Page 1

3GPP TS 29.198-15 V6.0.0 (2004-03)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network;

Open Service Access (OSA);

Application Programming Interface (API);

Part 15: Messaging

(Release 6)

[image: image8.wmf]

Body Parts

Content

Headers

Message

Body Parts

Content

Headers

Message

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

UMTS, API, OSA

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2002, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC).

All rights reserved.

Contents

6Foreword

6Introduction

81
Scope

82
References

83
Definitions and abbreviations

83.1
Definitions

93.2
Abbreviations

94
Messaging SCF

125
Sequence Diagrams

125.1
Send Message

125.2
Manage Notification

135.3
Retrieve Message

155.4
Retrieve Message Part(s)

176
Class Diagrams

197
The Service Interface Specifications

197.1
Interface Specification Format

197.1.1
Interface Class

197.1.2
Method descriptions

197.1.3
Parameter descriptions

197.1.4
State Model

197.2
Base Interface

197.2.1
Interface Class IpInterface

207.3
Service Interfaces

207.3.1
Overview

207.4
Generic Service Interface

207.4.1
Interface Class IpService

218
Messaging Interface Classes

218.1
Interface Class IpMessagingManager

228.1.1
Method openMailbox()

238.1.2
Method createMessagingNotification()

238.1.3
Method destroyMessagingNotification()

238.1.4
Method sendMessageReq()

248.2
Interface Class IpAppMessagingManager

258.2.1
Method mailboxTerminated()

258.2.2
Method reportNotification()

258.2.3
Method reportNotification()

268.2.3
Method sendMessageRes()

268.2.4
Method sendMessageErr()

268.2.5
Method sendMessageNotification()

278.3
Interface Class IpMailbox

278.3.1
Method close()

278.3.2
Method listMessagesReq()

288.3.3
Method deleteMessageReq()

288.3.4
Method listMessageBodyPartsReq()

298.3.5
Method getMessageContentReq()

308.3.6
Method getMessageBodyPartReq()

308.3.7
Method getMessageHeadersReq()

318.3.8
Method getFullMessageReq()

318.4
Interface Class IpAppMailbox

328.4.1
Method listMessagesRes()

338.4.2
Method deleteMessageRes()

338.4.3
Method listMessageBodyPartsRes()

338.4.4
Method getMessageBodyPartRes()

338.4.5
Method getMessageContentRes()

348.4.6
Method getMessageHeadersRes()

348.4.7
Method getFullMessageRes()

348.4.8
Method listMessagesErr()

358.4.9
Method deleteMessageErr()

358.4.10
Method listMessageBodyPartsErr()

358.4.11
Method getMessageBodyPartErr()

368.4.12
Method getMessageContentErr()

368.4.13
Method getMessageHeadersErr()

368.4.14
Method getFullMessageErr()

379
State Transition Diagrams

3710
Data Definitions

3710.1
Definitions Related to sendMessage

3710.1.1
TpTerminatingAddressList

3810.1.2
TpMessage

3810.1.3
TpMessageType

3810.1.4
TpMessageDeliveryType

3810.1.5
TpDeliveryTime

3910.1.6
TpDeliveryTimeType

3910.1.7
TpSendMessageReport

3910.1.8
TpSendMessageReportSet

3910.1.9
TpMSGReport

3910.1.10
TpSendMessageError

4010.1.11
TpSendMessageErrorSet

4010.1.12
TpMSGError

4010.1.13
TpMessageDeliveryStatus

4010.2
Event notification Definitions

4010.2.1
TpMessagingEventName

4010.2.2
TpMessagingEventCriteria

4110.2.3
TpMSGNewMessageArrivedCriteria

4110.2.4
TpMessagingEventInfo

4110.2.5
TpMessagingEventInfoSet

4110.2.6
TpMSGNewMessageArrivedInfo

4110.2.7
TpMessageDescription

4210.3
Messaging Data Definitions

4210.3.1
IpMessagingManager

4210.3.2
IpMessagingManagerRef

4210.3.3
IpAppMessagingManager

4310.3.4
IpAppMessagingManagerRef

4310.3.5
IpMailbox

4310.3.6
IpMailboxRef

4310.3.7
IpAppMailbox

4310.3.8
IpAppMailboxRef

4310.3.9
TpEmailAddress

4310.3.10
TpEmailAddressList

4310.3.11
TpBodyPartDescription

4410.3.12
TpBodyPartDescriptionList

4410.3.13
TpGenericHeaderField

4510.3.14
TpMessageHeaderFieldType

4610.3.15
TpMessageHeaderField

4610.3.16
TpMessageHeaderFieldSet

4710.3.17
TpListMessagesCriteria

4710.3.18
TpMailboxFolderStatusInformation

4710.3.19
TpMSGError

4710.3.20
TpMailboxIdentifier

4711
Messaging Exception Classes

49Annex A (normative): OMG IDL Description of Mobility SCF

50Annex B (informative): Change history

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document is part 13 of a multi-part TS covering the 3rd Generation Partnership Project: Technical Specification Group Core Network; Open Service Access (OSA); Application Programming Interface (API), as identified below. The API specification (3GPP TS 29.198) is structured in the following Parts:

Part 1:
Overview

Part 2:
Common Data Definitions

Part 3:
Framework

Part 4:
Call Control SCF

Part 5:
User Interaction SCF

Part 6:
Mobility SCF

Part 7:
Terminal Capabilities SCF

Part 8:
Data Session Control SCF

Part 9:
Generic Messaging SCF

Part 10:
Connectivity Manager SCF

Part 11:
Account Management SCF

Part 12:
Charging SCF

Part 13 :
Policy Management SCF
Part 14 :
Presence and Availability Management SCF

Part 15:
Messaging SCF (new in 3GPP Release 6)

The Mapping specification of the OSA APIs and network protocols (3GPP TR 29.998) is also structured as above. A mapping to network protocols is however not applicable for all Parts, but the numbering of Parts is kept.
Also in case a Part is not supported in a Release, the numbering of the parts is maintained.

	OSA API specifications 29.198-family
	OSA API Mapping - 29.998-family

	29.198-01
	Overview
	29.998-01
	Overview

	29.198-02
	Common Data Definitions
	29.998-02
	Not Applicable

	29.198-03
	Framework
	29.998-03
	Not Applicable

	Call Control (CC) SCF
	29.198-04-1

Common CC data definitions
	29.198-04-2

Generic CC SCF
	29.198-04-3

Multi-Party CC SCF
	29.198-04-4

Multi-media CC SCF
	29.998-04-1
	Generic Call Control – CAP mapping

	
	
	
	
	
	29.998-04-2
	Generic Call Control – INAP mapping

	
	
	
	
	
	29.998-04-3
	Generic Call Control – Megaco mapping

	
	
	
	
	
	29.998-04-4
	Multiparty Call Control –ISC mapping

	29.198-05
	User Interaction SCF
	29.998-05-1
	User Interaction – CAP mapping

	
	
	29.998-05-2
	User Interaction – INAP mapping

	
	
	29.998-05-3
	User Interaction – Megaco mapping

	
	
	29.998-05-4
	User Interaction – SMS mapping

	29.198-06
	Mobility SCF
	29.998-06
	User Status and User Location – MAP mapping

	29.198-07
	Terminal Capabilities SCF
	29.998-07
	Not Applicable

	29.198-08
	Data Session Control SCF
	29.998-08
	Data Session Control – CAP mapping

	29.198-09
	Generic Messaging SCF
	29.998-09
	Not Applicable

	29.198-10
	Connectivity Manager SCF
	29.998-10
	Not Applicable

	29.198-11
	Account Management SCF
	29.998-11
	Not Applicable

	29.198-12
	Charging SCF
	29.998-12
	Not Applicable

	29.198-13
	Policy Management SCF
	29.998-13
	Not Applicable

	29.198-14
	Presence & Availability Management SCF
	29.998-14
	Not Applicable

	29.198-15
	Messaging SCF
	29.998-15
	Not Applicable

1
Scope

The present document is part 15 of the Stage 3 specification for an Application Programming Interface (API) for Open Service Access (OSA).

The OSA specifications define an architecture that enables application developers to make use of network functionality through an open standardised interface, i.e. the OSA APIs. The concepts and the functional architecture for the OSA are contained in 3GPP TS 23.127 [3]. The requirements for OSA are contained in 3GPP TS 22.127 [2].

The present document specifies the Messaging Service Capability Feature (SCF) aspects of the interface. All aspects of the Messages SCF are defined here, these being:

· Sequence Diagrams

· Class Diagrams

· Interface specification plus detailed method descriptions

· State Transition diagrams

· Data Definitions

· IDL Description of the interfaces

The process by which this task is accomplished is through the use of object modelling techniques described by the Unified Modelling Language (UML).

This specification has been defined jointly between 3GPP TSG CN WG5, ETSI SPAN 12 and the Parlay Consortium, in co-operation with a number of JAIN™ Community member companies.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 29.198-1: "Open Service Access; Application Programming Interface; Part 1: Overview".

[2]
3GPP TS 22.127: "Stage 1 Service Requirement for the Open Service Access (OSA) (Release 6)".

[3]
3GPP TS 23.127: "Virtual Home Environment (Release 6)".

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TS 29.198-1 [1] apply.

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in TS 29.198-1 [1] apply.

4 Messaging SCF

The following clauses describe each aspect of the Messaging Service Capability Feature (SCF).

The order is as follows:

· The Sequence diagrams give the reader a practical idea of how each of the SCF is implemented.

· The Class relationships clause show how each of the interfaces applicable to the SCF, relate to one another.

· The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part.

· The State Transition Diagrams (STD) show the transition between states in the SCF. The states and transitions are well-defined; either methods specified in the Interface specification or events occurring in the underlying networks cause state transitions.

· The Data Definitions clause show a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part of this specification.

An implementation of this API which supports or implements a method described in the present document, shall support or implement the functionality described for that method, for at least one valid set of values for the parameters of that method. Where a method is not supported by an implementation of a Service interface, the exception P_METHOD_NOT_SUPPORTED shall be returned to any call of that method.

The Messaging SCF allows for sending of a wide variety of message types, e.g. a plain text message or a multimedia message containing attachments. Receipt of messages is supported through the mailbox concept. The application can read a message in various ways, the entire message at once or different components one by one (headers and body parts). In this way it is for example possible to read only mail headers or to retrieve the attachments to a mail one by one. The Messaging SCF includes support for the following methods:

· Open mailbox: allows the application to open a specified mailbox. An application can open more than one mailbox at the same time, but the application is not allowed to open the same mailbox more than once at the same time

· Close of mailbox: allows the application to close a mailbox

· Mailbox terminated: an indication to the application that the mailbox has terminated or closed abnormally

· Create message notification: allows the application to set a trigger for message notifications. The message notification is triggered in the SCF and sent to the application when a message is received in the mailbox folder that is specified by the application in the create message notification

· Report notification: this notification informs the application about the receipt of a message in the mailbox. The report notification provides the application with a message identifier that the application can use to retrieve the message

· Destroy message notification: allows the application to remove the trigger for message notifications

· Send message request: allows the application to send a message to one or more recipients, via a specified delivery type/bearer (Binary SMS, SMS, MMS, WAP Push, E-mail)

· List messages: allows the application to retrieve a list of messages contained in a specified mailbox folder

· Delete message: allows the application to delete a message from a mailbox folder

· Get full message: allows the application to retrieve the raw message from the mailbox folder. The targeted message is addressed by using the message identifier that the application already received in the Report Notification

· Get message headers: allows the application to retrieve the headers of a message. The header could for example be the header of an RFC822 message, containing parameters such as sender, sent_to, cc_to, subject etc.

· List message body parts: allows the application to retrieve the structure of the specified message. This is especially useful with multipart messages. The application can indicate up to what nesting level it wants the structure presented. The SCF returns for every body part a part identifier

· Get message body part: allows the application to retrieve a specific body part from a multipart message. The part identifier obtained with List Message Body Parts can be used when retrieving the body part

· Get message content: allows the application to retrieve the content of the message. This is the entire message except for the message headers

[image: image1.png]
Figure 1
Interfaces in the Messaging API

[image: image7.wmf]Mailbox

Network

listMessages

deleteMessage

listMessageBodyParts

getMessageContent

getMessageBodyPart

getMessageContent

getMessageHeaders

getFullMessage

Req

Res

/Err

Req

Res

/Err

Parlay Gateway

IpMessagingManager

IpAppMessagingManager

Application

sendMessage

Notification

send

Message

create

Messaging

Notification

report

Notification

destroy

Messaging

Notification

IpAppMailbox

IpMailbox

Figure 2
Message structure

5 Sequence Diagrams

5.1 Send Message

This sequence diagram shows how the application can send a message with sendMessageReq and how the application can be informed with messageDeliveryNotification about the successful delivery of this message to a specific user.

[image: image2.wmf]

:

IpAppLogic

 :

IpAppMessagingManager

 :

IpMessagingManager

1: new()

2: sendMessageReq()

3: messageDeliveryNotification

4: 'forward event'

5.2
Manage Notification

This sequence diagram shows how an Application can subscribe to notifications that will inform the Application about the receipt of new messages in the Mailbox. The Application specifies a Mailbox ID and Folder ID, so that only upon receipt of messages in that mailbox and folder a notification is sent from the SCF to the Application.

[image: image3.wmf]

 :

IpAppMessagingManager

 :

IpMessagingManager

1. createMessagingNotification(appInterface, eventCriteria)

1.1. TpAssignmentID

2. reportNotification(assignmentID, eventInfo)

3. destroyMessagingNotification(assignmen

tID)

1 :
The Application requests the Messaging Manager to be notified when a message arrives that complies to the provided criteria.

1 1 :
The Messaging Manager returns an assignment ID that uniquely identifies the previous request.

2 :
The Messaging Manager informs the Application that a new message arrived that conformed to the criteria requested, it may provide a set of newly arrived messages if more then one new message arrived in the notification interval. The message itself is not contained in the notification only a short description of the message.

3 :
The Application requests the Messaging Manager to remove the notification request with the given assignment ID.

5.3
Retrieve Message
This diagram shows an Application can list and retrieve messages from a mailbox.

[image: image4.wmf]

 : IpAppMailbox

 :

IpAppMessagingManager

 :

IpMessagingManager

 :

IpMailbox

1. openMailbox(mailboxID, authenticationInfo, appMailbox, appManager)

1.1. TpMailbo

xIdentifier

8. close(mailboxSessionID)

2. listMessagesReq(mailboxSessionID, folderID, criteria, reset)

2.1. TpAssignmentID

3. listMessagesRes(mailboxSessionID, requestID, messageList, mailboxStatusInfo, final)

4. getMessageHeadersReq(mailboxSessionID,

 folderID, messageID)

4.1. TpAssignmentID

5. getMessageHeadersRes(mailboxSessionID, requestID, headers)

6. getMessageContentReq(mailboxSessionID, folderID, messageID)

6.1. TpAssignmentID

7. getMessageContentRes(mailboxSessionID, requestID, contentType

, contentTransferEncoding, content)

1 :
The Application requests access to a mailbox.

1 1 :
When the request is granted the System returns the MailboxSessionID and a reference to a Mailbox interface.

2 :
The Application requests the Mailbox to provide a list of messages in a given folder that conform to given criteria. The Application also indicates whether it wants to retrieve a list from the start or starting from the first message description that could not be listed in a previous request, because of size restrictions on the lists to be returned.

2 1 :
The System returns a requestID that uniquely identifies the previous request.

3 :
The System returns a list of message descriptions, status information from the mailbox and an indication whether the returned list contains the end of the list.

4 :
The application requests the System to provide the message headers of a message with specified messageID in the specified folder. This is only usefull if the Application wants to check additional headers that are not provided by hosaListMessageRes() or hosaMessagingEventNotify().

4 1 :
The System returns a requestID that uniquely identifies the previous request.

5 :
The system provides the headers of the message requested.

6 :
The application requests the System to provide the message contents of a message with specified messageID in the specified folder.

6 1 :
The System returns a requestID that uniquely identifies the previous request.

7 :
The System presents the requested message content, together with some information on how to interpret the message content (content type and content transfer encoding).

8 :
The Application requests the system to close the mailbox as it is no longer interested.

5.4
Retrieve Message Part(s)

[image: image5.wmf]

 : IpAppMailbox

 :

IpAppMessagingManager

 :

IpMessagingManager

 :

IpMailbox

1. openMailbox(mailboxID, authenticationInfo, appMailbox, appManager)

1.1. TpMailbo

xIdentifier

8. close(mailboxSessionID)

2. listMessagesReq(mailboxSessionID, folderID, criteria, reset)

2.1. TpAssignmentID

3. listMessagesRes(mailboxSessionID, requestID, messageList, mailboxStatusInfo, final)

4. listMessageBodyPartsReq(mailboxSession

ID, folderID, messageID, maxNestingLevel)

4.1. TpAssignmentID

5. listMessageBodyPartsRes(mailboxSessionID, requestID, partsList)

6. getMessageBodyPartReq(mailboxSessionID, folderID, messageID, partID)

6.1. TpAssignmentID

7. getMessageBodyPartRes(mailb

oxSessionID, requestID, bodyPartHeaders, bodyPartContent)

1 :
The Application requests access to a mailbox.

1 1 :
When the request is granted the System returns the MailboxSessionID and a reference to a Mailbox interface.

2 :
The Application requests the Mailbox to provide a list of messages in a given folder that conform to given criteria. The Application also indicates whether it wants to retrieve a list from the start or starting from the first message description that could not be listed in a previous request, because of size restrictions on the lists to be returned.

2 1 :
The System returns a requestID that uniquely identifies the previous request.

3 :
The System returns a list of message descriptions, status information from the mailbox and an indication whether the returned list contains the end of the list.

4 :
The application requests the System to provide the message structure of a message with specified messageID in the specified folder. This is especially usefull to find out what information is attached to MIME encoded messages. The MIME encoded message will only be analyzed up to the specified nesting level.

4 1 :
The System returns a requestID that uniquely identifies the previous request.

5 :
The System informs the Application about the structure of a message, as requested.

6 :
The Application requests the system to retrieve a specific attachment (part) from the message. A partID that was obtained with the hosaListMessageBodyPartsReq() method, is used to address the specific attachment.

6 1 :
The System returns a requestID that uniquely identifies the previous request.

7 :
The System sends the Application the requested attachment.

8 :
The Application requests the system to close the mailbox as it is no longer interested.

6 Class Diagrams

The class diagram in the following figure shows the interfaces that make up the application messaging service package and the messaging service package.

[image: image6.wmf]

IpInterface

(from csapi)

<<Interface>>

IpAppMessagingManager

m

ailboxTerminated()

reportNotification ()

sendMessageRes()

reportNotificationErr()

(from msg)

<<Interface>>

IpMessagingManager

openMailbox()

createMessagingNotification()

destroyMessagingNotification()

(from msg)

<<Interface>>

IpMailbox

close()

listMessagesReq()

deleteMessageReq()

listMessageBodyPartsReq()

getMessageContentReq()

getMessageBodyPartReq()

getMessageHeadersReq()

getFullMessageReq()

(from msg)

<<Interface>>

1

0..n

1

0..n

1

1

<<uses>>

IpAppMailbox

(from msg)

<<Interface>>

1

1

<<uses>>

listMessagesRes()

 deleteMessageRes()

 listMessageBodyPartsRes()

getMessageContentRes()

 getMessageBodyPartRes()

 getMessageHeadersRes()

 getFullMessageRes()

listMessagesErr()

 deleteMessageErr()

 listMessageBodyPartsErr()

getMessageContentErr()

 getMessageBodyPartErr()

 getMessageHeadersErr()

 getFullMessageErr()

sendMessageErr()

sendMessageReq()

IpService

setCallback()

setCallbackWithSessionID()

(from csapi)

<<Interface>>

sendMessageNotification()

Figure 3: Package Overview: Application and Service Interfaces

7 The Service Interface Specifications

7.1 Interface Specification Format

This clause defines the interfaces, methods and parameters that form a part of the API specification. The Unified Modelling Language (UML) is used to specify the interface classes. The general format of an interface specification is described below.

7.1.1 Interface Class

This shows a UML interface class description of the methods supported by that interface, and the relevant parameters and types. The Service and Framework interfaces for enterprise-based client applications are denoted by classes with name Ip<name>. The callback interfaces to the applications are denoted by classes with name IpApp<name>. For the interfaces between a Service and the Framework, the Service interfaces are typically denoted by classes with name IpSvc<name>, while the Framework interfaces are denoted by classes with name IpFw<name>.

7.1.2 Method descriptions

Each method (API method "call") is described. Both synchronous and asynchronous methods are used in the API. Asynchronous methods are identified by a 'Req' suffix for a method request, and, if applicable, are served by asynchronous methods identified by either a 'Res' or 'Err' suffix for method results and errors, respectively. To handle responses and reports, the application or service developer must implement the relevant IpApp<name> or IpSvc<name> interfaces to provide the callback mechanism.

7.1.3 Parameter descriptions

Each method parameter and its possible values are described. Parameters described as 'in' represent those that must have a value when the method is called. Those described as 'out' are those that contain the return result of the method when the method returns.

7.1.4 State Model

If relevant, a state model is shown to illustrate the states of the objects that implement the described interface.

7.2 Base Interface

7.2.1 Interface Class IpInterface

All application, framework and service interfaces inherit from the following interface. This API Base Interface does not provide any additional methods.

	<<Interface>>

IpInterface

	

	

7.3 Service Interfaces

7.3.1 Overview

The Service Interfaces provide the interfaces into the capabilities of the underlying network - such as call control, user interaction, messaging, mobility and connectivity management.

The interfaces that are implemented by the services are denoted as 'Service Interface'. The corresponding interfaces that must be implemented by the application (e.g. for API callbacks) are denoted as 'Application Interface'.

7.4 Generic Service Interface

7.4.1 Interface Class IpService

Inherits from: IpInterface
All service interfaces inherit from the following interface.

	<<Interface>>

IpService

	

	setCallback (appInterface : in IpInterfaceRef) : void

setCallbackWithSessionID (appInterface : in IpInterfaceRef, sessionID : in TpSessionID) : void

7.4.1.1 Method setCallback()

This method specifies the reference address of the callback interface that a service uses to invoke methods on the application. It is not allowed to invoke this method on an interface that uses SessionIDs.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE

7.4.1.2 Method setCallbackWithSessionID()

This method specifies the reference address of the application's callback interface that a service uses for interactions associated with a specific session ID: e.g. a specific call, or call leg. It is not allowed to invoke this method on an interface that does not use SessionIDs.

Parameters

appInterface : in IpInterfaceRef

Specifies a reference to the application interface, which is used for callbacks
sessionID : in TpSessionID

Specifies the session for which the service can invoke the application's callback interface.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_INTERFACE_TYPE

8 Messaging Interface Classes

The Generic Messaging Service interface (GMS) is used by applications to send, store and receive messages. GMS has voice mail and electronic mail as the messaging mechanisms. The messaging service interface can be used by both.
A messaging system is assumed to have the following entities:
· Mailboxes. This is the application's main entry point to the messaging system. The framework may or may not need to authenticate an application before it accesses a mailbox
· Folders. These folders may have sub-folders. The names of these sub-folders are appended to their parents' names with '/' as the delimiter. For instance, if there is a sub-folder in INBOX called 'Personal' and a sub-folder in that folder called 'archive' then the fully qualified name, which is required for all operations, is 'INBOX/Personal/archive'. The names are case sensitive. A messaging service may have other folders other than the inbox and the outbox.
· Messages. Messages are stored in folders. Messages consist of a message header and message body.
The GMS is represented by the IpMessagingManager and IpMailbox interfaces to services provided by the network. To handle responses and reports, the developer must implement IpAppMessagingManager to provide the callback mechanism for the Messaging service manager and IpAppMailbox to provide callback for the IpMailbox interface.
8.1 Interface Class IpMessagingManager

Inherits from: IpService
This interface is the 'service manager' interface for the Generic Messaging Service. The generic messaging manager interface provides the management functions to the generic messaging service. The application programmer can use this interface to open mailbox objects and also to enable or disable event notifications.

	<<Interface>>

IpMessagingManager

	

	openMailbox (mailboxID : in TpString, authenticationInfo : in TpString, appMailbox : in IpAppMailboxRef) : TpMailboxIdentifier

createMessagingNotification (appInterface : in IpAppMessagingManagerRef, eventCriteria : in TpMessagingEventCriteria) : TpAssignmentID

destroyMessagingNotification (assignmentID : in TpAssignmentID) : void

sendMessageReq (appMessagingManager : in IpAppMessagingManager, originatingAddress : in TpAddress, terminatingAddressList : in TpTerminatingAddressList, subject : in TpString, message : in TpMessage, deliveryType : in TpMessageDeliveryType, billingID : in TpString, responseRequested : in TpBoolean, deliveryNotificationRequested : in TpBoolean, deliveryTime : in TpDeliveryTime, validityTime : in TpDateAndTime) : TpAssignmentID

8.1.1 Method openMailbox()

This method opens a mailbox for the application. The session ID for use by the application is returned. Authentication information may be needed to open the mailbox.

The application can open more than one mailbox at the same time. The application is not allowed to open the same mailbox more than once at the same time.

Parameters

mailboxID : in TpString

Specifies the identity of the mailbox. If the mailbox chosen is invalid, the error code P_MSG_INVALID_MAILBOX is returned.
authenticationInfo : in TpString

Authentication information needed for the application to open a mailbox in the messaging system, such as a key or password. If the authentication process is considered strong enough for the application to gain access to the mailbox, then the authentication information will be an empty string. If the authentication information is not valid, the error code P_MSG_INVALID_AUTHENTICATION_INFORMATION is returned.

appMailbox : in IpAppMailboxRef

Reference to the calllback interface on which the application receives mailbox result callbacks.
Returns

TpMailboxIdentifier

Raises

TpCommonExceptions,P_MSG_INVALID_MAILBOX, P_MSG_INVALID_AUTHENTICATION_INFORMATION
8.1.2 Method createMessagingNotification()

This method enables the application to indicate that it wishes to receive notifications of messaging related events (e.g. receipt of an incoming message).

Returns: assignmentID

Specifies the ID assigned by the generic messaging manager interface for this newly-enabled event notification.

Parameters

appInterface : in IpAppMessagingManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.
eventCriteria : in TpMessagingEventCriteria

Specifies the event specific criteria used by the application to define the event required.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA
8.1.3 Method destroyMessagingNotification()

This method is used by the application to remove notification subscriptions.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the generic messaging manager interface when the previous enableNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENTID.
Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID
8.1.4 Method sendMessageReq()
This method sends a message to the specified user(s).

Parameters

appMessagingManager : in IpAppMessagingManager

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for call-backs. If set to NULL, the application interface defaults to the interface specified via the setCallback() method.
originatingAddress : in TpAddress

The address that is used to represent the sender of the message. For alphanumeric SMS addresses the address plan P_ADDRESS_PLAN_UNDEFINED shall be used.
terminatingAddressList : in TpTerminatingAddressList

A list of addresses of users to whom the message will be sent. A terminatingAddressList contains a TO, CC and BCC address list. When the underlying network technology can not distinguish these all addresses can be concatenated.
subject : in TpString

Specifies the subject of the message. Only useful if the message type supports it.
message : in TpMessage

The actual message that needs to be sent.
deliveryType : in TpMessageDeliveryType

Specifies what delivery method shall be used to deliver to the user.
billingID : in TpString

A Billing Identifier/Charging Code that can be used to indicate how the costs for this transaction shall be charged.
responseRequested : in TpBoolean

Specifies whether a response is required.
deliveryNotificationRequested : in TpBoolean

Specifies whether a delivery notification is required.
deliveryTime : in TpDeliveryTime

Specifies whether the message shall be delivered instantly or at some specified time.
validityTime : in TpDateAndTime

Specifies the time within which the message keeps its validity. When the message is not delivered before the validity time passes, the message is dropped by the messaging system.
Returns

TpAssignmentID

Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_INVALID_NETWORK_STATE,P_ILLEGAL_ID,P_ID_NOT_FOUND,P_INVALID_DELIVERY_TIME,P_INVALID_VALIDITY_TIME, P_MAX_MESSAGE_SIZE_EXCEEDED,P_MAX_SUBJECT_SIZE_EXCEEDED,P_DELIVERY_TYPE_ADDRESS_TYPE_MISMATCH,P_DELIVERY_TYPE_MESSAGE_TYPE_MISMATCH
8.2 Interface Class IpAppMessagingManager

Inherits from: IpInterface
The client application developer implements the generic messaging manager application interface to handle mailbox termination, mailbox fault and messaging event notifications.

	<<Interface>>

IpAppMessagingManager

	

	mailboxTerminated (mailbox : in TpMailboxIdentifier) : void

reportNotification (assignmentID : in TpAssignmentID , eventInfo : in TpMessagingEventInfoSet) : void

reportNotificationErr (assignmentID : in TpAssignmentID, error : TpMSGError, errorReason : TpString) : void

sendMessageRes (assignmentID : in TpAssignmentID, responseList : in TpSendMessageReportSet) : void

sendMessageErr (assignmentID : in TpAssignmentID, errorList : in TpSendMessageErrorSet) : void

sendMessageNotification (assignmentID : in TpAssignmentID, timeStamp : in TpDateAndTime, userAddress : in TpAddress, deliveryStatus : in TpMessageDeliveryStatus) : void

8.2.1 Method mailboxTerminated()

This method indicates to the application that the mailbox has terminated or closed abnormally. No further communication will be possible between the mailbox and application.

Parameters

mailbox : in TpMailboxIdentifier

Specifies the interface and session ID of the mailbox that has terminated.
8.2.2 Method reportNotification()

This method notifies the application of the arrival of a messaging-related event.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the Create Notification Messaging method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
eventInfo : in TpMessagingEventInfoSet

Specifies data associated with this event.
8.2.3 Method reportNotificationErr()

This method reports to the application that a notification subscription cannot be serviced due to a persistent error condition related to the subscription. The subscription identified by assignmentId is terminated.

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment id which was returned by the Create Notification Messaging method. The application can use assignment id to associate events with event specific criteria and to act accordingly.
error : in TpMSGError

Indicates the error that occured.

errorReason : in TpString

Provides additional information that helps locating the source of the error.

8.2.4
Method sendMessageRes()

This asynchronous method informs the application about the completion of a sendMessageReq(). This response is called only if the responseRequested parameter was set to TRUE.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the messaging manager interface.
responseList : in TpSendMessageReportSet

The responselist contains a statusreport of a succesfull message for one or more users.

A response contains a timeStamp as received from the Messaging System when it accepted the message for the specific user.

8.2.5
Method sendMessageErr()

This asynchronous method indicates that the request to send a message was unsuccessful.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the messaging manager interface.
errorList : in TpSendMessageErrorSet

Specifies the error which led to the original request failing for a specific user.
8.2.6
Method sendMessageNotification()

This asynchronous method informs the application about the succesful delivery of the message for a specific user previously send with sendMessageReq(). This response is called only if the deliveryNotificationRequested parameter was set to "true".

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the messaging manager interface.
timeStamp : in TpDateAndTime

A timeStamp as received from the Messaging System when it accepted the message.
userAddress : in TpAddress

Specifies the user for which the message delivery notification is sent.
deliveryStatus : in TpMessageDeliveryStatus

8.3 Interface Class IpMailbox

Inherits from: IpService
	<<Interface>>

IpMailbox

	

	close (mailboxSessionID : in TpSessionID) : void

listMessagesReq (mailboxSessionID : in TpSessionID, folderID : in TpString, criteria : in TpListMessagesCriteria, reset : in TpBoolean) : TpAssignmentID

deleteMessageReq (mailboxSessionID : in TpSessionID, folderID : in TpString, messageID : in TpString) : void

listMessageBodyPartsReq (mailboxSessionID : in TpSessionID, folderID : in TpString, messageID : in TpString, maxNestingLevel : in TpInt32) : TpAssignmentID

getMessageContentReq (mailboxSessionID : in TpSessionID, folderID : in TpString, messageID : in TpString) : TpAssignmentID

getMessageBodyPartReq (mailboxSessionID : in TpSessionID, folderID : in TpString, messageID : in TpString, partID : in TpString) : TpAssignmentID

getMessageHeadersReq (mailboxSessionID : in TpSessionID, folderID : in TpString, messageID : in TpString) : TpAssignmentID

getFullMessageReq (mailboxSessionID : in TpSessionID, folderID : in TpString, messageID : in TpString) : TpAssignmentID

8.3.1 Method close()

This method closes the mailbox. After closing, the interfaces to the mailbox and any associated folders are automatically de-assigned and are no longer valid. Any open folders will also be automatically closed.

Parameters

mailboxSessionID : in TpSessionID

The session ID of the open mailbox previously opened by openMailbox. From now on, the session ID is no longer valid. If by coincidence an identical session ID is returned by a subsequent openMailbox, the session ID will be associated with the new session and has nothing to do with the closed session. If the session ID is not a valid session ID, the error code P_INVALID_SESSION_ID is returned.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
8.3.2 Method listMessagesReq()

Request a list of messages in a mailbox folder, the list can be narrowed down by providing listing criteria. The maximum size of the list returned for a request is depending on the System configuration. In that case subsequent requests can be used to obtain the complete list, see also the description of the reset parameter.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
folderID : in TpString

Specifies the identity of the folder for which a list of messages is requested. The folderID parameter is only relevant if the reset parameter is set to TRUE. If the reset parameter is set to FALSE it is ignored.
criteria : in TpListMessagesCriteria

Specifies the criteria that items to be listed need to conform to. The criteria parameter is only relevant if the reset parameter is set to TRUE. If the reset parameter is FALSE it is ignored.
reset : in TpBoolean

TRUE: Indicates that the application is intended to obtain the list of messages starting from the beginning.
FALSE: Indicates that the application requests the next part of the list that have not (yet) been obtained since the last call to this method with this parameter set to TRUE.
The first time this method is invoked, reset shall be set to TRUE. Following the receipt of a final indication in the ListMessagesRes(), for the next call to this method reset shall be set to TRUE. P_TASK_REFUSED may be thrown if these conditions are not met.

Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_MSG_INVALID_FOLDER_ID, P_MSG_MAILBOX_LOCKED

8.3.3 Method deleteMessageReq()

Instruct the System to delete the indicated message.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
folderID : in TpString

Specifies the identity of the folder in which the targeted message is contained.
messageID : in TpString

Pinpoints the exact message on whhich to perform this operation.
Returns

TpAssignmentID
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_MSG_INVALID_FOLDER_ID, P_MSG_INVALID_MESSAGE_ID
8.3.4 Method listMessageBodyPartsReq()

Request a list of body parts that are contained in a message. This is especially useful with MIME multipart messages. The Application shall indicate up to what nesting level it wants the structure presented. When an Application wants to download only a specific attachment with the GetBodyPartReq() method this method needs to invoked first in order to find out the partID of the attachment to be retrieved.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
folderID : in TpString

Specifies the identity of the folder in which the targeted message is contained.
messageID : in TpString

Identifies the exact message on which to perform this operation.
maxNestingLevel : in TpInt32

Parts of a multipart message can be multipart structures themselves. The Application can indicate what is the maximum nesting level it wants the structure to be reported. A nesting level of 0 means that only the message content itself will be reported. A nesting level of 1 means that the parts of a multipart type on level 0 will be reported as well. In general a maxNestingLevel of nl=n means that the parts of a multipart type on level nl-1 will be reported, for every nl in the range 0..n.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_MSG_INVALID_FOLDER_ID, P_MSG_INVALID_MESSAGE_ID

8.3.5 Method getMessageContentReq()

Request the entire body of a message. The targeted message is identified by its messageID and the folderID to know where in the mailbox the message is stored. The messageID is obtained either by having recieved a notification of new message arrival or from the result of a list-message request.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
folderID : in TpString

Specifies the identity of the folder in which the targeted message is contained.
messageID : in TpString

Identifies the exact message on which to perform this operation.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_MSG_INVALID_FOLDER_ID, P_MSG_INVALID_MESSAGE_ID
8.3.6 Method getMessageBodyPartReq()

Request for retrieval of only a part of a multipart message. The targeted message is identified by its messageID and the folderID to know where in the mailbox the message is stored. The messageID is typically obtained either by having received a notification of new message arrival or from the result of a list-message request. The partID that identifies which part of the message shall be retrieved is obtained by listing the messages body parts first.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
folderID : in TpString

Specifies the identity of the folder in which the targeted message is contained.
messageID : in TpString

Identifies the exact message on which to perform this operation.
partID : in TpString

Identifies the exact part of the message to retrieve.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_MSG_INVALID_FOLDER_ID, P_MSG_INVALID_MESSAGE_ID
8.3.7 Method getMessageHeadersReq()

Request the headers of a message. The targeted message is identified by its messageID and the folderID to know where in the mailbox the message is stored. The messageID is typically obtained either by having recieved a notification of new message arrival or from the result of a list-message request.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
folderID : in TpString

Specifies the identity of the folder in which the targeted message is contained.
messageID : in TpString

Identifies the exact message on which to perform this operation.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_MSG_INVALID_FOLDER_ID, P_MSG_INVALID_MESSAGE_ID
8.3.8 Method getFullMessageReq()

Request the entire message, including headers and body. The targeted message is identified by its messageID and the folderID to know where in the mailbox the message is stored. The messageID is typically obtained either by having recieved a notification of new message arrival or from the result of a list-message request.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
folderID : in TpString

Specifies the identity of the folder in which the targeted message is contained.
messageID : in TpString

Identifies the exact message on which to perform this operation.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_MSG_INVALID_FOLDER_ID, P_MSG_INVALID_MESSAGE_ID
8.4 Interface Class IpAppMailbox

Inherits from: IpInterface.
The client application developer implements the mailbox application interface to receive asynchronous results of earlier issued requests.

	<<Interface>>

IpAppMailbox

	

	listMessagesRes (mailboxSessionID : in TpSessionID, requestID : in TpAssignmentID, messageList : in TpMessageDescriptionList, mailboxStatusInfo : in TpMailboxFolderStatusInformation, final : in TpBoolean) : void

deleteMessageRes (mailboxSessionID : in TpSessionID, requestID : in TpAssignmentID) : void

listMessageBodyPartsRes (mailboxSessionID : in TpSessionID, requestID : in TpAssignmentID, partsList : in TpBodyPartDescriptionList) : void

getMessageBodyPartRes (mailboxSessionID : in TpSessionID, requestID : in TpAssignmentID, bodyPartHeaders : in TpBodyPartDescription, bodyPartContent : in TpOctetSet) : void

getMessageContentRes (mailboxSessionID : in TpSessionID, requestID : in TpAssignmentID, contentType : in TpString, contentTransferEncoding : in TpString, content : in TpOctetSet) : void

getMessageHeadersRes (mailboxSessionID : in TpSessionID, requestID : in TpAssignmentID, headers : in TpMessageHeaderFieldSet) : void

getFullMessageRes (mailboxSessionID : in TpSessionID, requestID : in TpAssignmentID, message : in TpOctetSet) : void

listMessagesErr (mailboxSessionID : in TpSessionID, requestID : in TpAssignmentID, error : in TpMSGError, errorReason : in TpString) : void

deleteMessageErr (mailboxSessionID : in TpSessionID, requestID : in TpAssignmentID, error : in TpMSGError, errorReason : in TpString) : void

listMessageBodyPartsErr (mailboxSessionID : in TpSessionID, requestID : in TpAssignmentID, error : in TpMSGError, errorReason : in TpString) : void

getMessageBodyPartErr (mailboxSessionID : in TpSessionID, requestID : in TpAssignmentID, error : in TpMSGError, errorReason : in TpString) : void

getMessageContentErr (mailboxSessionID : in TpSessionID, requestID : in TpAssignmentID, error : in TpMSGError, errorReason : in TpString) : void

getMessageHeadersErr (mailboxSessionID : in TpSessionID, requestID : in TpAssignmentID, error : in TpMSGError, errorReason : in TpString) : void

getFullMessageErr (mailboxSessionID : in TpSessionID, requestID : in TpAssignmentID, error : in TpMSGError, errorReason : in TpString) : void

8.4.1 Method listMessagesRes()

This method delivers the result of a completed list messages request. Whether there are still more messages that can be listed yet will be indicated with the final parameter.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
requestID : in TpAssignmentID

Identifies the request for which this result is send.
messageList : in TpMessageDescriptionList

A list with each entry giving a short description of the message.
mailboxStatusInfo : in TpMailboxFolderStatusInformation

Gives some information about the status of the mailbox regarding the number of messages it holds, how many new messages etc.
final : in TpBoolean

Indication whether the returned list is the final part of the complete list (TRUE) or if there are still parts of the list to retrieve (FALSE).
8.4.2 Method deleteMessageRes()

This method indicates that the message deletion request was succesfully executed.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
requestID : in TpAssignmentID

Identifies the request for which this result is send.
8.4.3 Method listMessageBodyPartsRes()

This method delivers the result of a completed list message body parts request.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
requestID : in TpAssignmentID

Identifies the request for which this result is send.
partsList : in TpBodyPartDescriptionList

Specifies the structure of the message up to the requested nesting level.
8.4.4 Method getMessageBodyPartRes()

This method delivers the result of a completed get message body part request.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
requestID : in TpAssignmentID

Identifies the request for which this result is send.
bodyPartHeaders : in TpBodyPartDescription

Specifies details about the body part that are needed in order to interpret the content correctly. For example content type, encoding, size etc.
bodyPartContent : in TpOctetSet

Contains the content of a body part.
8.4.5 Method getMessageContentRes()

This method delivers the result of a completed get message content request.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
requestID : in TpAssignmentID

Identifies the request for which this result is send.
contentType : in TpString

Specifies the content type value according to the RFC2045 format.
contentTransferEncoding : in TpString

Specifies the content transfer encoding value according to the RFC2045 format.
content : in TpOctetSet

Contains the body of the message.
8.4.6 Method getMessageHeadersRes()

This method delivers the result of a completed get message headers request.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
requestID : in TpAssignmentID

Identifies the request for which this result is send.
headers : in TpMessageHeaderFieldSet

Carries the headers of the message.
8.4.7 Method getFullMessageRes()

This method delivers the result of a completed get full message request.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
requestID : in TpAssignmentID

Identifies the request for which this result is send.
message : in TpOctetSet

Contains the entire message (headers and body) in unstructured format.
8.4.8 Method listMessagesErr()

This method indicates that the list messages request was unsuccesful.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
requestID : in TpAssignmentID

Identifies the request for which this error is send.
error : in TpMSGError

Indicates the error that occurred.
errorReason : in TpString

Provide additional information that helps locating the source of the error.
8.4.9 Method deleteMessageErr()

This method indicates that the delete message request was unsuccesful.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
requestID : in TpAssignmentID

Identifies the request for which this error is send.
error : in TpMSGError

Indicates the error that occurred.
errorReason : in TpString

Provide additional information that helps locating the source of the error.
8.4.10 Method listMessageBodyPartsErr()

This method indicates that the list message body parts request was unsuccesful.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
requestID : in TpAssignmentID

Identifies the request for which this error is send.
error : in TpMSGError

Indicates the error that occurred.
errorReason : in TpString

Provide additional information that helps locating the source of the error.
8.4.11 Method getMessageBodyPartErr()

This method indicates that the get message body part request was unsuccesful.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
requestID : in TpAssignmentID

Identifies the request for which this error is send.
error : in TpMSGError

Indicates the error that occurred.
errorReason : in TpString

Provide additional information that helps locating the source of the error.
8.4.12 Method getMessageContentErr()

This method indicates that the get message content request was unsuccesful.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
requestID : in TpAssignmentID

Identifies the request for which this error is send.
error : in TpMSGError

Indicates the error that occurred.
errorReason : in TpString

Provide additional information that helps locating the source of the error.
8.4.13 Method getMessageHeadersErr()

This method indicates that the get message headers request was unsuccesful.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
requestID : in TpAssignmentID

Identifies the request for which this error is send.
error : in TpMSGError

Indicates the error that occurred.
errorReason : in TpString

Provide additional information that helps locating the source of the error.
8.4.14 Method getFullMessageErr()

This method indicates that the get full message request was unsuccesful.

Parameters

mailboxSessionID : in TpSessionID

This is the session ID of the open mailbox.
requestID : in TpAssignmentID

Identifies the request for which this error is send.
error : in TpMSGError

Indicates the error that occurred.
errorReason : in TpString

Provide additional information that helps locating the source of the error.
9 State Transition Diagrams

There are no State Transition Diagrams for the Messaging SCF.

10 Data Definitions

This clause provides the generic messaging service data definitions necessary to support the API specification. All data types referenced but not defined in this clause are common data definitions which may be found in ES 202 915-2.

10.1 Definitions Related to sendMessage

10.1.1
TpTerminatingAddressList

Defines the Sequence of Data Elements that specify a send message request.

	Sequence Element

Name
	Sequence Element

Type
	Description

	ToAddressList
	TpAddressSet
	The list of addresses that are the main target of the message.

	CcAddressList
	TpAddressSet
	The list of addresses that receive a copy of the message.

	BccAddressList
	TpAddressSet
	The list of addresses that receive a copy of the message, without this being visible to other receivers.

10.1.2
TpMessage

Defines the Tagged Choice of Data Elements that specify a message.

	
	Tag Element Type
	

	
	TpMessageType
	

	Tag Element

Value
	Choice Element

Type
	Choice Element Name

	P_MSG_ALPHANUMERIC_DATA
	TpString
	Text

	P_MSG_BINARY_DATA
	TpOctetSet
	BinaryData

10.1.3
TpMessageType

Defines what type of data a message contains.

	Name
	Value
	Description

	P_MSG_ALPHANUMERIC_DATA
	0
	The data is provided as a text string.

	P_MSG_BINARY_DATA
	1
	The data is provided as a binary octet string, that is not translated during transmission.

10.1.4
TpMessageDeliveryType

Defines the mode of delivery for a message.

	Name
	Value
	Description

	P_MSG_SMS
	0
	The message shall be delivered as a Short Message according to the Short Message Service standard.

	P_MSG_SMS_BINARY
	1
	The message shall be delivered as a Binary Short Message according to the Short Message Service standard.

	P_MSG_MMS
	2
	The message shall be delivered as a Multimedia Message according to the Multimedia Message Service standard.

	P_MSG_WAP_PUSH
	3
	The message shall be delivered as a WAP-push Message.

	P_MSG_EMAIL
	4
	The message shall be delivered as an e-mail Message.

10.1.5
TpDeliveryTime

Defines the Tagged Choice of Data Elements that specifies when the message shall be delivered.

	
	Tag Element Type
	

	
	TpDeliveryTimeType
	

	Tag Element

Value
	Choice Element

Type
	Choice Element Name

	P_MSG_SEND_IMMEDIATE
	NULL
	Undefined

	P_MSG_DELIVERY_TIME
	TpDateAndTime
	DeliveryTime

10.1.6
TpDeliveryTimeType

Defines whether a message shall be delivered instantly or at some specified time.

	Name
	Value
	Description

	P_MSG_SEND_IMMEDIATE
	0
	The message shall be delivered as soon as possible.

	P_MSG_DELIVERY_TIME
	1
	The message shall be delivered at a certain specified time.

10.1.7
TpSendMessageReport

Defines the Sequence of Data Elements that specify a location request.

	Sequence Element

Name
	Sequence Element

Type
	Description

	UserAddress
	TpAddress
	The user address for which the error occurred.

	Response
	TpMSGReport
	The status report for a succesfull sending.

	TimeStamp
	TpDateAndTime
	

10.1.8
TpSendMessageReportSet

Defines a Numbered Set of Data Elements of TpSendMessageReport.

10.1.9
TpMSGReport

Defines the reports if a response was requested.

	Name
	Value
	Description

	P_MSG_REPORT_UNDEFINED
	0
	Undefined report

	P_MSG_REPORT_INFO_SENT
	1
	Confirmation that the information has been sent

	P_MSG_REPORT_MESSAGE_STORED
	2
	A message has been stored successfully

10.1.10
TpSendMessageError

Defines the Sequence of Data Elements that specify a SendMessage error report.

	Sequence Element

Name
	Sequence Element

Type
	Description

	UserAddress
	TpAddress
	The user address for which the error is reported.

	Error
	TpMSGError
	An indication of the error.

10.1.11
TpSendMessageErrorSet

Defines a Numbered Set of Data Elements of TpSendMessageError.

10.1.12
TpMSGError

Defines the error codes.

	Name
	Value
	Description

	P_MSG_ERROR_UNDEFINED
	0
	Undefined error

	P_MSG_ERROR_ILLEGAL_INFO
	1
	The specified information (InfoId, InfoData, or InfoAddress) is invalid

	P_MSG_ERROR_ID_NOT_FOUND
	2
	A legal InfoId is not known to the User Interaction service

	P_MSG_ERROR_RESOURCE_UNAVAILABLE
	3
	The information resources used by the User Interaction service are unavailable, e.g. due to an overload situation.

	P_MSG_ERROR_ILLEGAL_RANGE
	4
	The values for minimum and maximum collection length are out of range

	P_MSG_ERROR_IMPROPER_USER_RESPONSE
	5
	Improper user response

	P_MSG_ERROR_ABANDON
	6
	The specified leg is disconnected before the send information completed

	P_MSG_ERROR_NO_OPERATION_ACTIVE
	7
	There is no active User Interaction for the specified leg. Either the application did not start any User Interaction or the User Interaction was already finished when the abortActionReq() was called.

	P_MSG_ERROR_NO_SPACE_AVAILABLE
	8
	There is no more storage capacity to record the message when the recordMessageReq() operation was called

	P_MSG_ERROR_RESOURCE_TIMEOUT
	9
	The request has been accepted by the resource but it did not report a result.

10.1.13
TpMessageDeliveryStatus

Defines the mode of delivery for a message.

	Name
	Value
	Description

	P_MSG_MESSAGE_DELIVERED
	0
	The message has been successfully delivered.

	P_MSG_MESSAGE_NOT_DELIVERABLE
	1
	The message could not be successfully delivered.

	P_MSG_MESSAGE_EXPIRED
	2
	The message could not be delivered before the validity time of the message expired.

10.2 Event notification Definitions

10.2.1 TpMessagingEventName

Defines the name of event being notified. In phase 2 of the APIs, only the following events are supported.

	Name
	Value
	Description

	P_EVENT_MSG_NAME_UNDEFINED
	0
	Undefined

	P_EVENT_MSG_NEW_MESSAGE_ARRIVED
	1
	New Message Arrived

10.2.2 TpMessagingEventCriteria

Defines the Tagged Choice of Data Elements that specify the criteria for an event notification to be generated.

	
	Tag Element Type
	

	
	TpMessagingEventName
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_EVENT_MSG_NEW_MESSAGE_ARRIVED
	TpNewMessageArrivedCriteria
	EventNewMessage
Arrived

10.2.3 TpNewMessageArrivedCriteria

Defines the Sequence of Data Elements that specify the criteria for a New Message Arrived event.

	Sequence Element Name
	Sequence Element Type

	MailboxID
	TpString

	FolderID
	TpString

	AuthenticationInfo
	TpString

10.2.4 TpMessagingEventInfo

Defines the Tagged Choice of Data Elements that specify the information returned to the application in an event notification.

	
	Tag Element Type
	

	
	TpMessagingEventName
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_EVENT_MSG_NAME_UNDEFINED
	TpString
	EventNameUndefined

	P_EVENT_MSG_NEW_MESSAGE_ARRIVED
	TpNewMessageArrivedInfo
	EventNewMessage
Arrived

10.2.5 TpMessagingEventInfoSet

Defines a numbered set of data elements of TpMessagingEventInfo.

10.2.6 TpNewMessageArrivedInfo

Defines the Sequence of Data Elements that specify the information returned to the application in a New Message Arrived event.

	Sequence Element Name
	Sequence Element Type

	MailboxID
	TpString

	FolderID
	TpString

	MessageDescription
	TpMessageDescription

	
	

10.2.7 TpMessageDescription

Specifies the properties of a message.

	Sequence Element

Name
	Sequence Element

Type
	Description

	MessageID
	TpString
	This is the messageID as it is used on the API to identify a message. This should not be confused with the RFC 822 "Message-ID" field body. The latter can be obtained with getMessageHeadersReq().

The messageID used on the API is persistent over sessionsand at least unique within the context of a mailbox-folder.

	From
	TpEmailAddressList
	A list of RFC822 email addresses representing the author of the message.

	To
	TpEmailAddressList
	A list of RFC822 email addresses representing the primary recipients of the message.

	Subject
	TpString
	Specifies the subject of the message.

	ReceivedDate
	TpDateAndTime
	Specifies the date/time that the message was received by the messaging system.

	Size
	TpInt32
	Specifies the size of the message in bytes.

10.2.8 TpMessageDescriptionList

Defines a sequence of data elements of TpMessageDescription.

10.3 Messaging Data Definitions

10.3.1 IpMessagingManager

Defines the address of an IpMessagingManager Interface.

10.3.2 IpMessagingManagerRef

Defines a Reference to type IpMessagingManager.

10.3.3 IpAppMessagingManager

Defines the address of an IpAppMessagingManager Interface.

10.3.4 IpAppMessagingManagerRef

Defines a Reference to type IpAppMessagingManager.

10.3.5 IpMailbox

Defines the address of an IpMailbox Interface.

10.3.6 IpMailboxRef

Defines a Reference to type IpMailbox.

10.3.7 IpAppMailbox

Defines the address of an IpAppMailbox Interface.

10.3.8 IpAppMailboxRef

Defines a Reference to type IpAppMailbox.

10.3.9 TpEmailAddress

Defines an RFC 822 compliant email address. This datatype is defines as TpString.

10.3.10 TpEmailAddressList

Defines a numbered set of data elements of TpEmailAddress.

10.3.11 TpBodyPartDescription

Defines a sequence of data elements that specify the properties of a body part.

	Sequence Element

Name
	Sequence Element

Type
	Description

	ContentDescription
	TpString
	The contents of the field shall be interpreted as the RFC 2045 Content-Description field body.

	ContentSize
	TpInt32
	This field specifies the length of the body part content in bytes.

	ContentType
	TpString
	The contents of the field shall be interpreted as the RFC 2045 Content-Type field body.

	ContentTransferEncoding
	TpString
	The contents of the field shall be interpreted as the RFC 2045 Content-Transfer-Encoding field body.

	ContentID
	TpString
	The contents of the field shall be interpreted as the RFC 2045 Content-ID field body.

	ContentDisposition
	TpString
	The contents of the field shall be interpreted as the RFC 2183 Content-Disposition field body.

	PartID
	TpString
	Identifies the body part uniquely within the message. This identifier is created by the System and shall always be the same for the same message, whether a structure was listed with a nesting level of n or n+1 should not make a difference.

	NestingLevel
	TpInt32
	Specifies how deep the part is nested within the structure.

10.3.12 TpBodyPartDescriptionList

Defines a numbered set of data elements of TpBodyPartDescription.

10.3.13 TpGenericHeaderField

Specifies the name and value of a header field.

	Sequence Element

Name
	Sequence Element

Type
	Description

	FieldName
	TpString
	Contains the field name of an RFC822 header field.

	FieldValue
	TpString
	Contains the field body of a RFC822 header field.

10.3.14 TpMessageHeaderFieldType

Specifies the different types of header fields recognized.

	Name
	Value
	Description

	P_MESSAGE_DATE_SENT
	002
	The origination date specifies the date and time at which the creator of the message indicated that the message was complete and ready to enter the mail delivery system.

	P_MESSAGE_SENT_FROM
	003
	Specifies the author(s) of the message, that is, the mailbox address(es) of the person(s) or system(s) responsible for the writing of the message.

	P_MESSAGE_SENDER
	004
	Specifies the mailbox address of the agent responsible for the actual transmission of the message.

	P_MESSAGE_REPLY_TO
	005
	Indicates the mailbox adress(es) to which the author of the message suggests that replies be sent.

	P_MESSAGE_SENT_TO
	006
	Specifies the address(es) of the primary recipient(s) of the message.

	P_MESSAGE_CC_TO
	007
	Specifies the addresses of others who are to receive the message, though the content of the message may not be directed at them.

	P_MESSAGE_BCC_TO
	008
	Specifies addresses of recipients of the message whose addresses are not to be revealed to other recipients of the message.

	P_MESSAGE_RFC822_MESSAGE_ID
	009
	Specifies a unique message identifier that refers to a particular version of a particular message. This field has the same semantics as the RFC(2)822 "Message-ID:" field.

Note: This message ID can not be used on the messaging interface to address this specific message. See TpMessageDescription for more information.

	P_MESSAGE_IN_REPLY_TO
	010
	May be used to identify the message (or messages) to which the new message is a reply. The messages are referred by their RFC(2)822 Message-ID.

	P_MESSAGE_REFERENCES
	011
	May be used to identify the message (or messages) with which this message forms a thread of conversation. The messages are referred by their RFC(2)822 Message-ID.

	P_MESSAGE_SUBJECT
	012
	A short string identifying the topic of the message.

	P_MESSAGE_COMMENTS
	013
	This field has the same semantics as the RFC(2)822 "Comments:" field.

	P_MESSAGE_KEYWORDS
	014
	This field has the same semantics as the RFC(2)822 "Keywords:" field.

	P_MESSAGE_TRACE_FIELD
	015
	All trace fields like for example RFC(2)822 "Return-Path:" and "Received:" will be gathered under this flag.

	P_MESSAGE_RESENT_FIELD
	016
	All RFC(2)822 resent fields will be gathered under this flag.

	P_MESSAGE_MIME_VERSION
	017
	Declare the version of the Internet message body format standard in use. This field has the same semantics as the RFC2045 "MIME-Version:" field.

	P_MESSAGE_CONTENT_TYPE
	018
	The Content-Type header field specifies the nature of the data in the body of an entity by giving media type and subtype identifiers, and by providing auxiliary information that may be required for certain media types. This field has the same semantics as the RFC2045 "Content-Type:" field.

	P_MESSAGE_ENCODING
	019
	This field's value is a single token specifying the type of encoding. This field has the same semantics as the RFC2045 "Content-Transfer-Encoding:" field.

	P_MESSAGE_CONTENT_ID
	020
	When present uniquely identifyies a MIME entity. This field has the same semantics as the RFC2045 "Content-ID:" field.

	P_MESSAGE_DESCRIPTION
	021
	Specifies some descriptive information about the MIME entity. This field has the same semantics as the RFC2045 "Content-Description:" field.

	P_MESSAGE_DISPOSITION
	022
	Specifies how the MIME entity shall be presented, inline or as an attachment. This field has the same semantics as the RFC2183 "Content-Disposition:" field.

	P_MESSAGE_MIME_EXTENSION_FIELD
	023
	Any RFC 822 header field which begins with the string "Content-" and does not match the description of the other MIME fields.

	P_MESSAGE_EXTENSION_FIELD
	024
	Any header field that does not match any of the of the other field types in this datatype.

10.3.15 TpMessageHeaderField

Carries the contents of one message header field.

	
	Tag Element Type
	

	
	TpMessageHeaderFieldType
	

	Tag Element

Value
	Choice Element

Type
	Choice Element Name

	P_MESSAGE_DATE_SENT
	TpDateAndTime
	DateSent

	P_MESSAGE_SENT_FROM
	TpEmailAddressList
	From

	P_MESSAGE_SENDER
	TpEmailAddress
	Sender

	P_MESSAGE_REPLY_TO
	TpEmailAddressList
	ReplyTo

	P_MESSAGE_SENT_TO
	TpEmailAddressList
	To

	P_MESSAGE_CC_TO
	TpEmailAddressList
	Cc

	P_MESSAGE_BCC_TO
	TpEmailAddressList
	Bcc

	P_MESSAGE_RFC822_MESSAGE_ID
	TpString
	RFC822MessageID

	P_MESSAGE_IN_REPLY_TO
	TpStringSet
	InReplyTo

	P_MESSAGE_REFERENCES
	TpStringSet
	References

	P_MESSAGE_SUBJECT
	TpString
	Subject

	P_MESSAGE_COMMENTS
	TpString
	Comments

	P_MESSAGE_KEYWORDS
	TpStringSet
	Keywords

	P_MESSAGE_TRACE_FIELD
	TpGenericHeaderField
	TraceField

	P_MESSAGE_RESENT_FIELD
	TpGenericHeaderField
	ResentField

	P_MESSAGE_MIME_VERSION
	TpString
	MimeVersion

	P_MESSAGE_MIME_CONTENT
	TpString
	MimeContent

	P_MESSAGE_MIME_ENCODING
	TpString
	MimeEncoding

	P_MESSAGE_MIME_ID
	TpString
	MimeID

	P_MESSAGE_MIME_DESCRIPTION
	TpString
	MimeDescription

	P_MESSAGE_MIME_DISPOSITION
	TpString
	MimeDisposition

	P_MESSAGE_MIME_EXTENSION_FIELD
	TpGenericHeaderField
	MimeExtensionField

	P_MESSAGE_EXTENSION_FIELD
	TpGenericHeaderField
	ExtensionField

10.3.16 TpMessageHeaderFieldSet

Defines a numbered set of data elements of TpMessageHeaderField.
10.3.17 TpListMessagesCriteria

The list message criteria can be used to narrow down the list of messages reported to the Application by specifying extra criteria that the listed messages need to conform to.

	Sequence Element

Name
	Sequence Element

Type
	Description

	OnlyUnreadMessages
	TpBoolean
	When this field is TRUE only unread messages shall be reported.

10.3.18 TpMailboxFolderStatusInformation

Describes the status of a mailbox folder.

	Sequence Element

Name
	Sequence Element

Type
	Description

	TotalMessageCount
	TpInt32
	Specifies the total number of messages in the mailbox folder.

10.3.19 TpMSGError

Specifies the type of error that occurred.

	Name
	Value
	Description

	P_MSG_UNDEFINED_ERROR
	001
	Undefined error.

	P_MSG_NOT_AUTHORIZED_ERROR
	002
	The Application has insufficient privileges for the requested action to be carried out.

	P_MSG_NOT_EXISTING_FOLDER_ERROR
	003
	The folder that the request refers to does not exist.

	P_MSG_NOT_EXISTING_MESSAGE_ERROR
	004
	The message that the request refers to does not exist.

	P_MSG_NOT_EXISTING_BODYPART_ERROR
	005
	The body part that the request refers to does not exist.

	P_MSG_NOT_EXISTING_MAILBOX_ERROR
	006
	The mailbox that the request refers to does not exist.

	P_MSG_CONNECTION_TIMEOUT_ERROR
	007
	A mail store connection problem occurred.

10.3.20 TpMailboxIdentifier

Defines the Sequence of Data Elements that identify a mailbox.

	Sequence Element Name
	Sequence Element Type

	Mailbox
	IpMailboxRef

	SessionID
	TpSessionID

11 Messaging Exception Classes

The following are the list of exception classes which are used in this interface of the API.

	Name
	Description

	
	

	
	

	
	

	P_MSG_INVALID_AUTHENTICATION_INFORMATION
	Authentication Information is not valid

	P_MSG_INVALID_FOLDER_ID
	The folder ID is invalid (does not exist if opening a folder, already exists if creating a folder)

	P_MSG_INVALID_MAILBOX
	Chosen Mailbox Address is invalid

	P_MSG_INVALID_MESSAGE_ID
	The message ID is invalid / does not exist

	
	

	P_MSG_MAILBOX_LOCKED
	Action cannot be performed because the mailbox is locked by another application

	
	

	
	

	
	

	
	

	
	

Each exception class contains the following structure:

	Structure Element Name
	Structure Element Type
	Structure Element Description

	ExtraInformation
	TpString
	Carries extra information to help identify the source of the exception, e.g. a parameter name

Annex A (normative):
OMG IDL Description of Mobility SCF

The OMG IDL representation of this interface specification is contained in a text file (msg.idl contained in archive xxx.ZIP) which accompanies the present document.

Annex B (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

�Rose:Package:Rose|1.2|Package('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D9857AC0048')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D985B340299','2')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D985B34029A','2012752640')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D985B34029B','2012752640')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D985B34029C','2012752640')

�Rose:Scenario:Rose|1.2|Scenario('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D985B1C0274')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D985B470223','2')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D985B470224','2012752640')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D9C40B3028B','2012752640')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D9C40C403BC','2012752640')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D9D82AC0029','2012752640')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3E1C3DE40008','2012752640')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3E1C3E0001FD','2012752640')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3E1C3E390083','2012752640')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3E1C3E9702FF','2012752640')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3E1C3EC801BF','2012752640')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3E1C3EF10268','2012752640')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D985B470226','2012752640')

�Rose:Scenario:Rose|1.2|Scenario('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D9C40410024')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D9C494D013B','2')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D9C494D013C','2012752640')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D9C494D0121','206838528')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D9C494D0124','206925568')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D9D85AD02C4','209782784')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3E1C445702FB','206863104')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3E1C446D0393','207482624')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3E1C448C0171','206863872')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3E1C449D02CA','77707264')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3E1C44BD001D','209435904')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3E1C44D501F8','207380480')

�Rose:Message:Rose|1.1|Message('Y:\documents\productdocuments\interfacespecifications\hosa\model\UML_ERICSSON_H-OSA.mdl','0','3D9C494D0137','2012752640')

CR page 1

_1118654972.doc

 : IpAppMailbox

 :

IpAppMessagingManager

 :

IpMessagingManager

 :

IpMailbox

1. openMailbox(mailboxID, authenticationInfo, appMailbox, appManager)

1.1. TpMailboxIdentifier

8. close(mailboxSessionID)

2. listMessagesReq(mailboxSessionID, folderID, criteria, reset)

2.1. TpAssignmentID

3. listMessagesRes(mailboxSessionID, requestID, messageList, mailboxStatusInfo, final)

4. getMessageHeadersReq(mailboxSessionID, folderID, messageID)

4.1. TpAssignmentID

5. getMessageHeadersRes(mailboxSessionID, requestID, headers)

6. getMessageContentReq(mailboxSessionID, folderID, messageID)

6.1. TpAssignmentID

7. getMessageContentRes(mailboxSessionID, requestID, contentType, contentTransferEncoding, content)

_1118670129.doc

:

IpAppLogic

 :

IpAppMessagingManager

 :

IpMessagingManager

1: new()

2: sendMessageReq()

3: messageDeliveryNotification

4: 'forward event'

_1136295223.doc
[image: image1.emf][image: image2.emf][image: image3.emf][image: image4.emf]

IpInterface

(from csapi)

<<Interface>>

IpAppMessagingManager

mailboxTerminated()

reportNotification ()

sendMessageRes()

reportNotificationErr()

(from msg)

<<Interface>>

IpMessagingManager

openMailbox()

createMessagingNotification()

destroyMessagingNotification()

(from msg)

<<Interface>>

IpMailbox

close()

listMessagesReq()

deleteMessageReq()

listMessageBodyPartsReq()

getMessageContentReq()

getMessageBodyPartReq()

getMessageHeadersReq()

getFullMessageReq()

(from msg)

<<Interface>>

1

0..n

1

0..n

 getFullMessageErr()

 getMessageHeadersErr()

 getMessageBodyPartErr()

getMessageContentErr()

 getFullMessageRes()

 getMessageHeadersRes()

 getMessageBodyPartRes()

<<uses>>

1

1

<<Interface>>

(from msg)

getMessageContentRes()

 listMessageBodyPartsRes()

 deleteMessageRes()

listMessagesRes()

IpAppMailbox

sendMessageNotification()

<<Interface>>

(from csapi)

setCallbackWithSessionID()

setCallback()

IpService

sendMessageReq()

sendMessageErr()

1

1

<<uses>>

 listMessageBodyPartsErr()

 deleteMessageErr()

listMessagesErr()

_1118655398.doc

 : IpAppMailbox

 :

IpAppMessagingManager

 :

IpMessagingManager

 :

IpMailbox

1. openMailbox(mailboxID, authenticationInfo, appMailbox, appManager)

1.1. TpMailboxIdentifier

8. close(mailboxSessionID)

2. listMessagesReq(mailboxSessionID, folderID, criteria, reset)

2.1. TpAssignmentID

3. listMessagesRes(mailboxSessionID, requestID, messageList, mailboxStatusInfo, final)

4. listMessageBodyPartsReq(mailboxSessionID, folderID, messageID, maxNestingLevel)

4.1. TpAssignmentID

5. listMessageBodyPartsRes(mailboxSessionID, requestID, partsList)

6. getMessageBodyPartReq(mailboxSessionID, folderID, messageID, partID)

6.1. TpAssignmentID

7. getMessageBodyPartRes(mailboxSessionID, requestID, bodyPartHeaders, bodyPartContent)

_1118654837.doc

 :

IpAppMessagingManager

 :

IpMessagingManager

1. createMessagingNotification(appInterface, eventCriteria)

1.1. TpAssignmentID

2. reportNotification(assignmentID, eventInfo)

3. destroyMessagingNotification(assignmentID)

