Joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-040071

Meeting #26, Atlanta, GA, USA, 16-20 February 2004

Source:
Musa Unmehopa, Mark Hooper, Lucent Technologies
Title:
GMS SCF Re-Architecture Stage-3 discussion

Agenda Item:
OSA 3 (3GPP Rel-6 / Parlay 5 / ETSI OSA 3)

Document for:
Discussion
Introduction:

In various OSA standards meetings leading up to the ad-hoc meeting for the GMS SCF re-architecture effort held at Sophia Antipolis during 29-30 January, various proposals to enhance the GMS SCF definition or correct flaws in that API were proposed as input contributions.

Given the work done during the Sophia meeting and the agreement to pursue Stage 3 work at Atlanta, here is a Lucent contribution that provides a view of functional elements considered important from the standpoint of the GMS SCF as Stage 3 work progresses. This information is being provided as input to discussion and to help bring-up and resolve issues as appropriate.

Functional Elements of Interest:

Various contributions have, in the past, considered whether a completely new SCF is to be created for enhanced GMS capabilities, or the existing GMS SCF modified. Given that OSA has never in the past obsoleted a complete SCF specification, and also given that support for backwards compatibility in the specifications limits the scope of changes that may be made in many cases, it appears that the definition of a new SCF will be required.

The main elements across various proposals for incorporation into the new GMS SCF (for which we will use the term Communications or Comm SCF to distinguish from the existing GMS definition) seem to be the following:

1. Continued support for the mailbox paradigm (“storage and retrieval messaging”) and subtended folders

2. Support for page mode and session mode messaging (“store and forward” or “instant” messaging) including incorporation of the common functional set abstracted from protocols such as WAP, SMPP, MMS, etc., This was previously supported as Non-Call-Related (NCR) User Interaction (UI) in the UI SCF specification (part 5 of the 29.198 series of documents). If supported, the capabilities in the Comm SCF for these should at least include those available in the UI SCF.

3. Correction of the sync/async issues within the API based on what is most appropriate for a given method given its context

4. Correction of and possibly rejection of locking schemes (do we really need them?)

5. Use of appropriate interface structure and layering patterns along the lines of how these are used in other SCF definitions, but with a view to reducing the complexity involved in enabling applications to access supported capabilities. Use of one manager SCF for all messaging capabilities seems appropriate.

6. Support for protocol independence – while we distinguish between the mailbox oriented and the non-mailbox oriented messaging capabilities from a purely functional standpoint, it would be wise to not let protocol dependencies from underlying protocols such as SMS, WAP etc., to appear within method names, and to limit the use of protocol-related parameters in the method signatures as far as possible. Potentially, protocol-related parameter mappings can be captured in an appropriate 29.998 recommendation.

Issues for discussion:

1. A “send message” method is better supported within a subtended non-manager interface. This is so because supporting this method from within the manager interface breaks encapsulation, something that other SCFs seek to avoid. We argue that this is permissible if the method itself enables one to set up a session (to a generic address defined in the specification) once, and then reuse this generic session to send multiple distinct messages to potentially multiple different targets each time. Thus the setup costs are incurred but once, and are amortized across multiple subsequent requests. And this does not break any abstraction or encapsulation rules.

2. Need for one method that can encapsulate within it both the mailbox and non-mailbox paradigms for message send. This is a major issue. Should there be a single operational set supported across the mailbox and the non-mailbox paradigms with some methods returning exceptions if not used in the right context? To some extent this will depend on the method signature we end up with and the ability of that signature to support a unified view across protocols. But then, greater clarity might result from having two different method names.

3. Notifications relating to messages: setting notifications on a single message ID individually could be very costly, so can we set notifications on receipt of any messages? (If a mailbox paradigm is being used, this may be set per mailbox, for other generic messaging, this may be set in a user independent way that ties only with the messaging protocol supported downstream.)

4. For (3), perhaps we could consider a fix whereby the delivery receipt capabilities can be combined into the sendMessage (for session/page mode messaging) method signature, and by removing the setNotification method from that interface (for delivery receipt only) but retain a cancelDelivery method using the PendingID returned by the sendMessage method for pending requests.

5. Adding a queryStatus method on the PendingID in case the application wants to query the status of a sent message (where delivery was not requested, or even otherwise) might be beneficial. Mostly from the standpoint of completeness of the API set. Most of the protocols we envision supporting have this kind of capability built in, this should bubble up into the Parlay API reports to client applications.

6. Support for a true message object as opposed to passing back a reference to keep things clean from an API perspective.

7. Recommend the use of a single Message interface across both the mailbox and the non-mailbox paradigms independent of how issue (2) is resolved, for clarity and cohesiveness of the interface.

8. Should the message object contain addressing info? Looks like the right way to go, since the header is part of the message object. However, different protocols support different addressing schemes, some of which may not be compatible. E.g. email supports BCC, CC etc., SMS/WAP do not. How can this be addressed?

Other work items:

1. The working group needs to agree on the different kinds of notifications we want to support for the enhanced Comm SCF, and whether this set will be common across both the mailbox and non-mailbox paradigms. We recommend that it be. We can define a common event set, then if particular protocols or paradigms do not support particular events, they throw exceptions. We expect that the specification will indicate which notifications are supported for which protocols and what exceptions are to be thrown (TpCommonException would be preferable).

A first cut view of events that might need to be supported:

· Alert notifications - message is pending to a handset and it powers on (MWI)

· Message Read

· Delivery Receipt (we do not recommend a create notification for this unless it is a global setting for all targets in a page mode messaging scheme).

· New incoming message

2. Definition of message structure: Need to answer questions such as “What is a message?”

line-headers + body parts? Body parts can be of different types:

· binary

· text

· video

· audio

· picture (JPEG, GIF, TIFF etc.,)

· etc.,

We expect a common message type to be reusable across all paradigms supported by the Comm SCF.

Summary:

We respectfully request that these and related issues be discussed and factored into the design of the new Comm SCF as Stage 3 work continues.

