Page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030631

Meeting #25, Bangkok, Thailand, 27 – 31 October 2003

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	CRNum
	(

rev
	-
	(

Current version:
	5.4.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Modify Framework Availability Indication in Fault Management

	
	

	Source:
(

	AePONA – Eamonn Murray

	
	

	Work item code:
(

	OSA3
	
	Date: (

	16/10/2003

	
	
	
	
	

	Category:
(

	C
	
	Release: (

	REL-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	The Fault Management Interfaces have been revised to replace a svcUnavailableInd with a svcAvailStatusInd. This has been done to ensure that when a service becomes available again that an indication can be provided.

The equivalent behaviour cannot be supported for the Framework itself, therefore though it is possible for the framework to indicate that it is no longer available, it is not possible for the framework to indicate when it becomes available again.

The Framework does include a fault report and recovery mechanism, however this represents only a subset of the functionality supported by the availability indication, excluding indication of overload conditions and software upgrade.

	
	

	Summary of change:
(

	Deprecate the current fwUnavailableInd, fwFaultReportInd and fwFaultRecoveryInd methods from the existing Fault Management interfaces and replace with a fwAvailStatusInd.

	
	

	Consequences if
(

not approved:
	OSA Fault management functionality for the Framework is not aligned with the fault management capability of other SCFs. The Framework functionality is therefore incomplete.

	
	

	Clauses affected:
(

	7.2, 7.3.3.1, 7.4.3.4, 8.2, 8.3.4.2, 8.4.4.2, 10.4

	
	

	
	Y
	N
	
	

	Other specs
(

	
	(
	 Other core specifications
(

	

	affected:
	
	(
	 Test specifications
	

	
	
	(
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

************** Start of Change # 1 ***********************

7.2 Class Diagrams

[image: image1.wmf]

IpAppFaultManager

activityTestRes()

appActivityTestReq()

<<deprecated>>

fwFaultReportInd()

<<deprecated>>

fwFaultRecoveryIn

d

()

<<deprecated>> svcUnavailableInd()

genFaultStatsRecordRes()

<<deprecated>>

fwUnavailableInd()

activityTestErr()

genFaultStatsRecordErr()

appUnavailableInd()

genFaultStatsRecordReq()

<<new>> svcAvailStatusInd()

<<Interface>>

IpFaultManager

act

ivityTestReq()

appActivityTestRes()

svcUnavailableInd()

genFaultStatsRecordReq()

appActivityTestErr()

<<deprecated>> appUnavailableInd()

genFaultStatsRecordRes()

genFaultStatsRecordErr()

<<new>> appAvailStatusInd()

<<Interface>>

<<uses>>

IpHeart

BeatMgmt

enableHeartBeat()

disableHeartBeat()

changeInterval()

<<Interface>>

IpHeartBeat

pulse()

<<Interface>>

1

0..n

1

0..n

IpAppHeartBeat

pulse()

<<Interface>>

<<uses>>

IpAppHeartBeatMgmt

enableAppHeartBeat()

disableAppHeartBeat()

chan

geInterval()

<<Interface>>

<<uses>>

0..n

1

0..n

1

IpAppLoadManager

queryAppLoadReq()

queryLoadRes()

queryLoadErr()

loadLevelNotification()

resumeNotification()

suspendNotification()

<<new>> createLoadLevelNotification()

<<new>> destroyLoadLe

velNotification()

<<Interface>>

IpLoadManager

reportLoad()

queryLoadReq()

queryAppLoadRes()

queryAppLoadErr()

createLoadLevelNotification()

destroyLoadLevelNotification()

resumeNotification()

suspendNotification()

<<Interface>>

<<uses>>

IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

<<new>>fwAvailStatusInd()

Figure: Integrity Management Package Overview
************** End of Change # 1 ************************

************** Start of Change # 2 ***********************

7.3.3.1 Interface Class IpAppFaultManager

Inherits from: IpInterface.
This interface is used to inform the application of events that affect the integrity of the Framework, Service or Client Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface that is specified when the client application obtains the Fault Management interface: i.e. by use of the obtainInterfaceWithCallback operation on the IpAccess interface

	<<Interface>>

IpAppFaultManager

	

	activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>>fwFaultReportInd (fault : in TpInterfaceFault) : void

<<deprecated>>fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

<<deprecated>> svcUnavailableInd (serviceID : in TpServiceID, reason : in TpSvcUnavailReason) : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void

<<deprecated>>fwUnavailableInd (reason : in TpFwUnavailReason) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, serviceIDs : in TpServiceIDList) : void

appUnavailableInd (serviceID : in TpServiceID) : void

genFaultStatsRecordReq (timePeriod : in TpTimeInterval) : void

<<new>> svcAvailStatusInd (serviceID : in TpServiceID, reason : in TpSvcAvailStatusReason) : void
<<new>> fwAvailStatusInd (reason : in TpFwAvailStatusReason) : void

7.3.3.1.1 Method activityTestRes()

The framework uses this method to return the result of a client application-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the client application to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
7.3.3.1.2 Method appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of this request, the application must carry out a test on itself, to check that it is operating correctly. The application reports the test result by invoking the appActivityTestRes method on the IpFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
7.3.3.1.3 Method <<deprecated>> fwFaultReportInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application the reason why the Framework is unavailable.

The framework invokes this method to notify the client application of a failure within the framework. The client application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.
7.3.3.1.4 Method <<deprecated>> fwFaultRecoveryInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application when the Framework becomes available again.

The framework invokes this method to notify the client application that a previously reported fault has been rectified. The application may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.
7.3.3.1.5 Method <<deprecated>> svcUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method svcAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application the reason why the Service is unavailable and also when the Service becomes available again.

The framework invokes this method to inform the client application that it may experience difficulties using its instance of the indicated service.

Parameters

serviceID : in TpServiceID

Identifies the affected service.
reason : in TpSvcUnavailReason

Identifies the reason why the service is no longer available
7.3.3.1.6 Method genFaultStatsRecordRes()

This method is used by the framework to provide fault statistics to a client application in response to a genFaultStatsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.
serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the general fault statistics record. If the serviceIDs parameter is an empty list, then the fault statistics are for the framework.
7.3.3.1.7 Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application the reason why the Framework is unavailable and also when the Framework becomes available again.

The framework invokes this method to inform the client application that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available
7.3.3.1.8 Method activityTestErr()

The framework uses this method to indicate that an error occurred during an application-initiated activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the application to correlate this response (when it arrives) with the original request.
7.3.3.1.9 Method genFaultStatsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to a genFaultStatsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
serviceIDs : in TpServiceIDList

Specifies the framework or services that were included in the general fault statistics record request. If the serviceIDs parameter is an empty list, then the fault statistics were requested for the framework.
7.3.3.1.10 Method appUnavailableInd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not responding.

Parameters

serviceID : in TpServiceID

Specifies the service for which the indication of unavailability was received.
7.3.3.1.11 Method genFaultStatsRecordReq()

This method is used by the framework to solicit fault statistics from the client application, for example when the framework was asked for these statistics by a service instance by using the genFaultStatsRecordReq operation on the IpFwFaultManager interface. On receipt of this request, the client application must produce a fault statistics record, for the application during the specified time interval, which is returned to the framework using the genFaultStatsRecordRes operation on the IpFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the client application.
7.3.3.1.12 Method <<new>> svcAvailStatusInd()

The framework invokes this method to inform the client application about the Service instance availability status, i.e. that it can no longer use its instance of the indicated service according to the reason parameter but as well information when the Service Instance becomes available again. On receipt of this request, the client application either acts to reset its use of the specified service (using the normal mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and begin use of a different service instance). The client application can also wait for the problem to be solved and just stop the usage of the service instance until the svcAvailStatusInd() is called again with the reason SVC_AVAILABLE.

Parameters

serviceID : in TpServiceID

Identifies the affected service.
reason : in TpSvcAvailStatusReason

Identifies the reason why the service is no longer available or that it has become available again.
7.3.3.1.13 Method <<new>> fwAvailStatusInd()

The framework invokes this method to inform the client application about the Framework availability status, i.e. that it can no longer use the Framework according to the reason parameter but as well information when the Framework becomes available again. The client application may wait for the problem to be solved and just stop the usage of the Framework until the fwAvailStatusInd() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters

reason : in TpFwAvailStatusReason

Identifies the reason why the framework is no longer available or that it has become available again.
************** End of Change # 2 ************************

************** Start of Change # 3 ***********************

7.4.3.4 State Transition Diagrams for IpFaultManager

[image: image2.wmf]

Framework

Active

Framework Faulty

entry/ ^

fwFaultReportInd

fwAvailStatusInd

to all applications with

callback

e

xit/ ^

fwFaultRecoveryInd

fwAvailStatusInd

to all applications with

callback

Framework Activity Test

entry/ test activity of framework

exit/ ^IpAppFaultManager.activityTestRes

^IpAppFaultManager.activityTestErr

Service Activity Test

entry/ test activit

y of service

exit/ ^IpAppFaultManager.activityTestRes

^IpAppFaultManager.activityTestErr

genFaultStatsRecordReq ^app.genFaultStatsRecordRes

/Err

s

r

v

c

UnavailableInd / test the service, inform service that application is not using it

'

change in

service

fa

ult'

availability

^

svcUnavailableInd

svcAvailStatusInd

to all applications using the service

IpAccess.endAccess / remove

application from load management

IpAccess.obtainInterfaceWithCallback("FaultManagement") /

add application to fault management

fault detected in fw

no fault detected

IpAccess.endAccess / Abort

pending test request

fault resolved

fault detected in fw

activityTestReq[

empty string]

activityTestReq[scfID]

IpAccess.endAccess

service fault ^

s

r

vUnavailableInd

svcAvailStat

usInd

 to all

 applications using the service

no fault detected

IpAccess.endAccess /

Abort pending test request

change in framework availability

(non fault)

^fwAvailStatusInd to all applications with callback

Figure : State Transition Diagram for IpFaultManager

7.4.3.4.1 Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications and services capability features.
7.4.3.4.2 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the framework return an error. If the framework ever recovers, applications with fault management callbacks will be notified via a fwAvailStatusInd message.
7.4.3.4.3 Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problem is diagnosed, all applications with fault management callbacks are notified through a fwAvailStatusInd message.
7.4.3.4.4 Service Activity Test State

In this state, the framework is performing a test on one service capability feature. If the SCF is faulty, applications with fault management callbacks are notified accordingly through a svcAvailStatusInd message.
************** End of Change # 3 ************************

************** Start of Change # 4 ***********************

8.2 Class Diagrams

[image: image3.wmf]

IpSvcHeartBeatMgmt

enableSvcHeartBeat()

disableSvcHeartBeat()

changeInterval()

<<Interface>>

IpSvcHeartBeat

pulse()

<<Interface>>

1

0..n

1

0..n

IpFwHeartBeat

pulse()

<<Interface>>

<<uses>>

IpFwHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeInterval()

<<Interface>>

<<uses>>

0..n

1

0..n

1

IpFwLoadManager

reportLoad()

queryLoadReq()

querySv

cLoadRes()

querySvcLoadErr()

createLoadLevelNotification()

destroyLoadLevelNotification()

suspendNotification()

resumeNotification()

<<Interface>>

IpSvcLoadManager

querySvcLoadReq()

queryLoadRes()

queryLoadErr()

loadLevelNotification()

suspendN

otification()

resumeNotification()

<<new>> createLoadLevelNotification()

<<new>> destroyLoadLevelNotification()

<<Interface>>

<<uses>>

IpSvcFaultManager

activityTestRes()

svcActivityTestReq()

<<deprecated>>

fwFaultReportInd()

<<deprecated>>

fwFault

RecoveryInd()

<<deprecated>>

fwUnavailableInd()

svcUnavailableInd()

<<deprecated>> appUnavailableInd()

genFaultStatsRecordRes()

activityTestErr()

genFaultStatsRecordErr()

<<deprecated>> genFaultStatsRecordReq()

<<new>> generateFaultStatsRecordReq()

<<new>> appAvailStatusInd()

<<Interface>>

IpFwFaultManager

activityTestReq()

svcActivityTestRes()

appUnavailableInd()

genFaultStatsRecordReq()

<<deprecated>> svcUnavailableInd()

svcActivityTestErr()

<<deprecated>> genFaultStatsRecordRes()

<<depr

ecated>> genFaultStatsRecordErr()

<<new>> generateFaultStatsRecordRes()

<<new>> generateFaultStatsRecordErr()

<<new>> svcAvailStatusInd()

<<Interface>>

<<uses>>

IpFwOAM

systemDateTimeQuery()

<<Interface>>

IpSvcOAM

systemDateTimeQuery()

<<Interfa

ce>>

<<uses>>

<<new>> fwAvailStatusInd()

Figure: Integrity Management Package Overview
************** End of Change # 4 ************************

************** Start of Change # 5 ***********************

8.3.4.2 Interface Class IpSvcFaultManager

Inherits from: IpInterface.
This interface is used to inform the service instance of events that affect the integrity of the Framework, Service or Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified when the service instance obtains the Fault Management Framework interface: i.e. by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

If the IpSvcFaultManager interface is implemented by a Service, at least one of these methods shall be implemented. If the Service is capable of invoking the IpFwFaultManager.activityTestReq() method, it shall implement activityTestRes() and activityTestErr() in this interface. If the Service is capable of invoking IpFwFaultManager.genFaultStatsRecordReq(), it shall implement genFaultStatsRecordRes() and genFaultStatsRecordErr() in this interface.

	<<Interface>>

IpSvcFaultManager

	

	activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>>fwFaultReportInd (fault : in TpInterfaceFault) : void

<<deprecated>>fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

<<deprecated>>fwUnavailableInd (reason : in TpFwUnavailReason) : void

svcUnavailableInd () : void

<<deprecated>> appUnavailableInd () : void

genFaultStatsRecordRes (faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

genFaultStatsRecordErr (faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) : void

<<deprecated>> genFaultStatsRecordReq (timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void

<<new>> generateFaultStatsRecordReq (timePeriod : in TpTimeInterval) : void

<<new>> appAvailStatusInd (reason : in TpAppAvailStatusReason) : void
<<new>> fwAvailStatusInd (reason : in TpFwAvailStatusReason) : void

8.3.4.2.1 Method activityTestRes()

The framework uses this method to return the result of a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions,P_INVALID_ACTIVITY_TEST_ID
8.3.4.2.2 Method svcActivityTestReq()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service instance must carry out a test on itself, to check that it is operating correctly. The service instance reports the test result by invoking the svcActivityTestRes method on the IpFwFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
Raises

TpCommonExceptions
8.3.4.2.3 Method <<deprecated>> fwFaultReportInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Service the reason why the Framework is unavailable.

The framework invokes this method to notify the service instance of a failure within the framework. The service instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.
Raises

TpCommonExceptions
8.3.4.2.4 Method <<deprecated>> fwFaultRecoveryInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Service when the Framework becomes available again.

The framework invokes this method to notify the service instance that a previously reported fault has been rectified. The service instance may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.
Raises

TpCommonExceptions
8.3.4.2.5 Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application the reason why the Framework is unavailable and also when the Framework becomes available again.

The framework invokes this method to inform the service instance that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available
Raises

TpCommonExceptions
8.3.4.2.6 Method svcUnavailableInd()

The framework invokes this method to inform the service instance that the client application has reported that it can no longer use the service instance.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.4.2.7 Method <<deprecated>> appUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method appAvailStatusInd shall be used instead, using the new reason parameter to inform the Service the reason why the Application is unavailable and also when the application becomes available again.

The framework invokes this method to inform the service instance that the framework may have detected that the application has failed: e.g. non-response from an activity test, failure to return heartbeats.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
8.3.4.2.8 Method genFaultStatsRecordRes()

This method is used by the framework to provide fault statistics to a service instance in response to a genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatistics : in TpFaultStatsRecord

The fault statistics record.
recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record has been provided.
Raises

TpCommonExceptions
8.3.4.2.9 Method activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service instance to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
8.3.4.2.10 Method genFaultStatsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to a genFaultStatsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record was requested.
Raises

TpCommonExceptions
8.3.4.2.11 Method <<deprecated>> genFaultStatsRecordReq()

This method is deprecated and will be removed in a later release. It cannot be used as described, since the serviceIDs parameter has no meaning. It is replaced with generateFaultStatsRecordReq().

This method is used by the framework to solicit fault statistics from the service, for example when the framework was asked for these statistics by the client application using the genFaultStatsRecordReq operation on the IpFaultManager interface. On receipt of this request the service must produce a fault statistics record, for either the framework or for the client's instances of the specified services during the specified time interval, which is returned to the framework using the genFaultStatsRecordRes operation on the IpFwFaultManager interface. If the framework does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the service.
serviceIDs : in TpServiceIDList

Specifies the services to be included in the general fault statistics record. This parameter is not allowed to be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
8.3.4.2.12 Method <<new>> generateFaultStatsRecordReq()

This method is used by the framework to solicit fault statistics from the service instance, for example when the framework was asked for these statistics by the client application using the genFaultStatsRecordReq operation on the IpFaultManager interface. On receipt of this request the service instance must produce a fault statistics record during the specified time interval, which is returned to the framework using the genFaultStatsRecordRes operation on the IpFwFaultManager interface.

Parameters

timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the service.
Raises

TpCommonExceptions
8.3.4.2.13 Method <<new>> appAvailStatusInd()

The framework invokes this method to inform the service instance that the client application is no longer available using different reasons for the unavailability. This may be a result of the application reporting a failure. Alternatively, the framework may have detected that the application has failed: e.g. non-response from an activity test, failure to return heartbeats, using the reason APP_UNAVAILABLE_NO_RESPONSE. When the application becomes available again the reason APP_AVAILABLE shall be used to inform the Service about that.

Parameters

reason : in TpAppAvailStatusReason

Identifies the reason why the application is no longer available. APP_AVAILABLE is used to inform the Service that the Application is available again.
Raises

TpCommonExceptions
8.3.4.2.14 Method <<new>> fwAvailStatusInd()

The framework invokes this method to inform the service instance about the Framework availability status, i.e. that it can no longer use the Framework according to the reason parameter but as well information when the Framework becomes available again. The service instance may wait for the problem to be solved and just stop the usage of the Framework until the fwAvailStatusInd() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters

reason : in TpFwAvailStatusReason

Identifies the reason why the framework is no longer available or that it has become available again.
************** End of Change # 5 ************************

************** Start of Change # 6 ***********************

8.4.4.2 State Transition Diagrams for IpFWFaultManager

[image: image4.wmf]

Framework

Active

Framework Faulty

entry/ ^fwAvailStatusInd to all services with callback

exit/ ^fwAvailStatusIn

d to all services with callback

Framework Activity Test

entry/ test activity of framework

exit/ ^IpSvcFaultManager.activityTestRes

^IpSvcFaultManager.activityTestErr

Application Activity Test

entry/ test activity of application

exit/ ^IpSvcFaultManag

er.activityTestRes

^IpSvcFaultManager.activityTestErr

genFaultStatsRecordReq ^svc.genFaultStatsRecordRes/Err

appUnavailableInd / test the application, inform application that service is not using it

'change in application availability ^appAvailStatusInd

 to all services used by application

IpAccess.endAccess / remove

service from load management

IpAccess.obtainInterfaceWithCallback("FaultManagement") /

add service to fault management

fault detected in fw

no fault detected

IpAccess.endAccess / A

bort

pending test request

fault resolved

fault detected in fw

activityTestReq[

framework]

activityTestReq[client]

IpAccess.endAccess

application fault ^appAvailStatusInd to all

 services used by the application

no fault detected

IpAccess.end

Access /

Abort pending test request

change in framework availability (non fault)

^fwAvailStatusInd to all services with callback

Figure : State Transition Diagram for IpFWFaultManager

8.4.4.2.1 Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications and services capability features.
8.4.4.2.2 Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the framework return an error. If the framework ever recovers, services with fault management callbacks will be notified via a fwAvailStatusInd message.
8.4.4.2.3 Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problem is diagnosed, all services with fault management callbacks are notified through a fwAvailStatusInd message.
8.4.4.2.4 Application Activity Test State

In this state, the framework is performing a test on one client application. If the application is faulty, services that are used by the application and that have provided fault management callbacks are notified accordingly through a appAvailStatusInd message.
************** End of Change # 6 ************************

************** Start of Change # 7 ***********************

10.4 Integrity Management Data Definitions

10.4.1 TpActivityTestRes

This type is identical to TpString and is an implementation specific result. The values in this data type are “Available” or “Unavailable”.

10.4.2 TpFaultStatsRecord

This defines the set of records to be returned giving fault information for the requested time period.

	Sequence Element

Name
	Sequence Element

Type

	Period
	TpTimeInterval

	FaultStatsSet
	TpFaultStatsSet

10.4.3 TpFaultStats

This defines the sequence of data elements which provide the statistics on a per fault type basis.

	Sequence Element

Name
	Sequence Element

Type
	Description

	Fault
	TpInterfaceFault
	

	Occurrences
	TpInt32
	The number of separate instances of this fault

	MaxDuration
	TpInt32
	The number of seconds duration of the longest fault

	TotalDuration
	TpInt32
	The cumulative duration (all occurrences)

	NumberOfClientsAffected
	TpInt32
	The number of clients informed of the fault by the Fw

Occurrences is the number of separate instances of this fault during the period. MaxDuration and TotalDuration are the number of seconds duration of the longest fault and the cumulative total during the period. NumberOfClientsAffected is the number of clients informed of the fault by the Framework.

10.4.4 TpFaultStatisticsError

Defines the error code associated with a failed attempt to retrieve any fault statistics information.

	Name
	Value
	Description

	P_FAULT_INFO_ERROR_UNDEFINED
	0
	Undefined error

	P_FAULT_INFO_UNAVAILABLE
	1
	Fault statistics unavailable

10.4.5 TpFaultStatsSet
This data type defines a Numbered Set of Data Elements of type TpFaultStats
10.4.6 TpActivityTestID

This data type is identical to a TpInt32, and is used as a token to match activity test requests with their results..

10.4.7 TpInterfaceFault

Defines the cause of the interface fault detected.

	Name
	Value
	Description

	INTERFACE_FAULT_UNDEFINED
	0
	Undefined

	INTERFACE_FAULT_LOCAL_FAILURE
	1
	A fault in the local API software or hardware has been detected

	INTERFACE_FAULT_GATEWAY_FAILURE
	2
	A fault in the gateway API software or hardware has been detected

	INTERFACE_FAULT_PROTOCOL_ERROR
	3
	An error in the protocol used on the client-gateway link has been detected

10.4.8 TpSvcUnavailReason

Defines the reason why a SCF is unavailable.

	Name
	Value
	Description

	SERVICE_UNAVAILABLE_UNDEFINED
	0
	Undefined

	SERVICE_UNAVAILABLE_LOCAL_FAILURE
	1
	The Local API software or hardware has failed

	SERVICE_UNAVAILABLE_GATEWAY_FAILURE
	2
	The gateway API software or hardware has failed

	SERVICE_UNAVAILABLE_OVERLOADED
	3
	The SCF is fully overloaded

	SERVICE_UNAVAILABLE_CLOSED
	4
	The SCF has closed itself (e.g. to protect from fraud or malicious attack)

10.4.9 TpFwUnavailReason

Defines the reason why the Framework is unavailable.

	Name
	Value
	Description

	FW_UNAVAILABLE_UNDEFINED
	0
	Undefined

	FW_UNAVAILABLE_LOCAL_FAILURE
	1
	The Local API software or hardware has failed

	FW_UNAVAILABLE_GATEWAY_FAILURE
	2
	The gateway API software or hardware has failed

	FW_UNAVAILABLE_OVERLOADED
	3
	The Framework is fully overloaded

	FW_UNAVAILABLE_CLOSED
	4
	The Framework has closed itself (e.g. to protect from fraud or malicious attack)

	FW_UNAVAILABLE_PROTOCOL_FAILURE
	5
	The protocol used on the client-gateway link has failed

10.4.10 TpLoadLevel

Defines the Sequence of Data Elements that specify load level values.

	Name
	Value
	Description

	LOAD_LEVEL_NORMAL
	0
	Normal load

	LOAD_LEVEL_OVERLOAD
	1
	Overload

	LOAD_LEVEL_SEVERE_OVERLOAD
	2
	Severe Overload

10.4.11 TpLoadThreshold

Defines the Sequence of Data Elements that specify the load threshold value. The actual load threshold value is application and SCF dependent, so is their relationship with load level.

	Sequence Element

Name
	Sequence Element

Type

	LoadThreshold
	TpFloat

10.4.12 TpLoadInitVal

Defines the Sequence of Data Elements that specify the pair of load level and associated load threshold value.

	Sequence Element

Name
	Sequence Element

Type

	LoadLevel
	TpLoadLevel

	LoadThreshold
	TpLoadThreshold

10.4.13 TpLoadPolicy

Defines the load balancing policy.

	Sequence Element Name
	Sequence Element Type

	LoadPolicy
	TpString

10.4.14 TpLoadStatistic

Defines the Sequence of Data Elements that represents a load statistic record for a specific entity (i.e. Framework, service or application) at a specific date and time.

	Sequence Element Name
	Sequence Element Type

	LoadStatisticEntityID
	TpLoadStatisticEntityID

	TimeStamp
	TpDateAndTime

	LoadStatisticInfo
	TpLoadStatisticInfo

10.4.15 TpLoadStatisticList

Defines a Numbered List of Data Elements of type TpLoadStatistic.

10.4.16 TpLoadStatisticData

Defines the Sequence of Data Elements that represents load statistic information

	Sequence Element Name
	Sequence Element Type

	LoadValue (see Note)
	TpFloat

	LoadLevel
	TpLoadLevel

	NOTE:
LoadValue is expressed as a percentage.

10.4.17 TpLoadStatisticEntityID

Defines the Tagged Choice of Data Elements that specify the type of entity (i.e. service, application or Framework) providing load statistics.

	
	Tag Element Type
	

	
	TpLoadStatisticEntityType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_LOAD_STATISTICS_FW_TYPE
	TpFwID
	FrameworkID

	P_LOAD_STATISTICS_SVC_TYPE
	TpServiceID
	ServiceID

	P_LOAD_STATISTICS_APP_TYPE
	TpClientAppID
	ClientAppID

10.4.18 TpLoadStatisticEntityType

Defines the type of entity (i.e. service, application or Framework) supplying load statistics.

	Name
	Value
	Description

	P_LOAD_STATISTICS_FW_TYPE
	0
	Framework-type load statistics

	P_LOAD_STATISTICS_SVC_TYPE
	1
	Service-type load statistics

	P_LOAD_STATISTICS_APP_TYPE
	2
	Application-type load statistics

10.4.19 TpLoadStatisticInfo

Defines the Tagged Choice of Data Elements that specify the type of load statistic information (i.e. valid or invalid).

	
	Tag Element Type
	

	
	TpLoadStatisticInfoType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_LOAD_STATISTICS_VALID
	TpLoadStatisticData
	LoadStatisticData

	P_LOAD_STATISTICS_INVALID
	TpLoadStatisticError
	LoadStatisticError

10.4.20 TpLoadStatisticInfoType

Defines the type of load statistic information (i.e. valid or invalid).

	Name
	Value
	Description

	P_LOAD_STATISTICS_VALID
	0
	Valid load statistics

	P_LOAD_STATISTICS_INVALID
	1
	Invalid load statistics

10.4.21 TpLoadStatisticError

Defines the error code associated with a failed attempt to retrieve any load statistics information.

	Name
	Value
	Description

	P_LOAD_INFO_ERROR_UNDEFINED
	0
	Undefined error

	P_LOAD_INFO_UNAVAILABLE
	1
	Load statistics unavailable

10.4.22 TpSvcAvailStatusReason

Defines the reason detailing the change in status of Service availability.

	Name
	Value
	Description

	SVC_UNAVAILABLE_UNDEFINED
	0
	Undefined

	SVC_UNAVAILABLE_LOCAL_FAILURE
	1
	The Local API software or hardware has failed. Normally take longer time to correct

	SVC_UNAVAILABLE_GATEWAY_FAILURE
	2
	The gateway API software or hardware has failed Normally take longer time to correct

	SVC_UNAVAILABLE_OVERLOADED
	3
	The SCF is fully overloaded Normally a temporary problem

	SVC_UNAVAILABLE_CLOSED
	4
	The SCF has closed itself (e.g. to protect from fraud or malicious attack)
Normally take longer time to correct

	SVC_UNAVAILABLE_NO_RESPONSE
	5
	The Framework has detected that the service has failed: e.g. non-response from an activity test, failure to return heartbeats

	SVC_UNAVAILABLE_SW_UPGRADE
	6
	The Service is unavailable due to SW upgrade or other similar maintenance

Normally a temporary problem

	SVC_AVAILABLE
	7
	The Service has become available again

10.4.23 TAppAvailStatusReason

Defines the reason detailing the change in status of Application availability.

	Name
	Value
	Description

	APP_UNAVAILABLE_UNDEFINED
	0
	Undefined

	APP_UNAVAILABLE_LOCAL_FAILURE
	1
	A local failure in the Application has been detected

Normally take longer time to correct

	APP_UNAVAILABLE_REMOTE_FAILURE
	2
	A remote failure to the application has been detected, e.g. a database is not working

Normally take longer time to correct

	APP_UNAVAILABLE_OVERLOADED
	3
	The Application is fully overloaded
Often a temporary problem

	APP_UNAVAILABLE_CLOSED
	4
	The Application has closed itself (e.g. to protect from fraud or malicious attack)

Normally take longer time to correct

	APP_UNAVAILABLE_NO_RESPONSE
	5
	The Framework has detected that the application has failed: e.g. non-response from an activity test, failure to return heartbeats

	APP_UNAVAILABLE_SW_UPGRADE
	6
	The Application is unavailable due to SW upgrade or other similar maintenance

Often a temporary problem

	APP_AVAILABLE
	7
	The Application has become available

10.4.24 TpFwAvailStatusReason

Defines the reason detailing the change in status of Framework availability.

	Name
	Value
	Description

	FRAMEWORK_UNAVAILABLE_UNDEFINED
	0
	Undefined

	FRAMEWORK_UNAVAILABLE_LOCAL_FAILURE
	1
	A local failure in the Framework has been detected

Normally take longer time to correct

	FRAMEWORK_UNAVAILABLE_REMOTE_FAILURE
	2
	A remote failure to the Framework has been detected, e.g. a database is not working

Normally take longer time to correct

	FRAMEWORK_UNAVAILABLE_OVERLOADED
	3
	The Framework is fully overloaded
Often a temporary problem

	FRAMEWORK_UNAVAILABLE_CLOSED
	4
	The Framework has closed itself (e.g. to protect from fraud or malicious attack)

Normally take longer time to correct

	FRAMEWORK_UNAVAILABLE_PROTOCOL_FAILURE
	5
	The Framework has detected that the protocol used between client and framework has failed

	FRAMEWORK_UNAVAILABLE_SW_UPGRADE
	6
	The Framework is unavailable due to SW upgrade or other similar maintenance

Often a temporary problem

	FRAMEWORK_AVAILABLE
	7
	The Framework has become available

************** End of Change # 7 ************************

Annex D (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Mar 2001
	CN_11
	NP-010134
	047
	--
	CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158)
	3.2.0
	4.0.0

	Jun 2001
	CN_12
	NP-010330
	001
	--
	Corrections to OSA API Rel4
	4.0.0
	4.0.1

	Sep 2001
	CN_13
	NP-010466
	002
	--
	Changing references to JAIN
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	003
	--
	Update to the definitions of method svcUnavailableInd
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	004
	--
	Only one subject per method invocation for fault and load management
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	005
	--
	Fault management is missing some *Err methods
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	006
	--
	Method balance on Fault management interfaces
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	007
	--
	Change "TpString" into "TpOctetSets" in authentication and access
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	008
	--
	Replacement of register/unregisterLoadController
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	009
	--
	Redundant Framework Heartbeat Mechanism
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	010
	--
	Add a releaseInterface() method to IpAccess
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	011
	--
	Removal of serviceID from queryAppLoadReq()
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	012
	--
	Addition of listInterfaces() method
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	013
	--
	Introduction and use of new Service Instance ID
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	014
	--
	P_UNAUTHORISED_PARAMETER_VALUE thrown if non-accessible serviceID is provided
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	015
	--
	Introduction of Service Instance Lifecycle Management
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	016
	--
	Add support for multi-vendorship
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	017
	--
	Removal of P_SERVICE_ACCESS_TYPE
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	018
	--
	Confusing meaning of prescribedMethod
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	019
	--
	A client should only have one instance of a given service
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	020
	--
	Some methods on the IpApp interfaces should throw exceptions
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010596
	021
	--
	Replace Out Parameters with Return Types
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010596
	022
	--
	Correctionto Framework (FW)
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020105
	023
	--
	Add P_INVALID_INTERFACE_TYPE exception to IpService.setCallback() and IpService.setCallbackWithSessionID()
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	024
	--
	Replace erroneous mention of P_OSA_ACCESS by the correct value P_OSA_AUTHENTICATION
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	025
	--
	Add missing inheritance in service agreement management interfaces
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	026
	--
	Include Operation Set as part of General Service Properties
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	027
	--
	Improved description of activityTestReq with respect to ServiceInstanceID
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	028
	--
	OSA Framework - Generate statistics records on behalf of another entity using genFaultStatsRecordReq
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	029
	--
	Update the interface names for alignment between 3GPP and ETSI/Parlay
	4.3.0
	4.4.0

	Jun 2002
	CN_16
	NP-020179
	030
	--
	Solving the problem in the OSA Framework with method appUnavailableInd() in a scenario with multiple service sessions per access session
	4.4.0
	4.5.0

	Jun 2002
	CN_16
	NP-020179
	031
	--
	Adding missing mandatory method (authenticationSucceeded) to sequence flow
	4.4.0
	4.5.0

	Jun 2002
	CN_16
	NP-020186
	032
	--
	Remove redundant data type definition TpServiceSpecString
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020181
	033
	--
	Addition of support for Java API technology realisation
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020182
	035
	--
	Addition of support for WSDL realisation
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	036
	--
	Clarify semantics of service properties of type BOOLEAN_SET
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	037
	--
	Addition of version management support to the Framework (29.198-03) in run-time
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	038
	--
	Enhancements on subscription management error information
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	039
	--
	Delete conflicting description of P_APPLICATION_NOT_ACTIVATED
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	040
	--
	Note added for P_SERVICE_INSTANCE Choice Element Name
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	041
	--
	Correcting the method descriptions for abortAuthentication and for initiateAuthentication
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	042
	--
	Correcting the description of heartbeat failure
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	043
	--
	Correcting erroneous FW<->Service instance sequence diagrams
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	044
	--
	Correcting the scope of TpFwID, which currently is giving it false limitations
	4.5.0
	5.0.0

	Sep 2002
	CN_17
	NP-020428
	046
	
	Correction to description of TpServicePropertyTypeName
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	047
	
	Remove undefined exception in registerService
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	048
	
	Remove ServiceIDs from IpFwFaultManager.genFaultStatsRecordReq()
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	049
	
	Correct appUnavailableInd and related methods
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	050
	
	Remove unusable exception from IpFaultManager.appActivityTestRes()
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	051
	
	Clarify the sequence of events in signing the service agreement
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	052
	
	Correct use of electronic signatures
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	053
	
	Addition of Sequence Diagrams for terminateAccess
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	054
	
	Add indication what part of service agreement must be signed
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	055
	
	Add text to clarify requirements on support of methods
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	056
	
	Introduce types and modes for generic properties
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	057
	
	Correction on use of NULL in Framework API
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	058
	
	Add Negotiation of Authentication Mechanism for OSA level Authentication
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020395
	058
	
	Add text to clarify relationship between 3GPP and ETSI/Parlay OSA specifications
	5.0.0
	5.1.0

	Mar 2003
	CN_19
	NP-030019
	063
	-
	Correction to Initial Access Sequence Diagram
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	065
	-
	Enable creation/destruction of load level notifications at the request of Framework
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	067
	-
	Correction of Sequence for Framework – Service load management
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	074
	-
	Add Initial Load Notification report for Framework Integrity Management Load Notification model
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	068
	--
	Correction to Application's requirements for supporting methods
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	069
	--
	Correction of status of methods to interfaces in clause 7.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	070
	--
	Correction of status of methods to interfaces in clause 8.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	071
	--
	Correction of status of methods to interfaces in clause 6.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	075
	--
	Adding the appAvailStatusInd() and svcAvailStatusInd() methods
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	076
	--
	Remove race condition in signServiceAgreement
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	077
	--
	Change reference to deprecated method "authenticate" in TpAuthMechanism to "challenge"
	5.1.0
	5.2.0

	Jun 2003
	CN_20
	NP-030237
	079
	--
	Correction to TpEncryptionCapability to correct support for Triple-DES
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030237
	081
	--
	Correction of the Framework Service Instance Lifecycle Manager Sequence Diagram
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030237
	083
	--
	Correction of the use of TpDomainID in Framework initiateAuthentication method
	5.2.0
	5.3.0

	Sep 2003
	CN_21
	NP-030352
	085
	--
	Correction to Java Realisation Annex
	5.3.0
	5.4.0

	
	
	
	
	
	
	
	

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

_1127818613.doc

IpSvcHeartBeatMgmt

enableSvcHeartBeat()

disableSvcHeartBeat()

changeInterval()

<<Interface>>

IpSvcHeartBeat

pulse()

<<Interface>>

1

0..n

1

0..n

IpFwHeartBeat

pulse()

<<Interface>>

<<uses>>

IpFwHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeInterval()

<<Interface>>

<<uses>>

0..n

1

0..n

1

IpFwLoadManager

reportLoad()

queryLoadReq()

querySvcLoadRes()

querySvcLoadErr()

createLoadLevelNotification()

destroyLoadLevelNotification()

suspendNotification()

resumeNotification()

<<Interface>>

IpSvcLoadManager

querySvcLoadReq()

queryLoadRes()

queryLoadErr()

loadLevelNotification()

suspendNotification()

resumeNotification()

<<new>> createLoadLevelNotification()

<<new>> destroyLoadLevelNotification()

<<Interface>>

<<uses>>

IpSvcFaultManager

activityTestRes()

svcActivityTestReq()

<<deprecated>>fwFaultReportInd()

<<deprecated>>fwFaultRecoveryInd()

<<deprecated>>fwUnavailableInd()

svcUnavailableInd()

<<deprecated>> appUnavailableInd()

genFaultStatsRecordRes()

activityTestErr()

genFaultStatsRecordErr()

<<deprecated>> genFaultStatsRecordReq()

<<new>> generateFaultStatsRecordReq()

<<new>> appAvailStatusInd()

<<Interface>>

IpFwFaultManager

activityTestReq()

svcActivityTestRes()

appUnavailableInd()

genFaultStatsRecordReq()

<<deprecated>> svcUnavailableInd()

svcActivityTestErr()

<<deprecated>> genFaultStatsRecordRes()

<<deprecated>> genFaultStatsRecordErr()

<<new>> generateFaultStatsRecordRes()

<<new>> generateFaultStatsRecordErr()

<<new>> svcAvailStatusInd()

<<Interface>>

<<uses>>

IpFwOAM

systemDateTimeQuery()

<<Interface>>

IpSvcOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

<<new>> fwAvailStatusInd()

_1127820701.doc

Framework

Active

Framework Faulty

entry/ ^fwFaultReportInd fwAvailStatusInd to all applications with callback

exit/ ^fwFaultRecoveryInd fwAvailStatusInd to all applications with callback

Framework Activity Test

entry/ test activity of framework

exit/ ^IpAppFaultManager.activityTestRes�^IpAppFaultManager.activityTestErr

Service Activity Test

entry/ test activity of service

exit/ ^IpAppFaultManager.activityTestRes�^IpAppFaultManager.activityTestErr

genFaultStatsRecordReq ^app.genFaultStatsRecordRes/Err

srvcUnavailableInd / test the service, inform service that application is not using it

'change in service fault' availability ^svcUnavailableInd svcAvailStatusInd to all applications using the service

IpAccess.endAccess / remove

application from load management

IpAccess.obtainInterfaceWithCallback("FaultManagement") /

add application to fault management

fault detected in fw

no fault detected

IpAccess.endAccess / Abort

pending test request

fault resolved

fault detected in fw

activityTestReq[

empty string]

activityTestReq[scfID]

IpAccess.endAccess

service fault ^srvUnavailableIndsvcAvailStatusInd to all� applications using the service

no fault detected

IpAccess.endAccess /

Abort pending test request

change in framework availability (non fault) ^fwAvailStatusInd to all applications with callback

_1127820322.doc

Framework

Active

Framework Faulty

entry/ ^fwAvailStatusInd to all services with callback

exit/ ^fwAvailStatusInd to all services with callback

Framework Activity Test

entry/ test activity of framework

exit/ ^IpSvcFaultManager.activityTestRes�^IpSvcFaultManager.activityTestErr

Application Activity Test

entry/ test activity of application

exit/ ^IpSvcFaultManager.activityTestRes�^IpSvcFaultManager.activityTestErr

genFaultStatsRecordReq ^svc.genFaultStatsRecordRes/Err

appUnavailableInd / test the application, inform application that service is not using it

'change in application availability ^appAvailStatusInd to all services used by application

IpAccess.endAccess / remove

service from load management

IpAccess.obtainInterfaceWithCallback("FaultManagement") /

add service to fault management

fault detected in fw

no fault detected

IpAccess.endAccess / Abort

pending test request

fault resolved

fault detected in fw

activityTestReq[

framework]

activityTestReq[client]

IpAccess.endAccess

application fault ^appAvailStatusInd to all� services used by the application

no fault detected

IpAccess.endAccess /

Abort pending test request

change in framework availability (non fault) ^fwAvailStatusInd to all services with callback

_1127810548.doc

IpAppFaultManager

activityTestRes()

appActivityTestReq()

<<deprecated>>fwFaultReportInd()

<<deprecated>>fwFaultRecoveryInd()

<<deprecated>> svcUnavailableInd()

genFaultStatsRecordRes()

<<deprecated>>fwUnavailableInd()

activityTestErr()

genFaultStatsRecordErr()

appUnavailableInd()

genFaultStatsRecordReq()

<<new>> svcAvailStatusInd()

<<Interface>>

IpFaultManager

activityTestReq()

appActivityTestRes()

svcUnavailableInd()

genFaultStatsRecordReq()

appActivityTestErr()

<<deprecated>> appUnavailableInd()

genFaultStatsRecordRes()

genFaultStatsRecordErr()

<<new>> appAvailStatusInd()

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeInterval()

<<Interface>>

IpHeartBeat

pulse()

<<Interface>>

1

0..n

1

0..n

IpAppHeartBeat

pulse()

<<Interface>>

<<uses>>

IpAppHeartBeatMgmt

enableAppHeartBeat()

disableAppHeartBeat()

changeInterval()

<<Interface>>

<<uses>>

0..n

1

0..n

1

IpAppLoadManager

queryAppLoadReq()

queryLoadRes()

queryLoadErr()

loadLevelNotification()

resumeNotification()

suspendNotification()

<<new>> createLoadLevelNotification()

<<new>> destroyLoadLevelNotification()

<<Interface>>

IpLoadManager

reportLoad()

queryLoadReq()

queryAppLoadRes()

queryAppLoadErr()

createLoadLevelNotification()

destroyLoadLevelNotification()

resumeNotification()

suspendNotification()

<<Interface>>

<<uses>>

IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

<<new>>fwAvailStatusInd()

