joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-041010

Meeting #25bis, Sophia Antipolis, France, 29 – 30 January 2004

Source:
Appium (Daniel.Sobirk, Jorgen.Dyst@appium.com)
Title:
Direct Messaging API Discussion Fodder
Agenda Item:

Document for:
Discussion
Category:

Work Item ID:
3GPP R6 / Parlay 5
Doc Summary:
Discussion on Direct Messaging API in 3GPP R6 / Parlay 5

Specs involved:

1.Introduction

Appium believes that distinct APIs tailored for the different Messaging applications “push” and “pull” would be beneficial. The intention of this contribution is to provoke a discussion on this subject. Some considerations on how to deal with Direct Messaging (“push”) is presented for discussion; the API would be constructed to deal explicit with the underlying messaging networks: SMS, MMS, WAP Push, IM.
For example it is imperative that the SMS API allows the developer to set UDH, ports etc, since this is needed to implement the Parlay-X SMS ringtone and image messages. All this stuff is needed if you want to implement the PX SMS functionality with the Parlay API and is currently not supported by the UI API. - SMS does have a unique set of requirements, different to the MMS.
2. Detailed Discussion

2.1 Rationale

The communications world of today basically uses two types of messaging:

· "Pull" Messaging,
 where the recipient of a message explicitly retrieves the message from a server.

· "Push" Messaging
where the message is sent directly to a terminal where the end user can examine the message more or less directly.

Pull Messaging is represented by email systems, and Push Messaging is implemented in e.g. ICQ, AOL IM, SMS and others. People use these systems differently, exploiting the benefits of the two paradigms.

Pull Messaging is typically used when large documents (or volumes of data) need to be transferred, if there is no immediate need for an answer and for one to many messages.

Push Messaging typically is used for an immediate conversation, an answer is expected promptly, and is mainly person to person oriented. (Except perhaps for chat services).

Appium believes that because of the inherent differences between Pull and Push Messaging, application developers would benefit from having two distinct APIs tailored for the different applications.

2.2 Standardization Suggestions

2.2.1 Pull Messaging

Pull messaging can be implemented by an improved version of the GM API, or, preferably, by a new Mail API. This mail API could be modelled on any of the successful object oriented mail frameworks, e.g. Javamail (http://java.sun.com/products/javamail/index.jsp).
Any JWG standardization of Pull Messaging must be implementable on top of the IMAP protocol.

2.2.2 Push Messaging

Appium proposes that push messaging is implemented in a new API, separate from pull messaging. In this document we use the term "Direct Messaging" to emphasize the core of this form of communication.

The API could be constructed in the form of one generic class which allows the application to construct a simple text based message and send it to a recipient. In this case the gateway would have to make a decision as to which transport protocol to use based e.g. on configuration and/or the specified recipient address. Then, specific classes should be developed to cater for features in at least the underlying messaging networks: SMS, MMS, WAP Push, IM.
For instance, for the SMS API the application can set the UDH, the originating and terminating application ports etc. This is, by the way, an essential feature for implementing the Parlay-X SMS on top of this API.

 See a suggestion in the following UML diagram figure – base for discussion only.

[image: image1.png]InDirectMessaging

+createlisssaginghofification(
+destroyliessagingNoification)

+sendilessageRed(messags - pDirsctilessage) : TpAssignmentiD

IpDirectMessage

+addRecipient(recipient: TpString)
+getiiessage(: TpString
+getSender() : TPSting

+getSubject) : TpString
+setliessage(message : TpSting)
+setRecipient(recipient: TpStiing)
+setRecipients(recipients : TpStringl)
+setSender(: TpSting

+setSubject(subject: TpStiing)

ipAppDirectMessaging

+reporthifification(
+reporthiotiicationEr)
+sendilessageEn)
+sendilessageRes)

IpShortMessage

lPWapPushMessage

ipinstantMessage

getApplicationPortType(int
+etDCS(: int

+getiiessageClass) : int
+getOriginatingApplicationPort0 :int
+gefTerminatingApplicationPort) :int
+etUDHQ : TpOctetSet
+setApplicationPortTyps(portType :int)
+SelDCS(des : int)
+setiiessageClass(class < int)
+setOriginatingApplicationPort(port - int)
+setTeminatingApplicationPort port: int)
+SetUDH(udh : TpOctetSet)

