDataSessionControlManager, eventCriteria)

assignmentID

2. changeNotification(invalid eventCriteria)

P_INVALID_CRITERIA exception

Any other suitable

exception may be returned

Test DSC_CM_07
Summary:
all methods, successful, two createNotification() method calls

Reference:
ES 201 915-8 [1], clause 8.4

Precondition:
getNotifications() implemented

Preamble:
Registration of the IUT (Data Session Control SCF) and the tester (application) to the framework. The
tester must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call createNotification()
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria
Check:
valid value of TpAssignmentID is returned

2.
Method call getNotifications()
Parameters:
none
Check:
value of TpDataSessionEventCriteriaResultSet containing event criteria as specified in 1. is
returned

3.
Method call createNotification()
Parameters:
appDataSessionControlManager (non-NULL) different from 1., eventCriteria
Check:
same value of TpAssignmentID as in 1. is returned

4.
Triggered Action: cause IUT to call reportNotification() method on the tester's (application's) IpAppDataSessionControlManager interface
Parameters:
dataSessionReferencer, eventInfo, assignmentID
Check:
The interface given in 3. receives the event

5.
Triggered action: Kill the appDataSessionControlManager item referenced in 3.

6.
Triggered Action: cause IUT to call reportNotification() method on the tester's (application's) IpAppDataSessionControlManager interface.
Parameters:
dataSessionReference, eventInfo, assignmentID
Check:
The interface given in 1. receives the event.

[image: image7.wmf]2 :

IpAppDataSessionControlManager

 :

IpDataSessionControlManager

1 :

IpAppDataSessionControlManager

1. createNotification(appDataSessionControlManager1, eventCriteria)

assignmentID1

2. getNotification()

eventCriteria

3. createNotification(appDataSessionControlManager2, eventCriteria)

assignmentID1

4. reportNotification(dataSessionReference, eventInfo, assignmentID1)

6. reportNotification(dataSessionReference, eventInfo, assignmentID1)

5.Triggered action: Kill the appDataSessionControlManager item created in 3.

5.2.1.2
IpDataSession

Test DSC_DS_01
Summary:
IpDataSession, release after connectReq(), successful with interrupt after reportNotification()

Reference:
ES 201 915-8 [1], clauses 7.4.1 and 8.3

Preamble:
Registration of the IUT (Data Session Control SCF) and the tester (application) to the framework. The
tester must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call createNotification()
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria
Parameter values:

eventCriteria.DataSessionEventName = P_EVENT_DSCS_SETUP

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT
Check:
valid value of TpAssignmentID is returned

2.
Triggered action: cause IUT to call reportNotification() method on the tester's (application's) IpAppDataSessionControlManager interface, i.e. start to set-up data session
Parameters:
dataSessionReference, eventInfo, assignmentID

3.
Method call connectReq()
Parameters:
dataSessionID, responseRequested, targetAddress
Parameter values:

responseRequested.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_CONNECTED
Check:
valid value of TpAssignmentID is returned

4.
Triggered action: cause IUT to call connectRes() method on the tester's (application's) IpAppDataSession interface, i.e. accept the data session on the destination side
Parameters:
dataSessionID, eventReport, assignmentID

5.
Method call release()
Parameters:
dataSessionID, cause
Check:
no exception is returned

6.
Method call continueProcessing()
Parameters:
dataSessionID
Check:
P_INVALID_SESSION_ID or any suitable exception is returned

[image: image8.wmf] : IpAppDataSession

 :

IpAppDataSessionControlManager

 : IpDataSession

 :

IpDataSessionControlManager

eventCriteria.DataSessionEventName = P_EVENT_DSCS_SETUP

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT

1. createNotification(appDataSessionControlManager, eventCriteria)

assignmentID

2. reportNotification(dataSessionReference, eventInfo, assignmentID)

3. connectReq(dataSessionID, responseRequested, targetAddress)

assignmentID

responseRequested.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_CONNECTED

4. connectRes(dataSessionID, eventReport, assignmentID)

5. release(dataSessionID, cause)

Accept data session

on destination side

This method is used to check that the

dataSessionID has been correctly

released after the release() method

call; any other suitable exception may

be returned

6. continueProcessing(dataSessionID)

P_INVALID_SESSION_ID()

Test DSC_DS_02
Summary:
IpDataSession, deassignDataSession() after connectReq(), successful.

Reference:
ES 201 915-8 [1], clauses 7.4.1 and 8.3

Preamble:
Registration of the IUT (Data Session Control SCF) and the tester (application) to the framework. The
tester must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call createNotification()
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria
Parameter values:

eventCriteria.DataSessionEventName = P_EVENT_DSCS_SETUP

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT
Check:
valid value of TpAssignmentID is returned

2.
Triggered action: cause IUT to call reportNotification() method on the tester's (application's) IpAppDataSessionControlManager interface, i.e. start to set-up data session
Parameters:
dataSessionReference, eventInfo, assignmentID

3.
Method call connectReq()
Parameters:
dataSessionID, responseRequested, targetAddress
Parameter values:

responseRequested.MonitorMode = P_DATA_SESSION_MONITOR_MODE_NOTIFY

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_CONNECTED
Check:
valid value of TpAssignmentID is returned

4.
Triggered action: cause IUT to call connectRes() method on the tester's (application's) IpAppDataSession interface, i.e. accept the data session on the destination side
Parameters:
dataSessionID, eventReport, assignmentID

5.
Method call deassignDataSession()
Parameters:
dataSessionID
Check:
no exception is returned

6.
Method call release()
Parameters:
dataSessionID, cause
Check:
P_INVALID_SESSION_ID or any suitable exception is returned

[image: image9.wmf] :

IpAppDataSessionControlManager

 : IpDataSession

 :

IpDataSessionControlManager

 : IpAppDataSession

eventCriteria.DataSessionEventName = P_EVENT_DSCS_SETUP

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT

responseRequested.MonitorMode = P_DATA_SESSION_MONITOR_MODE_NOTIFY

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_CONNECTED

Accept data session

on destination side

This method is used to check that the

dataSessionID has been correctly

released after the deassign() method

call; any other suitable exception may

be returned

1. createNotification(appDataSessionControlManager, eventCriteria)

assignmentID

2. reportNotification(dataSessionReference, eventInfo, assignmentID)

3. connectReq(dataSessionID, responseRequested, targetAddress)

assignmentID

4. connectRes(dataSessionID, eventReport, assignmentID)

5. deassignDataSession(dataSessionID)

6. release(dataSessionID,cause)

P_INVALID_SESSION_ID()

Test DSC_DS_03
Summary:
IpDataSession, connectReq() with two trigger events, successful with interrupt after reportNotification()

Reference:
ES 201 915-8 [1], clauses 7.4.1 and 8.3

Preamble:
Registration of the IUT (Data Session Control SCF) and the tester (application) to the framework. The
tester must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call createNotification()
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria
Parameter values:

eventCriteria.DataSessionEventName = P_EVENT_DSCS_SETUP

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT
Check:
valid value of TpAssignmentID is returned

2.
Triggered action: cause IUT to call reportNotification() method on the tester's (application's) IpAppDataSessionControlManager interface, i.e. start to set-up data session
Parameters:
dataSessionReference, eventInfo, assignmentID

3.
Method call connectReq()
Parameters:
dataSessionID, responseRequested, targetAddress
Parameter values:

1st set

responseRequested.MonitorMode = P_DATA_SESSION_MONITOR_MODE_NOTIFY

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_CONNECTED

2nd set

responseRequested.MonitorMode = P_DATA_SESSION_MONITOR_MODE_NOTIFY

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_DISCONNECT
Check:

valid value of TpAssignmentID is returned

4.
Triggered action: cause IUT to call connectRes() method on the tester's (application's) IpAppDataSession interface, i.e. accept the data session on the destination side
Parameters:
dataSessionID, eventReport, assignmentID

5.
Triggered action: cause IUT to call connectRes() method on the tester's (application's) IpAppDataSession interface, i.e. release the data session
Parameters:
dataSessionID, eventReport, assignmentID

6.
Method call deassignDataSession()
Parameters:
dataSessionID
Check:
no exception is returned

[image: image10.wmf] :

IpDataSessionControlManager

 :

IpAppDataSessionControlManager

 : IpDataSession

 : IpAppDataSession

eventCriteria.DataSessionEventName = P_EVENT_DSCS_SETUP

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT

1. createNotification(appDataSessionControlManager, eventCriteria)

assignmentID

2. reportNotification(dataSessionReference, eventInfo, assignmentID)

3. connectReq(dataSessionID, responseRequested, targetAddress)

assignmentID

5. connectRes(dataSessionID, eventReport, assignmentID)

6. deassignDataSession(dataSessionID)

1st set:

responseRequested.MonitorMode = P_DATA_SESSION_MONITOR_MODE_NOTIFY

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_CONNECTED

2nd set:

responseRequested.MonitorMode = P_DATA_SESSION_MONITOR_MODE_NOTIFY

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_DISCONNECT

4. connectRes(dataSessionID, eventReport, assignmentID)

Accept data session

on destination side

Release data

session

Test DSC_DS_04
Summary:
IpDataSession, superviseDataSessionReq()

Reference:
ES 201 915-8 [1], clauses 7.4.1 and 8.3

Precondition:
superviseDataSessionReq() implemented

Preamble:
Registration of the IUT (Data Session Control SCF) and the tester (application) to the framework. The
tester must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call createNotification()
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria
Parameter values:

eventCriteria.DataSessionEventName = P_EVENT_DSCS_SETUP

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT
Check:
valid value of TpAssignmentID is returned

2.
Triggered action: cause IUT to call reportNotification() method on the tester's (application's) IpAppDataSessionControlManager interface, i.e. start to set-up data session
Parameters:
dataSessionReference, eventInfo, assignmentID

3.
Method call superviseDataSessionReq()
Parameters:
dataSessionID, treatment, bytes
Check:
no exception is returned

4.
Method call connectReq()
Parameters:
dataSessionID, responseRequested, targetAddress
Parameter values:

responseRequested.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_CONNECTED
Check:
valid value of TpAssignmentID is returned

5.
Triggered action: cause IUT to call connectRes() method on the tester's (application's) IpAppDataSession interface, i.e. accept the data session on the destination side
Parameters:
dataSessionID, eventReport, assignmentID

6.
Method call continueProcessing()
Parameters:
dataSessionID
Check:
no exception is returned

7.
Triggered action: cause IUT to call superviseDataSessionRes() method on the tester's (application's) IpAppDataSession interface, i.e. use up the granted number of bytes for that data session
Parameters:
dataSessionID, report, usedVolume, qualityOfService

8.
Method call release()
Parameters:
dataSessionID, cause
Check:
no exception is returned

[image: image11.wmf] :

IpDataSessionControlManager

 :

IpAppDataSessionControlManager

 : IpDataSession

 : IpAppDataSession

eventCriteria.DataSessionEventName = P_EVENT_DSCS_SETUP

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT

responseRequested.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_CONNECTED

Accept data session

on destination side

1. createNotification(appDataSessionControlManager, eventCriteria)

assignmentID

2. reportNotification(dataSessionReference, eventInfo, assignmentID)

5. connectRes(dataSessionID, eventReport, assignmentID)

3. superviseDataSessionReq(dataSessionID, treatment, bytes)

7. superviseDataSessionRes(dataSessionID, report, usedVolume, qualityOfService)

Use up the granted number of

bytes for that data session

8. release(dataSessionID, cause)

4. connectReq(dataSessionID, responseRequested, targetAddress)

assignmentID

6. continueProcessing(dataSessionID)

Test DSC_DS_05
Summary:
IpDataSession, setDataSessionChargePlan()

Reference:
ES 201 915-8 [1], clauses 7.4.1 and 8.3

Precondition:
setDataSessionChargePlan() implemented

Preamble:
Registration of the IUT (Data Session Control SCF) and the tester (application) to the framework. The
tester must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call createNotification()
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria
Parameter values:

eventCriteria.DataSessionEventName = P_EVENT_DSCS_SETUP

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT
Check:
valid value of TpAssignmentID is returned

2.
Triggered action: cause IUT to call reportNotification() method on the tester's (application's) IpAppDataSessionControlManager interface, i.e. start to set-up data session
Parameters:
dataSessionReference, eventInfo, assignmentID

3.
Method call setDataSessionChargePlan()
Parameters:
dataSessionID, dataSessionChargePlan
Check:
no exception is returned

4.
Method call connectReq()
Parameters:
dataSessionID, responseRequested, targetAddress
Parameter values:

responseRequested.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_CONNECTED
Check:
valid value of TpAssignmentID is returned

5.
Triggered action: cause IUT to call connectRes() method on the tester's (application's) IpAppDataSession interface, i.e. accept the data session on the destination side
Parameters:
dataSessionID, eventReport, assignmentID

6.
Method call release()
Parameters:
dataSessionID, cause
Check:
no exception is returned

[image: image12.wmf] :

IpAppDataSessionControlManager

 : IpDataSession

 :

IpDataSessionControlManager

 : IpAppDataSession

eventCriteria.DataSessionEventName = P_EVENT_DSCS_SETUP

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT

responseRequested.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_CONNECTED

Accept data session

on destination side

1. createNotification(appDataSessionControlManager, eventCriteria)

assignmentID

2. reportNotification(dataSessionReference, eventInfo, assignmentID)

4. connectReq(dataSessionID, responseRequested, targetAddress)

assignmentID

5. connectRes(dataSessionID, eventReport, assignmentID)

3. setDataSessionChargePlan(dataSessionID, dataSessionChargePlan)

6. release(dataSessionID, cause)

Test DSC_DS_06
Summary:
IpDataSession, setAdviceOfCharge()

Reference:
ES 201 915-8 [1], clauses 7.4.1 and 8.3

Precondition:
setAdviceOfCharge() implemented

Preamble:
Registration of the IUT (Data Session Control SCF) and the tester (application) to the framework. The
tester must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Test Sequence:

1.
Method call createNotification()
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria
Parameter values:

eventCriteria.DataSessionEventName = P_EVENT_DSCS_SETUP

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT
Check:
valid value of TpAssignmentID is returned

2.
Triggered action: cause IUT to call reportNotification() method on the tester's (application's) IpAppDataSessionControlManager interface, i.e. start to set-up data session
Parameters:
dataSessionReference, eventInfo, assignmentID

3.
Method call setAdviceOfCharge()
Parameters:
dataSessionID, aoCInfo, tariffswitch
Check:
no exception is returned

4.
Method call connectReq()
Parameters:
dataSessionID, responseRequested, targetAddress
Parameter values:

responseRequested.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_CONNECTED
Check:
valid value of TpAssignmentID is returned

5.
Triggered action: cause IUT to call connectRes() method on the tester's (application's) IpAppDataSession interface, i.e. accept the data session on the destination side
Parameters:
dataSessionID, eventReport, assignmentID

6.
Method call release()
Parameters:
dataSessionID, cause
Check:
no exception is returned

[image: image13.wmf] :

IpAppDataSessionControlManager

 : IpDataSession

 :

IpDataSessionControlManager

 : IpAppDataSession

eventCriteria.DataSessionEventName = P_EVENT_DSCS_SETUP

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT

responseRequested.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_CONNECTED

Accept data session

on destination side

1. createNotification(appDataSessionControlManager, eventCriteria)

assignmentID

2. reportNotification(dataSessionReference, eventInfo, assignmentID)

4. connectReq(dataSessionID, responseRequested, targetAddress)

assignmentID

5. connectRes(dataSessionID, eventReport, assignmentID)

3. setAdviceOfCharge(dataSessionID, aoCInfo, tariffSwitch)

6. release(dataSessionID, cause)

5.2.2 Data Session Control, application side
In performing the tests for the application, it may be necessary to permit the application to perform any valid set of method exchanges with the tester in between the triggered actions or method calls indicated in the tests below. The tester shall respond to the application's method calls in conformance to the API specification and as required by the application. The requirements of the application should be made known to the tester's operator in advance.
5.2.2.1
IpAppDataSessionControlManager

Test DSC_APP_CM_01
Summary:
IpAppDataSessionControlManager, mandatory methods, successful

Reference:
ES 201 915-8 [1], clause 8.2, 8.4

Preamble:
Registration of the IUT (application) and the tester (Data Session Control SCF) to the framework. The
IUT must have obtained a reference to an instance of the IpDataSessionControlManager
interface through selecting that service and signing the required service agreement.

Instead of providing a valid value of its IpAppDataSessionControlManager interface reference in the
createNotification() method, the application is permitted to provide the
IpAppDataSessionControlManager interface reference in a setCallback() method which it calls prior to
invoking createNotification().
Test Sequence:

1.
Triggered Action: cause IUT to call createNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria

2.
Method call reportNotification()
Parameters:
dataSessionReference, value depending on monitor mode of notification request, eventInfo, assignmentID
Check:
valid value of IpAppDataSessionRef is returned, depending on monitor mode of notification request
Test DSC_APP_CM_02
Summary:
IpAppDataSessionControlManager, interrupt and continue data session notification, successful

Reference:
ES 201 915-8 [1], clause 8.2
Precondition:
dataSessionNotificationInterrupted() and dataSessionNotificationContinued() implemented
Preamble:
Registration of the IUT (application) and the tester (Data Session Control SCF) to the framework. The
IUT must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Instead of providing a valid value of its IpAppDataSessionControlManager interface reference in the
createNotification() method, the application is permitted to provide the
IpAppDataSessionControlManager interface reference in a setCallback() method which it calls prior to
invoking createNotification().

Test Sequence:

1.
Triggered Action: cause IUT to call createNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria
Delay between createNotification and Interrupted

2.
Method call dataSessionNotificationInterrupted()
Parameters:
none
Check:
no exception is returned
Delay between Interrupted and Continued
3.
Method call dataSessionNotificationContinued()
Parameters:
none
Check:
no exception is returned

4.
Method call reportNotification()
Parameters:
dataSessionReference, value depending on monitor mode of notification request, eventInfo, assignmentID
Check:
valid value of IpAppDataSessionRef is returned, depending on monitor mode of notification request

Test DSC_APP_CM_03
Summary:
IpAppDataSessionControlManager, abort data session, successful

Reference:
ES 201 915-8 [1], clause 8.2
Precondition:
dataSessionAborted() implemented
Preamble:
Registration of the IUT (application) and the tester (Data Session Control SCF) to the framework. The
IUT must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Instead of providing a valid value of its IpAppDataSessionControlManager interface reference in the
createNotification() method, the application is permitted to provide the
IpAppDataSessionControlManager interface reference in a setCallback() method which it calls prior to
invoking createNotification().

Test Sequence:

1.
Triggered Action: cause IUT to call createNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT
2.
Method call reportNotification()
Parameters:
dataSessionReference, eventInfo, assignmentID
Check:
valid value of IpAppDataSessionRef is returned

3.
Method call dataSessionAborted()
Parameters:
dataSessionID with same value as supplied in reportNotification.
Check:
no exception is returned
Test DSC_APP_CM_04
Summary:
IpAppDataSessionControlManager, change event criteria, successful

Reference:
ES 201 915-8 [1], clause 8.4
Precondition:
IUT capable of invoking changeNotification()
Preamble:
Registration of the IUT (application) and the tester (Data Session Control SCF) to the framework. The
IUT must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Instead of providing a valid value of its IpAppDataSessionControlManager interface reference in the
createNotification() method, the application is permitted to provide the
IpAppDataSessionControlManager interface reference in a setCallback() method which it calls prior to
invoking createNotification().

Test Sequence:

1.
Triggered Action: cause IUT to call createNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria

2.
Triggered Action: cause IUT to call changeNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
assignmentID, eventCriteria

Test DSC_APP_CM_05
Summary:
IpAppDataSessionControlManager, disable data session notifications, successful

Reference:
ES 201 915-8 [1], clause 8.4
Precondition:
IUT capable of invoking destroyNotification()
Preamble:
Registration of the IUT (application) and the tester (Data Session Control SCF) to the framework. The
IUT must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Instead of providing a valid value of its IpAppDataSessionControlManager interface reference in the
createNotification() method, the application is permitted to provide the
IpAppDataSessionControlManager interface reference in a setCallback() method which it calls prior to
invoking createNotification().

Test Sequence:

1.
Triggered Action: cause IUT to call createNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria

2.
Triggered Action: cause IUT to call destroyNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
assignmentID

Test DSC_APP_CM_06
Summary:
IpAppDataSessionControlManager, query event criteria set, successful

Reference:
ES 201 915-8 [1], clause 8.4
Precondition:
IUT capable of invoking getNotifications()
Preamble:
Registration of the IUT (application) and the tester (Data Session Control SCF) to the framework. The
IUT must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Instead of providing a valid value of its IpAppDataSessionControlManager interface reference in the
createNotification() method, the application is permitted to provide the
IpAppDataSessionControlManager interface reference in a setCallback() method which it calls prior to
invoking createNotification().

Test Sequence:

1.
Triggered Action: cause IUT to call createNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria

2.
Triggered Action: cause IUT to call getNotifications() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
none
5.2.2.2
IpAppDataSession
Applications need not be capable of performing each of the sequences below, even if they support the methods indicated below.
Reference:
ES 201 915-8 [1], clauses 9.1

Precondition:
IpAppDataSession interface implemented

5.2.2.2.1
General tests, Active state

Note:
Tests DSC_APP_DS_01 to 05 do not specify the values of DataSessionEventName field in the eventCriteria parameter of the createNotification() method expected from the IUT. This has been done intentionally to keep these basic tests simple. Note that the tester has to answer with parameter values that make sense in relation to the parameter values received from the IUT.
Test DSC_APP_DS_01
Summary:
IpAppDataSession, supervise data session

Reference:
ES 201 915-8 [1], clauses 8.1 and 8.3

Precondition:
IUT capable of invoking superviseDataSessionReq()
Preamble:
Registration of the IUT (application) and the tester (Data Session Control SCF) to the framework. The
IUT must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Instead of providing a valid value of its IpAppDataSessionControlManager interface reference in the
createNotification() method, the application is permitted to provide the
IpAppDataSessionControlManager interface reference in a setCallback() method which it calls prior to
invoking createNotification().

Test Sequence:

1.
Triggered Action: cause IUT to call createNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT
2.
Method call reportNotification()
Parameters:
dataSessionReference, eventInfo, assignmentID
Check:
valid value of IpAppDataSessionRef is returned

3.
Triggered Action: cause IUT to call superviseDataSessionReq() method on the tester's (SCF's) IpDataSession interface.
Parameters:
dataSessionID, treatment, bytes
Test DSC_APP_DS_02
Summary:
IpAppDataSession, indication of a data session fault
Reference:
ES 201 915-8 [1], clauses 8.1 and 8.3

Precondition:
dataSessionFaultDetected() implemented
Preamble:
Registration of the IUT (application) and the tester (Data Session Control SCF) to the framework. The
IUT must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Instead of providing a valid value of its IpAppDataSessionControlManager interface reference in the
createNotification() method, the application is permitted to provide the
IpAppDataSessionControlManager interface reference in a setCallback() method which it calls prior to
invoking createNotification().

Test Sequence:

1.
Triggered Action: cause IUT to call createNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT
2.
Method call reportNotification()
Parameters:
dataSessionReference, eventInfo, assignmentID
Check:
valid value of IpAppDataSessionRef is returned

3.
Method call dataSessionFaultDetected()
Parameters:
dataSessionID, fault
Check:
no exception is returned

Test DSC_APP_DS_03
Summary:
IpAppDataSession, determine charging information
Reference:
ES 201 915-8 [1], clauses 8.1 and 8.3

Precondition:
IUT capable of invoking setAdviceOfCharge()
Preamble:
Registration of the IUT (application) and the tester (Data Session Control SCF) to the framework. The
IUT must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Instead of providing a valid value of its IpAppDataSessionControlManager interface reference in the
createNotification() method, the application is permitted to provide the
IpAppDataSessionControlManager interface reference in a setCallback() method which it calls prior to
invoking createNotification().

Test Sequence:

1.
Triggered Action: cause IUT to call createNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT
2.
Method call reportNotification()
Parameters:
dataSessionReference, eventInfo, assignmentID
Check:
valid value of IpAppDataSessionRef is returned

3.
Triggered Action: cause IUT to call setAdviceOfCharge() method on the tester's (SCF's) IpDataSession interface.
Parameters:
dataSessionID, aoCInfo, tariffSwitch
Test DSC_APP_DS_04
Summary:
IpAppDataSession, include charging information

Reference:
ES 201 915-8 [1], clauses 8.1 and 8.3

Precondition:
IUT capable of invoking setDataSessionChargePlan()
Preamble:
Registration of the IUT (application) and the tester (Data Session Control SCF) to the framework. The
IUT must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Instead of providing a valid value of its IpAppDataSessionControlManager interface reference in the
createNotification() method, the application is permitted to provide the
IpAppDataSessionControlManager interface reference in a setCallback() method which it calls prior to
invoking createNotification().

Test Sequence:

1.
Triggered Action: cause IUT to call createNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT
2.
Method call reportNotification()
Parameters:
dataSessionReference, eventInfo, assignmentID
Check:
valid value of IpAppDataSessionRef is returned

3.
Triggered Action: cause IUT to call setDataSessionChargePlan() method on the tester's (SCF's) IpDataSession interface.
Parameters:
dataSessionID, dataSessionChargePlan
Test DSC_APP_DS_05
Summary:
IpAppDataSession, release data session

Reference:
ES 201 915-8 [1], clauses 8.1 and 8.3

Precondition:
IUT capable of invoking release()
Preamble:
Registration of the IUT (application) and the tester (Data Session Control SCF) to the framework. The
IUT must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Instead of providing a valid value of its IpAppDataSessionControlManager interface reference in the
createNotification() method, the application is permitted to provide the
IpAppDataSessionControlManager interface reference in a setCallback() method which it calls prior to
invoking createNotification().

Test Sequence:

1.
Triggered Action: cause IUT to call createNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT
2.
Method call reportNotification()
Parameters:
dataSessionReference, eventInfo, assignmentID
Check:
valid value of IpAppDataSessionRef is returned

3.
Triggered Action: cause IUT to call release() method on the tester's (SCF's) IpDataSession interface.
Parameters:
dataSessionID, cause
5.2.2.2.2
Active state, Setup Sub-state

Note:
It will be necessary to create some kind of “PIXIT” items to check, if the sending of the distinct parameter values in the following tests is supported by the IUT.

Preamble DSC_APP_DS_Active_Setup
Reference:
ES 201 915-8 [1], clauses 9.1

Pre-preamble:
Registration of the IUT (application) and the tester (Data Session Control SCF) to the framework. The
IUT must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Instead of providing a valid value of its IpAppDataSessionControlManager interface reference in the
createNotification() method, the application is permitted to provide the
IpAppDataSessionControlManager interface reference in a setCallback() method which it calls prior to
invoking createNotification().

Preamble Sequence:

1.
Triggered Action: cause IUT to call createNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria
Parameter values:

eventCriteria.DataSessionEventName = P_EVENT_DSCS_SETUP or

P_EVENT_DSCS_QOS_CHANGE

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT

2.
Method call reportNotification()
Parameters:
dataSessionReference, eventInfo, assignmentID
Parameter values:

eventInfo.DataSessionEventName = P_EVENT_DSCS_SETUP or

P_EVENT_DSCS_QOS_CHANGE depending on value received from the IUT

eventInfo.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT
Check:
valid value of IpAppDataSessionRef is returned

Test DSC_APP_DS_06
Summary:
IpAppDataSession, connect interupted data session, wait for connected, successful

Reference:
ES 201 915-8 [1], clauses 8.1 and 8.3

Precondition:
IUT capable of invoking connectReq()
Preamble:
DSC_APP_DS_Active_Setup
Test Sequence:

1.
Triggered Action: cause IUT to call connectReq() method on the tester's (SCF's) IpDataSession interface.
Parameters:
dataSessionID, responseRequested, targetAddress
Parameter values:

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_CONNECTED
2.
Method call connectRes()
Parameters:
dataSessionID, eventReport, assignmentID
Parameter values:

eventReport.DataSessionReportType = P_DATA_SESSION_REPORT_CONNECTED
Check:
no exception is returned

Test DSC_APP_DS_07
Summary:
IpAppDataSession, connect interupted data session, wait for connected, unsuccessful

Reference:
ES 201 915-8 [1], clauses 8.1 and 8.3

Precondition:
IUT capable of invoking connectReq()
Preamble:
DSC_APP_DS_Active_Setup
Test Sequence:

1.
Triggered Action: cause IUT to call connectReq() method on the tester's (SCF's) IpDataSession interface.
Parameters:
dataSessionID, responseRequested, targetAddress
Parameter values:

2.
Method call connectErr()
Parameters:
dataSessionID, errorIndication, assignmentID
Check:
no exception is returned

Test DSC_APP_DS_08
Summary:
IpAppDataSession, connect interupted data session, wait for disconnected, successful

Reference:
ES 201 915-8 [1], clauses 8.1 and 8.3

Precondition:
IUT capable of invoking connectReq()
Preamble:
DSC_APP_DS_Active_Setup
Test Sequence:

1.
Triggered Action: cause IUT to call connectReq() method on the tester's (SCF's) IpDataSession interface.
Parameters:
dataSessionID, responseRequested, targetAddress
Parameter values:
Parameter values:

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_DISCONNECT
2.
Method call connectRes()
Parameters:
dataSessionID, eventReport, assignmentID
Parameter values:

eventReport.DataSessionReportType = P_DATA_SESSION_REPORT_DISCONNECT
Check:
no exception is returned

Test DSC_APP_DS_10
Summary:
IpAppDataSession, continue interupted data session

Reference:
ES 201 915-8 [1], clauses 8.1 and 8.3

Precondition:
IUT capable of invoking continueProcessing()
Preamble:
DSC_APP_DS_Active_Setup
Test Sequence:

1.
Triggered Action: cause IUT to call continueProcessing() method on the tester's (SCF's) IpDataSession interface.
Parameters:
dataSessionID

5.2.2.2.2
Active state, Established Sub-state

Preamble DSC_APP_DS_Active_Established
Reference:
ES 201 915-8 [1], clauses 9.1

Pre-preamble:
Registration of the IUT (application) and the tester (Data Session Control SCF) to the framework. The
IUT must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Instead of providing a valid value of its IpAppDataSessionControlManager interface reference in the
createNotification() method, the application is permitted to provide the
IpAppDataSessionControlManager interface reference in a setCallback() method which it calls prior to
invoking createNotification().

Preamble Sequence:

1.
Triggered Action: cause IUT to call createNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria
Parameter values:

eventCriteria.DataSessionEventName = P_EVENT_DSCS_ESTABLISHED

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT
2.
Method call reportNotification()
Parameters:
dataSessionReference, eventInfo, assignmentID
Parameter values:

eventInfo.DataSessionEventName = P_EVENT_DSCS_ESTABLISHED

eventInfo.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT
Check:
valid value of IpAppDataSessionRef is returned

Test DSC_APP_DS_11
Summary:
IpAppDataSession, supervise data session, successful

Reference:
ES 201 915-8 [1], clauses 8.1 and 8.3

Precondition:
IUT capable of invoking superviseDataSessionReq()
Preamble:
DSC_APP_DS_Active_Established
Test Sequence:

1.
Triggered Action: cause IUT to call superviseDataSessionReq() method on the tester's (SCF's) IpDataSession interface.
Parameters:
dataSessionID, treatment, bytes

2.
Method call superviseDataSessionRes()
Parameters:
dataSessionID, report, usedVolume, qualityOfService
Check:
no exception returned

Test DSC_APP_DS_12
Summary:
IpAppDataSession, supervise data session, unsuccessful

Reference:
ES 201 915-8 [1], clauses 8.1 and 8.3

Precondition:
IUT capable of invoking superviseDataSessionReq()
Preamble:
DSC_APP_DS_Active_Established
Test Sequence:

1.
Triggered Action: cause IUT to call superviseDataSessionReq() method on the tester's (SCF's) IpDataSession interface.
Parameters:
dataSessionID, treatment, bytes

2.
Method call superviseDataSessionErr()
Parameters:
dataSessionID, erroIndication
Check:
no exception returned

5.2.2.2.3
Network Released and Finished state

Note:
The following test is testing both the Network Released and the Finished state, as there is a direct state transition from the first to the latter state, when no supervision request has been sent by the application or when a sent supervision request is answered by the SCF.

Test DSC_APP_DS_13
Summary:
IpAppDataSession, de-assign data session that has been released by the network for reasons of fault

Reference:
ES 201 915-8 [1], clauses 8.1, 8.3 and 9.1

Precondition:
dataSessionFaultDetected() implemented, IUT capable of invoking deassignDataSession()
Preamble:
Registration of the IUT (application) and the tester (Data Session Control SCF) to the framework. The
IUT must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Instead of providing a valid value of its IpAppDataSessionControlManager interface reference in the
createNotification() method, the application is permitted to provide the
IpAppDataSessionControlManager interface reference in a setCallback() method which it calls prior to
invoking createNotification().

Test Sequence:

1.
Triggered Action: cause IUT to call createNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria

2.
Method call reportNotification()
Parameters:
dataSessionReference, eventInfo, assignmentID
Check:
valid value of IpAppDataSessionRef is returned

3.
Method call dataSessionFaultDetected()
Parameters:
dataSessionID, fault
Check:
no exception is returned

4.
Triggered Action: cause IUT to call deassignDataSession() method on the tester's (SCF's) IpDataSession interface.
Parameters:
dataSessionID

Test DSC_APP_DS_14
Summary:
IpAppDataSession, de-assign network released data session after receipt of supervision result
Reference:
ES 201 915-8 [1], clauses 8.1, 8.3, and 9.1

Precondition:
IUT capable of invoking connectReq(), superviseDataSessionReq() and deassignDataSession()
Preamble:
Registration of the IUT (application) and the tester (Data Session Control SCF) to the framework. The
IUT must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Instead of providing a valid value of its IpAppDataSessionControlManager interface reference in the
createNotification() method, the application is permitted to provide the
IpAppDataSessionControlManager interface reference in a setCallback() method which it calls prior to
invoking createNotification().

Preamble Sequence:

1.
Triggered Action: cause IUT to call createNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria
Parameter values:

eventCriteria.DataSessionEventName = P_EVENT_DSCS_SETUP

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT

2.
Method call reportNotification()
Parameters:
dataSessionReference, eventInfo, assignmentID
Parameter values:

eventInfo.DataSessionEventName = P_EVENT_DSCS_SETUP

eventInfo.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT
Check:
valid value of IpAppDataSessionRef is returned

3.
Triggered Action: cause IUT to call superviseDataSessionReq() method on the tester's (SCF's) IpDataSession interface.
Parameters:
dataSessionID, treatment, bytes

4.
Triggered Action: cause IUT to call connectReq() method on the tester's (SCF's) IpDataSession interface.
Parameters:
dataSessionID, responseRequested, targetAddress
Parameter values:
Parameter values:

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_DISCONNECT

5.
Method call connectRes()
Parameters:
dataSessionID, eventReport, assignmentID
Parameter values:

eventReport.DataSessionReportType = P_DATA_SESSION_REPORT_DISCONNECT
Check:
no exception is returned

6.
Method call superviseDataSessionRes()
Parameters:
dataSessionID, report, usedVolume, qualityOfService
Check:
no exception returned

7.
Triggered Action: cause IUT to call deassignDataSession() method on the tester's (SCF's) IpDataSession interface.
Parameters:
dataSessionID

5.2.2.2.4
Application Released state

Test DSC_APP_DS_15
Summary:
IpAppDataSession, accept receipt of supervision result after release of data session by application
Reference:
ES 201 915-8 [1], clauses 8.1, 8.3, and 9.1

Precondition:
IUT capable of invoking connectReq(), superviseDataSessionReq() and release()
Preamble:
Registration of the IUT (application) and the tester (Data Session Control SCF) to the framework. The
IUT must have obtained a reference to an instance of the IpDataSessionControlManager interface
through selecting that service and signing the required service agreement.

Instead of providing a valid value of its IpAppDataSessionControlManager interface reference in the
createNotification() method, the application is permitted to provide the
IpAppDataSessionControlManager interface reference in a setCallback() method which it calls prior to
invoking createNotification().

Preamble Sequence:

1.
Triggered Action: cause IUT to call createNotification() method on the tester's (SCF's) IpDataSessionControlManager interface.
Parameters:
appDataSessionControlManager (non-NULL), eventCriteria
Parameter values:

eventCriteria.DataSessionEventName = P_EVENT_DSCS_SETUP

eventCriteria.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT

2.
Method call reportNotification()
Parameters:
dataSessionReference, eventInfo, assignmentID
Parameter values:

eventInfo.DataSessionEventName = P_EVENT_DSCS_SETUP

eventInfo.MonitorMode = P_DATA_SESSION_MONITOR_MODE_INTERRUPT
Check:
valid value of IpAppDataSessionRef is returned

3.
Triggered Action: cause IUT to call superviseDataSessionReq() method on the tester's (SCF's) IpDataSession interface.
Parameters:
dataSessionID, treatment, bytes

4.
Triggered Action: cause IUT to call connectReq() method on the tester's (SCF's) IpDataSession interface.
Parameters:
dataSessionID, responseRequested, targetAddress
Parameter values:
Parameter values:

responseRequested.DataSessionReportType = P_DATA_SESSION_REPORT_CONNECT

5.
Method call connectRes()
Parameters:
dataSessionID, eventReport, assignmentID
Parameter values:

eventReport.DataSessionReportType = P_DATA_SESSION_REPORT_CONNECT
Check:
no exception is returned

6.
Triggered Action: cause IUT to call release() method on the tester's (SCF's) IpDataSession interface.
Parameters:
dataSessionID, cause
7.
Method call superviseDataSessionRes()
Parameters:
dataSessionID, report, usedVolume, qualityOfService
Check:
no exception returned

History

	Document history

	v0.0.1
	November 2003
	1st draft released to TISPAN#2 as 02TD153

	v0.0.2
	December 2003
	2nd draft, known to STF as version pd. Minor changes on front page only.

	V0.0.3
	January 2004
	Application side TPs added

	
	
	

	
	
	

	
	
	

[image: image14.wmf]_1065009619.doc

