joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030563
Meeting #25, Bangkok, THAILAND, 27 - 31 October 2003

Source:
Gareth Carroll (Open API Solutions)
Title:
The role of the activity timer needs to be clarified
Agenda Item:
5, 6, 12.5 (Call Control)

Document for:
Discussion
Category:

Work Item ID:
OSA1, OSA2 and OSA3

Doc Summary:
The role of the MPCC activity timer, when it should be started and stopped, and what it actually protects needs to be discussed.
Specs involved:
ETSI ES 201 915-4,
ETSI ES 202 915-4
In the multi party call control specification there is mention of an activity timer. Section 7.2 states:

“When an IpMultiPartyCall is created using createCall, or when an IpMultiPartyCall is given to the application for a notification with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, an activity timer is started. The activity timer is stopped when the application invokes a method on the IpMultiPartyCall. The action upon expiry of this activity timer is to invoke callEnded() on the IpAppMultiPartyCall with a release cause of P_TIMER_EXPIRY. In the case when no IpAppMultiPartyCall is available on which to invoke callEnded(), callAborted() shall be invoked on the IpAppMultiPartyCallControlManager as this is an abnormal termination. “

This activity timer is also provided when legs are given to the application in INTERRUPT mode, as the call leg STD section specifies that in most states the activity timer is being provided and also the action to take when the activity timer expires.

The previous meeting (in San Diego) decided that the activity timer should be on a call basis, and that there should not be a separate timer for each call leg. The meeting report stated: “The meeting agrees that the activity timer should be on a call object basis, and reset for every activity. The specifications should be clarified accordingly.”
We feel that there are ambiguities over when the timer should be stopped and when it should either not be affected at all or reset and restarted, and even over what it actually guards against.

The purpose of this document is just to provoke a discussion amongst the experts in the joint working group on this topic.

Should the activity timer really be stopped when ANY method is invoked on the IpMultiPartyCall? Does this include methods such as getInfoReq()? If so, then an application could be given the call object in INTERRUPT mode, invoke getInfoReq and then just let the call sit there (until a network timeout occurs).

What does the timer actually guard against in this case? Is its purpose merely to run when the call reference is first given out and then to have no further part to play at all? Or is its purpose to actually guard against application inactivity? If the latter, then surely the timer must be (re)started when a call leg is created?
Does creating a new call leg via createCallLeg and createAndRouteCallLegReq reset and restart the activity timer? We feel that it should, as otherwise a call will have its activity timer running and it may expire whilst the application is routing the legs (thus releasing the call).

Will the call’s activity timer ever be completely stopped? How about when the call has all call legs in the Active state and processing is not suspended? We believe it is OK for the timer to be stopped in this case, as the call is now stable, and we do not want it to be released when the timer expires. If another leg is created, though, then the call’s activity timer would have to be restarted again.

The call’s activity timer also needs to be reset and restarted whenever an eventReportRes is fired in response to an INTERRUPT request, as the eventReportRes method description does state that the activity timer is to run in this case.

Would it all make a lot more sense if the text above the multiparty call’s STD was changed to something like this? :

"When an IpMultiPartyCall is created using createCall, or when an IpMultiPartyCall is given to the application for a notification with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, an activity timer is started. The activity timer is reset and restarted when the application invokes a method on the IpMultiPartyCall. The activity timer is also reset and restarted whenever the application invokes a method on any IpCallLeg in the call up until all call legs are in the Active state and processing is not suspended, at which point the activity timer is stopped. The activity timer is also stopped at any point where no leg in the call has processing suspended and will be reset and restarted whenever any of the legs’ processing is suspended. The action upon expiry of this activity timer is to invoke callEnded() on the IpAppMultiPartyCall with a release cause of P_TIMER_EXPIRY. In the case when no IpAppMultiPartyCall is available on which to invoke callEnded(), callAborted() shall be invoked on the IpAppMultiPartyCallControlManager as this is an abnormal termination. “
Open API Solutions would like to ask the meeting if they could consider the problems posed in this document and also the validity of the suggested solution. If the meeting can either agree on the suggested textual change, or come up with a concrete set of alternatives, then Open API Solutions will produce a CR with the necessary text changes either to be considered at this meeting or to go for e-mail approval.
The meeting may also wish to consider the idea of adding a small section in the MPCC spec describing the behaviour of the activity timer, as it is currently spread throughout the document.
