joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030611
Meeting #25, Bangkok, Thailand, 27 – 31 October 2003

Source:
Ericsson (Erwin van Rijssen, Erwin.van.Rijssen@ericsson.com)
Title:
Collection of GMS comments on the mailing list
Agenda Item:
10

Document for:
Information (Input for messaging discussion)
Category:

Work Item ID:
3GPP R6 / Parlay 5
Doc Summary:
Collection of GMS comments made on the mailing list

Specs involved:

Introduction

This contribution collects the comments that were made to the GMS proposals from Ericsson and IBM on the CN5 mail exploder. The document can help to structure the CN5 Bangkok discussion around Messaging.

Abbreviations:

EM: Eamonn Murray

GC: Gareth Carrol

MU: Musa Unmehopa

SB: Scott Broussard

EvR: Erwin van Rijssen

General comments

Simplicity and convenience of GMS

	EvR
	A general concern with GMS is the number of object levels in GMS: Messaging Manager, Mailbox, MailboxFolder and Message. The consequence is an SCF that is not very convenient to use. For example, if an application wants to retrieve a message, it has to open the mailbox, open the folder and the retrieve the message. This involves a lot of signalling between application and network server. It would be much more convenient for application developers if the message can be retrieved from the Mailbox interface, with FolderID and MessageID as parameters in the retrieval methods, rather than as separate objects. Therefore it would be much better if the methods that are currently defined in IpMailboxFolder and IpMessage are lifted to IpMailbox and to deprecate IpMailboxFolder and IpMessage. Since CN5 currently discusses how to fundamentally improve GMS, we need to discuss how much we want to compromise simplicity and convenience for the application developer, just for the sake of some apparent backwards compatibility.

This approach would also make GMS easier to understand (or “less messy” as some people might call it)

Purpose of GMS

	MU
	Point 4 of “reasons for change”: GMS was not intended to support MMS specifically, the UI SCS should be used for that. GMS can be used indirectly for MMS if the MMS proxy lies in the delivery path of the MMS message. Lucent would like to request more clarification on how GMS and UI overlap would be dealt with. We specifically wish to avoid redundancy across SCFs.

	SB
	GMS was not clearly intended for any particular type of messaging, but was extremely generic, and mentioned only voice and email. The GUI does have a mapping document for SMS (Short messaging). GUI is not really a

good map for MMS (Multimedia Messaging). GMS is a betting match for MMS since MMS is mailbox oriented and also very closely related to SMTP based email. GUI is intended for messaging directly to the user terminal with no mailbox semantics, whereas GMS is messaging to and from mailboxes.

	EvR
	First, SMS and MMS are flavours of messaging and therefore they logically fit much better in Generic Messaging Service (GMS) than in UI. Especially since we call it GENERIC Messaging.

Second, UI is defined around the concept of Session. Sending a message using UI has the limitation that with every intended recipient of a message, first a session needs to be created. Imagine an application that wants to multicast to 100 recipients. This would require an application to open 100 sessions and to send the messages one-by-one to the intended recipients.

	MU
	Point 6 of “reasons for change”: Please provide clarification on why these details should be made transparent to the applications.

	SB
	It is necessary to enable a GMS service that supports more than one transport type to enable the application to select whether a message should be sent through email, MMS, SMS or other. Towards this goal, service

properties and message properties are added to specify the supported deliverytypes and the specific delivery type for a particular message.

	MU
	Point 14 of “reasons for change”: Is this of concern when non-SMS, non-MMS types of services are supported? Is it not sufficient to indicate that the delivery characteristics are similar to those of email (for which this service was initially designed)? We would greatly appreciate clarification on what exactly has changed in the spec for this problem. It is often difficult to correlate the itemized list of problems with the spec changes.

	SB
	The GMS semantics for sending the message when it is put into the OUTBOX already existed, but it is clarified by adding some additional text in the section 8, and the 8.4.8 putMessageReq() section.

Location of methods

	EM
	Location of methods: I must admit to being very confused as to the overall logic behind which methods exist in which interface class. There appear to be a number of cases where inconsistencies exist:

· The 'close' methods always appears to exist seperately from the related open/move/remove operations. For example, a folder is closed using the close method on IpMailboxFolder, however folders are created,opened, moved etc via methods on IpMailbox.

· The exception to the point above in the case of copy/move/remove appears to be the operations for the message itself. IpMessage supports the methods for copying/moving/removing, whereas for all other classes
these management methods exist in a different interface that supports management of the object in question. For example again, the ability to copy/move/remove Folders is supported within the IpMailbox interface.

Overall, I think this makes the API difficult to understand and unclear what our OO model is intended to represent. For example is the IpMessage class meant to represent a message itself, or an entity that can perform message management? Whatever the decision here,we should at least apply a correct name to the class to prevent confusion.

I appreciate the replies and the reasons why you have made the suggested changes. What I am highlighting therefore is that I feel this still leaves us with a fairly messy API definition. I would be of the opinion
therefore that 'option 5' suggested in the San Francisco meeting doesn’t produce the best results. I dont believe that the approach to backward compatibility with respect to Part 9 of the spec is helping us in our efforts,
rather it is preventing us creating a really good messaging specification.
I would prefer to accept that we rework Part 9 without the limiting constraints of backward compatibility (after all can it really be considered a mature and stable specification?). Note I am not suggesting that we throw
Part 9 away, there are some good ideas there, but these should be used to produce the best possible messaging API that we can provide. After all if what results is not a good messaging interface, we can be sure that
an alternative interface will be defined outside Parlay / 3GPP and that would be much worse than introducing backward compatibility problems in our own specifications.

Thats just my 2c, but I think we need to make a final decision on our approach to this in Bangkok, so that we all know where to focus our efforts.

	GC
	We agree with Eamonn on this one. The semantics of IpMessage need to be decided on. We believe that IpMessage is actually supposed to represent a message, and not a message management interface. We believe it is actually an old error that every method on IpMessage contains a parameter called messageID. However, we would rather either replace the existing messageID parameter with a messageSessionID parameter, or simply have it stated that this parameter should be ignored (if it cannot be deleted due to backwards compatibility) rather than change the semantics of IpMessage. We think that it has always been believed that it does actually represent a message (as the description of getMessage() in IpMailboxFolder indicates).

As such, we believe the removeMessage (and copy/moveMessage) should be on the mailbox folder, not on the IpMessage.

	SB
	I agree its not terribly idea, but based on consistency with other preexisting methods that exist on the various interfaces and the pre-conditions related to whether the folder needs to be open / closed, I made a choice of where to put them. folders are open-able, whereas, messages are not.

The IpMessage does not represent the message instance itself, since the message ID much be passed. It is just a partitioning of message related methods (historical reasons). The class names and methods already existed, and the goal was not to change something just for the sake of changing it.

	EvR
	As I see it there are two approaches:

1. we make minimal changes on GMS (maintaining backwards compatibility, leaving the SCF synchronous) and create a new Messaging SCF to define a good messaging specification

2. we make fundamental changes to GMS, to make it a good messaging spec, and we do not bother about backwards compatibility

My understanding of the SF discussion is that the delegates were leaning towards the second alternative. Therefore IBM and Ericsson proposals are reworking the GMS spec that existed, and make some substantial modifications. If this has led to a messy API, there are two ways we can continue:

1. clarify the IBM and Ericsson proposals (e.g. by limiting the number of object levels in the API, improve consistency, add clarifying text to the methods)

2. move back to approach (1), i.e. create a new messaging SCF

Session Identifiers

	EM

	1. SessionIDentifiers: Can you clarify why there is a need to explicitly pass identifiers such as mailboxSessionID/folderSessionID in all of the new methods introduced? For example, if we consider the method, getInfoProperties on the IpMessage interface, the folderSessionID is used to indicate the session of the open folder. However, will the IpMessage object not already know this folderSessionID as a result of being part of the getMessageInterface call on the IpMailboxFolder interface?

2. Overall the OSA API is object oriented such that occurence of the object itself is used to identify the call etc. that it relates to. If we alter this pattern to explicitly pass identifiers at all times, it could be interpretted that an application may use the same interface and alter the sessionIdentifier to carry out an action on a different object. What I mean by this is, what is the meaning of getInfoProperties for example on a particular IpMessage class if the folderSessionID is varied by the application? Again , I think this comment also relates to whether the interface class is intended to represent the object in question or an ability to manage or act upon objects of this type.

	SB
	1. The IpMessage is not an message object instance reference (historical reasons). It is essentially an extension to the IpMailboxFolder interface that deals with messages. This is why both the folder session ID and the message ID (not a message sessionID). All pre-existing methods in IpMessage specify the folder session ID and message ID. This is one place where I've tried to make functional and the best of the old design, without drastically changing they way old apps work.

2. I think most of the OSA api deals with session IDs. and, GMS does too. I've tried to stay consistent. other API like call control have object references like IpCall or IpCallLeg, but they also require the appropriate session ID to be passed.

Exceptions and errors

	EM
	I agree that we need to support a mainly asynchronous model, however can we then agree on when it is appropriate to raise an exception and when it is appropriate to return an error and not confuse the two. As an example, consider the method setMailboxPropertiesReq. As described, if the properties cannot be changed then an error P_GMS_PROPERTY_NOT_SET is returned. As I read this currently it would appear that the

application when making this call will obtain an exception P_GMS_PROPERTY_NOT_SET and at some point later recieve a setMailboxPropertiesErr with an error P_GMS_PROPERTY_NOT_SET. I think if we provide 2 possible mechanisms we will surely end up with massive interoperability headaches so this problem needs to be tidied up?

	SB
	The error should be returned to the application only once. If the error is detectable before the asynchronous actions take place, it can be returned on the request. If it is detected during asynchrounous processing, it would have to be returned in an XXXErr.

Copying of messages

	MU
	are copies shallow? i.e. clone message pointer, or deep? (Are all body parts also copied?) The contribution should specify this explicitly. Preference would be to not support complete copies.

	SB
	When copying a message, all parts of the message are copied. Since, messages typically to not contain links to other messages. This can be clarified in the document.

	GC
	One other comment on Lucent's comments. Point 3 of the "Other comments on specific proposed fixes" states that a shallow copy is the preference. We believe, as Scott also stated in a previous e-mail, that everything in the message must be copied, as the paradigm should be to always create an autonomous copy (or a clone) of the original.

Method of synchronously locking

	MU
	Point 15 of “reasons for change”: Although there may be issues with locking related semantics, Lucent is of the opinion that simply changing the locking mechanism from sync to async will not solve the underlying problems, though the change itself may

be a step in the right direction.

	SB
	I believe that some additional improvement is possible. Do you have a suggestion. The asynchronous locking mechanism was added to allow the client code to get in the waiting list for access to the mailbox and then

timeout after some amount of time. This enable the software to work predictably and also allows exclusive access to the code that is manipulating the mailbox.

Mailbox locking

	MU
	Regarding mailbox locking: In general, we have no problem with the proposal though we see no need to change the lock method to asynchronous. In fact, because access to the mailbox is only allowed through authentication, is there really a need for mailbox locking? Who is the mailbox locked from?

	SB
	locking semantics already existed in the GMS spec, so in the spirit of maintaining existing semantics and capabilities I left it in. Although, I'm not sure the concept is really ideal.

Comments on specific sections

8.1.2, enableMessagingNotification

	MU
	Text marked as changed reads “If the application does not have sufficient privilege to remove the mailbox…” The reference to removing the mailbox appears to be a copy and paste error. Please correct it.

	SB
	The enableMessagingNotification() is a method on the messaging manager which manipulates the notifications of a particular mailbox. The criteria specifies authentication information (pre-existing) to verify that the application is allows to get notifications for a particular user. I noticed during this thorough review that the error condition was not provided for so I added it. The application when using the messaging manager interface needs to have information such as a password to access the mail information for a particular user account, so therefore, openMailbox, sendMessage and also enablemessagingnotification require the password.

	GC
	We believe Musa was actually pointing out that the reference to removing the mailbox in the enableMessagingNotification is incorrect. The application is not trying to remove a mailbox.

8.1.4, IpMessagingManager.sendMessageReq

	MU
	Point 19 of “reasons for change”: While it is awkward to have to open a folder to send a message, this newly proposed interface method (sendMessageReq) effectively duplicates existing functionality (putMessage and the proposed putMessageReq) with little added benefit. Moreover, there is a possible burden on both the SCS

developer (if not the client developers) to support this extra functionality. There are also message delivery parameters defined which do not apply to traditional email.

	SB
	I also resisted adding a sendMesageReq() as long as possible, since GMS is fundamentally a mailbox mechanism. Erwin at Ericsson was persistent and required it for Ericssons approval of this document. The sendMessageReq() is added outside the mailbox scope because when a message is sent through that mechanism it is not stored in the mailbox, and responses and acknowledgements need to be returned to the messaging manager, not a mailbox session since the acknowledgements may come back days later, and we don't want to keep mailbox sessions open for outstanding messages.

	EvR
	· the idea with sendMessageReq is that it enables the application to send messages directly, without intervention of a mailbox (for example to send SMS or MMS messages). I believe that since GMS is meant to be a generic messaging API, it should support more than just mailbox-oriented messaging. For a mailbox oriented approach we have putMessage()

· in the document uploaded to the server I changed TpTerminatingAddressList in TpMessageInfoPropertySet, and added a comment that only a few parameters of this set are used in sendMessageReq()

	GC
	1. why have this outside a mailbox when the application has to enter in all the details needed to gain access to a mailbox anyway? It seems very untidy to introduce two separate and distictly different mechanisms to do the same job.

2. Why introduce a TpTerminatingAddressList structure when the TpMessagePropertySet structure contains these details. Subject is also a TpMessageProperty. A note in the method description could be used to say that only the To, CC, BCC and Subject properties will be used by the method.

	SB
	1. The sendMessageReq() was persistently requested by Ericsson. It was proposed for outside the mailbox. the main reason I kept it outside the mailbox (and I did consider moving it inside) was that you don't need to keep the mailbox session open for each message you send, and then locate open mailbox sessions for existing messages that you need to send, for the notifications to be delivered back to the app. In this way the messages and notifications are stateless.

2. The sendMessageReq() passes a limited number of message properties immediately without using a properties object.

	EvR
	As Scott indicates, the reason sendMessageReq() is outside the mailbox is that the messages sent with this method are not necessarily mailbox related. Instead it can be used very well to send SMS and MMS. It is strange if an application would always be required to open a mailbox before it can send a message to e.g. an MMS-C or SMS-C

8.2.5, IpAppMessagingManager.sendMessageRes and

8.2.7, messageDeliveryNotification
	EM
	I understand the distinction between the sendMessageRes and messageDeliveryNotification as it maps very well to delivery receipts in SMSC platforms. However I am still a little confused that the same data type 'TpSendMessageReport' is ultimately used on both cases. Would distinct data types that highlight the difference in the information that can be reported not be better?

	SB
	1. The sendMessageRes() is for successful completion of the sending of the message, and the messageDeliveryNotification is the acknowledgement of receipt of the message by the destination.

2. Distinqinct data types would be ok, but the content would be similar, just different states of the message.

	GC
	We think some more text is needed in the contribution to define the differences between sendMessageRes and messageDeliveryNotification and when one would be called in preference to the other.

	EvR
	sendMessageRes() indicates to the application that the message sent by the application is successfully received by the remote server (e.g. the operator's SMS-C or MMS-C). It is typically received by the application after a few seconds to minutes.

messageDeliveryNotification() indicates to the application that the message has been delivered to the targeted recipient. It is typically received in minutes, hours or even days. I added some clarifying text to the method descriptions in N5-030551.

8.4, IpMailboxFolder

	GC
	what happened to removeMessageReq()? This was supposed to be in IpMailboxFolder so both the creation

and removal work is done via the same object.

	SB
	removeMessageReq() is in the IpMessage interface. The IpMessage interface is the interface that deals with message management as opposed to folder management. Mailboxes and Folders are session oriented, whereas

messages are not. Messages are addressed using message ID strings, and require a folder session ID to address them. So, for historical reasons, the IpMailboxFolder and IpMessage interface operate on the folder session,

and the IpMailboxFolder deals with actions on the folder, and the IpMessage interface deal with actions on messages, such as removeMessageReq().

	EvR
	Thinking a bit more about this, I believe that the best place for removeMessage is the Mailbox interface. In this way messages can be removed without first opening the folder and the message itself. Note that the removeFolder method is already on the Mailbox interface.

8.4.8, IpMailboxFolder.putMessageReq

	GC
	1. needs to be formatted as a heading

2. If this can be used to send a message then what responses are expected if a message fails to be sent.

3. There seems to be plenty of mechanisms and new structures introduced by the sendMessageReq() method(8.1.4) yet there is nothing to say whether the message sent via putMessageReq() being run on the "/OUTBOX" folder was successful.

4. what about delivery mechanism or a TpSendMessageReport?

	SB
	putMessageErr results if there is a message sending a message through putMessageReq().

	MU
	The IpMailboxFolder::putMessage method is at once deprecated with a signature change. If the interface method is to be deprecated then its signature should not change.

	SB
	The putMessage() was updated so that it is function is workable with returning the message ID, but as a separate update was deprecated because the asynchronous putMessageReq() was also added. I do not strongly object

to changing the signature back, it would not probably have any affect on existing code since it currently returns void so no code would assign to anything. Last year, both Telenity and IBM recommended changing the

return of this message.

8.4.12, IpMailboxFolder.listContentsReq
	GC
	why has this been introduced when the information can be attained via the getFolderPropertiesReq()?

Unless there is a valid difference between the two then two different mechanisms should not be employed

to do this job.

	SB
	Ericsson insisted that this be added for clarification and convience. The main distinquishing factor is that with getting the properties is that it returns only the message ID, which the app then has to query the properties (all properties) of each message, whereas with listContentsReq() the app can get a simple descriptor of information for each message that would likely be displayed in the initial listing.

	EvR
	Difference between getFolderProperties() and listContents():

I agree with Gareth that these two methods are to some extent overlapping. listContents has more functionality than getFolderProperties: with listContents it is possible to get a "snapshot" of the subfolders and messages contained in a folder. With "snapshot" I mean that the application can see for every subfolder and message some basic information (e.g. received-from, received-date, size, format). Furthermore listContentsReq() allows for the specification of filter criteria, which allows the application to view a snapshot of e.g. only the unread messages. The listContents was added to keep getFolderProperties as much as possible the same (apart from making it asynchronous). However, now that we are cleaning up and improving GMS we might as well merge getFolderProperties and listContents into one method. This is not effected yet in the N5-030551 document I uploaded to the server.

8.5.12, IpMessage.copyMessageReq

	GC
	1. need to throw an exception if the new folder does not exist.

2. Should we be forcing the app to work out the new messageID? Elsewhere in the doc we signify that messageID is readonly and so by inference it is automatically generated by the service. If we don't allow the app to supply the messageID then we could specify that it will be autogenerated by the service.

3. (answer to Scott’s answer): That is true. However the Lucent comment (Other comments on specific proposed fixes - 7) queries why we need to do this. For copyMessageReq() we would agree with Lucent, as a copy of the message is being placed in the destination folder and as such the app has yet to gain access to it, so the destination folder does not have to be open making the need for a destinationFolderSessionID redundant. For moveMessageReq() we think we do need to ensure the destination folder is open, as the app has access to the message and we should ensure no app can have access to a message that is contained in a closed folder.

	SB
	copyMessageReq() uses both a source and destination folder session ID, therefore the must exist, because you have to open it to get the session ID.

	MU
	copyMessageReq()- what happens when the source and destination folders are the same?

	SB
	We should define an exception for this. I can include it in the next set of changes, but probably not before the meeting

	MU
	Regarding IpMessage::moveMessageReq() and IpMessage::copyMessageReq(): one of the input parameters is

destinationFolderSessionID. This requires that the client open the destination folder prior to moving or copying it. This is not efficient and appears to be unnecessary. Imagine going through your Inbox and wanting to move messages to certain other folders as necessary, e.g. one for Personal, one for Work, one for ToDo, etc. The client would need to go open each of these folders before the messages could be moved there. It would be much easier for the client to simply specify the destinationFolderID by name. Therefore, we suggest changing the

destinationFolderSessionID to destinationFolderID.

	SB
	The API semantics don't need to extend to ther user interface semantics. The destination folder session ID is required, to ensure that the destination folder exists and is open. The application would do this programatically, the user is not required to do it through the graphical user interface. A higher level method could be coded in the application that checks to see if the destination folder is open (since it can be open only once by the application), then opens it if necessary, or creates it if necessary, then moves the message, then depending on the application perhaps close it, or leave it open for future access.

8.5.13, IpMessage.moveMessageReq

	GC
	1. if all the properties (apart from folder) stay the same then why does the method throw INVALID_MESSAGE_ID?

2. need to throw an exception if the destination folder does not exist

3. need to throw an exception if the destination folder is not open (as this message will be).

	SB
	The message ID is passed as a parameter, and it could be garbage (or rubish :-)). The destination folder must exist and be open if there is a session ID, otherwise the session ID is old and invalid.

	MU
	any reason why this should be an async operation?

	SB
	Yes it may take some time for the mailbox system to move a message, but mostly for consistency.

8.5.14, IpMessage.removeMessageReq

	GC
	This is not the correct place for this as it should be under IpMailboxFolder. I don't believe it exists in previous specs, so can we not just delete it instead of deprecating it.

	SB
	the older version is remove(), but it should be asyncronous, and I hope I've explained why it is in the IpMessage interface. Notice that the IpMessage interface does not maintain the state of the message ID, and the

message ID is a parameter for each method, therefore, the interface is just a partitioning of function, and not a reference to a message instance object.

10.2.2.1, TpMessageInfoProperty

	GC
	Why have we got a TpMessageStatusSet for the status property? If the status of the message can be more than one thing at a time then TpMessageStatus needs to specify what the allowed 'sets' are? i.e. read and unread?

	SB
	The valid combinations of the message status values are not specified. They are reasonably obvious, but could be included in a further update. Lets keep it in mind. This should not be an approval issue.

End of document

	MU
	At the very end of the document P_TRIGGERING_ADDRESSES is defined. How is this expected to be used?

	SB
	This is for consistency with other TpAddress oriented SCS services. The service property defines the set of phone numbers that are serviced by the service, and therefore which numbers can be enabled for notifications.

