joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040077
Meeting #26, Atlanta, GA, USA, 16-20 February 2004

Source:
NTT(Atsushi Iwasaki)
Title:
The second OSA/Parlay PLUTEST Report from NTT
Agenda Item: OSA1 (3GPP Rel-4 / Parlay 3 / ETSI OSA 1)
Document for:
Information and Discussion
1. Introduction
 The purpose of this contribution is to report the major misunderstandings regarding in OSA/Parlay specification which NTT encountered in the second OSA/Parlay Plugtests™(1/26-30,2004) from the standpoint of user of specification. We addressed Framework and Call Control at the Parlay 3.2 specification. This document is based on the result of interoperability test between NTT and other participants which executed the test with NTT in the Plugtest. We believe that to share these real information about the specifications among JWG would be useful for references.
At first we show test scenarios,and then report major misunderstandings of the implementation. We will also submit some CRs to suggest modification of specification in Framework and CC.
We do not mention here with who this misunderstanding occurred in the plugtest.

2. Test items
2.1 Test items for Framework
NTT addressed Framework version Parlay 3.2 “ETSI ES 201 915-3 V1.3.1 (2002-10)”
to be tested. We used the trusted and untrusted authentication scenarios for testing it. Following list shows test items of APIs which NTT addressed.
1 Test items for Framework
[image: image1.emf]Category item pattern item method way

1

1 NamingService 1 － GW→APP

2 IpInitial::initiateAuthentication APP→GW

3 IpClientAPILevelAuthentication::authenticationSucceeded GW→APP

4 IpAPILevelAuthentication::requestAccess APP→GW

5 IpInitial::initiateAuthentication APP→GW

6 IpAPILevelAuthentication::selectEncryptionMethod APP→GW

7 IpAPILevelAuthentication::authenticate APP→GW

8 IpAPILevelAuthentication::authenticationSucceeded APP→GW

9 IpClientAPILevelAuthentication::authenticate GW→APP

10 IpClientAPILevelAuthentication::authenticationSucceeded GW→APP

11 IpAPILevelAuthentication::requestAccess APP→GW

12 IpAccess::obtainInterface APP→GW

13 IpServiceDiscovery::listServiceTypes APP→GW

14 IpServiceDiscovery::describeServiceType APP→GW

15 IpServiceDiscovery::discoverService APP→GW

16 IpAccess::obtainInterfaceWithCallback APP→GW

17 IpServiceAgreementManagement::selectService APP→GW

18 IpServiceAgreementManagement::initiateSignServiceAgreement APP→GW

19 IpAppServiceAgreementManagementImpl::signServiceAgreement GW→APP

20 IpServiceAgreementManagement::signServiceAgreement APP→GW

21 IpServiceAgreementManagement::terminateServiceAgreement APP→GW

5

Service

End

Session

1 common 22 IpAPILevelAuthentication::endAccess APP→GW

ite

m

Initial

Access

Session

Un-Trusted Party

sequence

2

2

Trusted Party

sequence

1

4

Service

Agreement

Session

common Service

Discovery

Session

1

3

1 common

2.2 Test items for Call Control
NTT addressed CC version Parlay 3.2 ”ETSI ES 201 915-4 V1.3.1 (2002-10)” to be tested. .

We used the third party call and basic number translation scenarios for testing them.

Following lists shows test items of APIs which NTT addressed.
 2 Test items for GCC(Third party call)
[image: image2.emf]Category item pattern item method way

1 IpCallControlManager::createCall APP→GW

2 IpCall::routeReq APP→GW

3 IpAppCallControlManager::routeRes GW→APP

4 IpCall::routeReq APP→GW

5 IpAppCallControlManager::routeRes GW→APP

2 connected

6 IpAppCallControlManager.::callEnded GW→APP

7 release APP→GW

8 IpCall::disableCallNotification APP→GW

9 IpCall::deassignCall APP→GW

item

3 disconnec call

Click to Dial

1

handle call 1

3 Test items for GCC(Number translation)
[image: image3.emf]Category item pattern item method way

1 common 1 IpCallControlManager::enableCallNotification APP→GW

2 IpAppCallControlManager::callEventNotify GW→APP

3 IpCall::setCallbackWithSessionID APP→GW

4 IpCall::routeReq APP→GW

5 IpAppCallControlManager::routeRes GW→APP

6 IpAppCallControlManager::routeRes GW→APP

3 connected

7 IpAppCallControlManager.::callEnded GW→APP

8 release APP→GW

9 IpCall::disableCallNotification APP→GW

10 IpCall::deassignCall APP→GW

1 common 11 IpCallControlManager::enableCallNotification APP→GW

12 IpAppCallControlManager::callEventNotify GW→APP

13 IpCall::setCallbackWithSessionID APP→GW

14 IpCall::routeReq APP→GW

15 IpAppCallControlManager::routeRes GW→APP

16 IpCall::routeReq APP→GW

17 IpAppCallControlManager::routeRes GW→APP

3 connected

18 IpAppCallControlManager.::callEnded GW→APP

19 release APP→GW

20 IpCall::disableCallNotification APP→GW

21 IpCall::deassignCall APP→GW

handle call

disconnect call

2

4

call transfer

ite

m

disconnect call 4

2 handle call

call transfer(busy or no

answer)

2

1

4 Test items for MPCC(Number translation)

[image: image4.emf]Category item pattern item method way

1 Event handling 1 IpMultiPartyCallControlManager::createNotification APP→GW

2 IpAppMultiPartyCallControlManager::reportNotification GW→APP

3 pMultiPartyCall::createCallLeg APP→GW

4 IpCallLeg::eventReportReq APP→GW

5 IpCallLeg::routeReq APP→GW

6 IpCallLeg::continueProcessing APP→GW

7 IpCallLeg::eventReportRes GW→APP

8 IpAppCallLeg::eventReportRes GW→APP

3 call connected

9 IpAppCallLeg::callLegEnded GW→APP

10 IpAppCallLeg::callLegEnded GW→APP

11 IpAppMultiPartyCall::callEnded GW→APP

12 IpMultiPartyCallControlManager::destroyNotification APP→GW

ite

m

1

disconnect call

2

4

Call handring

Call

transfer(Unc

onditional)

3 Major misunderstandings which occurred in above test items
These described below are the major misunderstandings of specification which NTT encountered with over at least two vendors in above test items.
3.1 Framework

1. Misunderstanding of the digital signature from application to Gateway when application used NO signing algorithm at the test item for Framework 4.1.20 signServiceAgreement in table 1.
We encountered the misunderstanding that the making mechanism of the digital signature and the validity logic of the digital signature differ with each vendor in case of no signing algorithm. Some vendors set NULL(“”,”NULL”) for the digital signature and others set only agreement text in it in this case. Framework and application can just ignore the digital signature, but also can verify it regardless of whether signing algorithm is used or not for security reasons.
This mismatch seemed be due to that it is not clear in the specification which string should be passed and verified as the digital signature when signing algorithm is not required.
At first there is a question whether the digital signature should be verified or not by gateway in the case of NO signingAlgorithm. And then if it should be verified , what string should be passed as the digital signature. We will contribute some CRs to specify a solution for this mismatch.
3.2 Call control
1. Misunderstanding whether application should pass a originating address or not, when application call first routeReq() in the test item 1.1.2 for GCC(Third Party Call) in table 2.
Almost applications for third party call set no originating address when it calls the first routeReq() because the originating address cannot be designated at first. But as e.g. SIP does not allow no originating address(in from header), some gateways do not allow no originating address in this case.
As the specification says “The extra address information such as originatingAddress is optional. If not present (i.e., the plan is set to P_ADDRESS_PLAN_NOT_PRESENT), the information provided in corresponding addresses from the route is used, otherwise the network or gateway provided numbers will be used.(p.45)”, so gateway should supply the originating address in that case.
2. Misunderstanding how to handle the interrupt mode at the test item 1.1.5 for GCC(Number translation) in table 3.
In this case, when application got answer event in routeRes() from gateway by interrupt mode, number translation failed because gateway could not do nothing until when application call another method such as routeReq() by notify mode or deassigncall ().
This misunderstanding seemed be due to that it is not clear in the specification how application resumes the call processing after receiving a notification or a event from gateway by interrupt mode in GCC especially for number translation scenario . In the case of MPCC, there would be no problem because it had already specified continueProcessing() for application.
 To avoid this misunderstanding, following two solution to the specification would be considered in GCC.

(1) To add continueProcessing() in GCC as well as MPCC

(2) To add some description how interrupt mode is lifted between application and gateway.

 We will contribute the solution as CRs.
3. Misunderstanding how IpAppCallRef was passed to Gateway at the test item 1.1.2 for MPCC(Number translation)
There were the cases that application return NULL as a return value for

reportNotification() from Gateway without call callback() or callbackWithSessionID() in advance. And we often found the same cases at callEventNotify() in GCC
It is specified in the GCC specification
“When this method is invoked with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, the application writer should ensure that no routeReq() is performed until an IpAppCall has been passed to the gateway, either through an explicit setCallback() invocation on the supplied IpCall, or via the return of the callEventNotify() method(p.43)”.

And also is specified in the reportNotification()
“Returns appCallBack: Specifies references to the application interface which implements the callback interface for the　new call and/or new call leg. This parameter may be null if the notification is being given in NOTIFY mode(p.88)”
These differences of mechanism seemed to be difficult for application developers to understand them.

4. Discussion

If JWG has another opinion or explanation regarding above misunderstandings, it would be helpful for developers.
5 Acknowledgements
 We are very grateful to the staffs of the ETSI 2nd OSA Parlay Plugtests and other participants for giving us valuable opportunity.

