Page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030409

Meeting #24, San Francisco, CA, USA, 14 - 18 July 2003

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-05
	CR
	CRNum
	(

rev
	-
	(

Current version:
	5.3.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	x

	

	Title:
(

	Improve User Interaction message management functions

	
	

	Source:
(

	CN5 (scottjb@us.ibm.com)

	
	

	Work item code:
(

	OSA3
	
	Date: (

	18/07/2003

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	REL-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	The OSA User Interaction API provides the capability to record and playback messages, but it does not provide a mechanism to retrieve the message content by the application, or provide a mechanism to set the message content by the application. These features are necessary to enable the applications to utilize the content of the messages in a meaningful way for both administration/management and for interaction with enhanced services or users (mid-call).

The User Interaction service should be functional for both administrative provisioning of the messages of the gateway, but also functional for application interaction with the user for the purposes of enhanced services and enterprise applications.

When recording a message through the IpUICall interface, the application can play it back or delete it, but currently can not retrieve it from the gateway. The application may want to record the user’s voice for a credit card authorization or such and then store the recording in its own database. There are many reasons why the application may need to retrieve the waveform data. Clearly, this method is intended for low-frequency usage for performance and bandwidth reasons, however it is still necessary.

Additionally, The application also does not have a mechanism to assign a messageID to a new User Interaction message that is provided by the application, thereby adding a message to the provisioned set of messages.

Additionally, the currently supported deleteMessageReq() is provided on the IpUICall interface, which can only be used in conjunction with a Call/CallLeg session, however, this is a desireable administrative function that may not be associated with a particular Call/CallLeg session. As with the new methods described above, they may be desireable without a call session.

If this functionality is not possible with the infrastructure of a particular switch, it should still be included in the specification for completeness, because from the application perspective this is an important feature, and in time the necessary functions could be integrated with the core network.

	
	

	Summary of change:
(

	New methods are necessary to allow the application to set and retrieve the recorded audio data that is used for a message. These methods allow the application to retrieve the content of a message recorded by a user, or set the content of a message that can be played by the application (without having the administrator of the gateway have to customize the configuration.) A new IpUIAdminManager SCF interface is proposed so that it is clear that it is not attached to a Call/CallLeg session or a TpAddress.

The following new methods are proposed for IpUIAdminManager:

 TpAssignmentID getMessageReq (TpSessionID uiSessionID,

 TpInt32 messageID);

 TpAssignmentID putMessageReq (TpSessionID uiSessionID,

 TpUIInfo msg);

 TpAssignmentID deleteMessageReq (TpSessionID uiSessionID,

 TpInt32 messageID);

Along with their responses in IpAppUIAdminManager:

 Void getMessageRes (TpSessionID uiSessionID, TpAssignmentID assignID,

 TpUIInfo info);

 Void getMessageErr (TpSessionID uiSessionId, TpAssignmentID assignID,

 TpUIError err);

 Void putMessageRes (TpSessionID uiSessionID, TpAssignmentID assignID,

 TpInt32 messageID);

 Void putMessageErr (TpSessionID uiSessionId, TpAssignmentID assignID,

 TpUIError err);

 Void deleteMessageRes (TpSessionID uiSessionID,

 TpAssignmentID assignID);

 Void deleteMessageErr (TpSessionID uiSessionId, TpAssignmentID assignID,

 TpUIError err);

The User Interaction service will utilize the application context to ensure that one application does interfere with the messages of another application, such as playing, retrieving or deleting them. Also, the application can not delete the shared messages that are pre-provisioned on the OSA Gateway, but can play or retrieve them.
The IpUICall interface is enhanced with getMessageReq() to allow call-based retrieval of recorded data. Either the IpUICall or IpUIAdminManager can manage the messages.

This is also a correction because the recordMessageReq() processing is not useful in the current design because the application can not access the recorded data.

See the associated change in N5-030410.

Changes derived from:

ftp://ftp.3gpp.org/specs/2003-06/Rel-5/29_series/

	
	

	Consequences if
(

not approved:
	The usefulness of the IpUICall interfaces by an application is limited if the application can not retrieve the information provided by the user, or can not dynamically set the messages to be played by the application.

	
	

	Clauses affected:
(

	4,5,6,8

	
	

	
	Y
	N
	
	

	Other specs
(

	x
	
	 Other core specifications
(

	29.198-03

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	Related 29.198-03 CR in N5-030410.

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

KEEP the History box of the TS to be changed (see end of the present document)

Pay attaetion that the headers on the following pages are NOT:
3GPP TS aa.bbb vX.Y.Z (YYYY-MM)
4 Generic and Call User Interaction and Administration SCF

4.1 Generic and Call User Interaction SCF

The Generic User Interaction service capability feature is used by applications to interact with end users. It consists of three interfaces:

1)
User Interaction Manager, containing management functions for User Interaction related issues;

2)
Generic User Interaction, containing methods to interact with an end-user.

3)
Call User Interaction, containing methods to interact with an end-user engaged in a call.

The Generic User Interaction service capability feature is described in terms of the methods in the Generic User Interaction interfaces.

The following table gives an overview of the Generic User Interaction methods and to which interfaces these methods belong.

Table 1: Overview of Generic User Interaction interfaces and their methods

	User Interaction Manager
	Generic User Interaction

	createUI
	sendInfoReq

	createUICall
	sendInfoRes

	createNotification
	sendInfoErr

	destroyUINotification
	sendInfoAndCollectReq

	reportNotification
	sendInfoAndCollectRes

	userInteractionAborted
	sendInfoAndCollectErr

	userInteractionNotificationInterrupted
	Release

	userInteractionNotificationContinued
	userInteractionFaultDetected

	changeNotification
	setOriginatingAddress

	getNotification
	getOriginatingAddress

	enableNotifications
	

	disableNotifications
	

The following table gives an overview of the Call User Interaction methods and to which interfaces these methods belong.

Table 2: Overview of Call User Interaction interfaces and their methods

	User Interaction Manager
	Call User Interaction

	As defined for the Generic User Interaction SCF
	Inherits from Generic User Interaction and adds:

	
	recordMessageReq

	
	recordMessageRes

	
	recordMessageErr

	
	deleteMessageReq

	
	deleteMessageRes

	
	deleteMessageErr

	
	abortActionReq

	
	abortActionRes

	
	abortActionErr

	
	getMessageReq

	
	getMessageRes

	
	getMessageErr

The IpUI Interface provides functions to send information to, or gather information from the user, i.e. this interface allows applications to send SMS and USSD messages. An application can use this interface independently of other SCFs. The IpUICall Interface provides functions to send information to, or gather information from the user (or call party) attached to a call.
4.2 Generic User Interaction Administration SCF

The Generic User Interaction Administration service capability feature is used by application to interact with the service to manage the user announcement and recorded messages. It consists of one interface:

1) User Interaction Administration Manager, containing message management functions for User Interaction.

Table 3: Overview of Call User Interaction Administration interfaces and their methods

	User Interaction Administration Manager

	getMessageReq

	putMessageReq

	deleteMessageReq

	

	

	

4.3 Generic User Interaction SCF Design Aspects

The following clauses describe each aspect of the Generic User Interaction Service and Generic User Interaction Administration Service Capability Feature (SCF).

The order is as follows:

· The Sequence diagrams give the reader a practical idea of how each of the SCFs is implemented.

· The Class relationships clause show how each of the interfaces applicable to the SCF, relate to one another.

· The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part. This clause also includes Call User interaction.

· The State Transition Diagrams (STD) show the transition between states in the SCF. The states and transitions are well-defined; either methods specified in the Interface specification or events occurring in the underlying networks cause state transitions.

· The Data Definitions clause show a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part ES 202 915-2.

5 Sequence Diagrams

5.1 Generic and Call User Interaction Sequence Diagrams

5.1.1 Alarm Call

The following sequence diagram shows a 'reminder message', in the form of an alarm, being delivered to a customer as a result of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the application could also trigger on events.

[image: image1.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 : IpUICall

 : IpUIManager

 :

IpAppUICall

 : (Logical

View::IpAppLogic)

5: routeRes()

10: sendInfoRes()

1: new()

2: createCall()

3: new()

4: routeReq()

9: sendInfoReq()

6: 'forward event'

7: createUICall()

8: new()

11: 'forward event'

12: release()

13: release()

1:
This message is used to create an object implementing the IpAppCall interface.

2:
This message requests the object implementing the IpCallControlManager interface to create an object implementing the IpCall interface.

3:
Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) are met it is created.

4:
This message instructs the object implementing the IpCall interface to route the call to the customer destined to receive the 'reminder message'

5:
This message passes the result of the call being answered to its callback object.

6:
This message is used to forward the previous message to the IpAppLogic.

7:
The application requests a new UICall object that is associated with the call object.

8:
Assuming all criteria are met, a new UICall object is created by the service.

9:
This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call.

10:
When the announcement ends this is reported to the call back interface.

11:
The event is forwarded to the application logic.

12:
The application releases the UICall object, since no further announcements are required. Alternatively, the application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have been implicitly released after the announcement was played.

13:
The application releases the call and all associated parties.

5.1.2 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is accepted and the call is routed to the original called party.

[image: image2.wmf] : (Logical

View::IpAppLogic)

 :

IpAppCallControlManager

 : IpAppCall

 : IpCall

 : IpUICall

 :

IpUIManager

 :

IpCallControlManager

 :

IpAppUICall

1: new()

13: routeRes()

14: 'forward event'

12: routeReq()

15: callEnded()

16: "forward event"

17: deassignCall()

8: sendInfoAndCollectReq()

11: release()

6: createUICall()

7: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

9: sendInfoAndCollectRes()

10: 'forward event'

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range prompted for a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives, a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) are met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward the previous message to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6:
This message is used to create a new UICall object. The reference to the call object is given when creating the UICall.

7:
Provided all the criteria are fulfilled, a new UICall object is created.

8:
The call barring service dialogue is invoked.

9:
The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10:
This message is used to forward the previous message to the IpAppLogic.

11:
This message releases the UICall object.

12:
Assuming the correct PIN is entered, the call is forward routed to the destination party.

13:
This message passes the result of the call being answered to its callback object.

14:
This message is used to forward the previous message to the IpAppLogic

15:
When the call is terminated in the network, the application will receive a notification. This notification will always be received when the call is terminated by the network in a normal way, the application does not have to request this event explicitly.

16:
The event is forwarded to the application.

17:
The application must free the call related resources in the gateway by calling deassignCall.

5.1.3 Network Controlled Notifications

The following sequence diagram shows how an application can receive notifications that have not been created by the application, but are provisioned from within the network.

[image: image3.wmf]AppLogic

 : IpAppUIManager

 : IpUIManager

1: new ()

2: enableNotifications()

3: reportNotification()

4: 'forward event'

5: reportNotification()

6: 'forward event'

7: disableNotifications()

1:
The application is started. The application creates a new IpAppUIManager to handle callbacks.

2:
The enableNotifications method is invoked on the IpUIManager interface to indicate that the application is ready to receive notifications that are created in the network. For illustrative purposes we assume notifications of type "B" are created in the network.

3:
When a network created trigger occurs the application is notified on the callback interface.

4:
The event is forwarded to the application.

5:
When a network created trigger occurs the application is notified on the callback interface.

6:
The event is forwarded to the application.

7:
When the application does not want to receive notifications created in the network anymore, it invokes disableNotifications on the IpMultiPartyCallConrolManager interface. From now on the gateway will not send any notifications to the application that are created in the network.

5.1.4 Prepaid

This sequence shows a Pre-paid application. The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the following sequence the end-user will received an announcement before his final timeslice.

[image: image4.wmf]Prepaid : (Logical

View::IpAppLogic)

 :

IpAppCallControlManager

 :

IpCallControlManager

 : IpCall

 : IpUICall

 : IpUIManager

 : IpAppUICall

 : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

7: routeReq()

10: superviseCallReq()

13: superviseCallReq()

6: superviseCallReq()

21: superviseCallReq()

24: release()

17: sendInfoReq()

20: release()

16: createUICall()

18: sendInfoRes()

19: "forward event"

5: new()

8: superviseCallRes()

9: "forward event"

11: superviseCallRes()

12: "forward event"

14: superviseCallRes()

15: "forward event"

22: superviseCallRes()

23: "forward event:

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) are met, other messages (not shown) are used to create the call and associated call leg object.

3:
The incoming call triggers the Pre-Paid Application (PPA).

4:
The message is forwarded to the application.

5:
A new object on the application side for the Generic Call object is created

6:
The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

7:
Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call duration supervision period, towards the GW which forwards it to the network.

8:
At the end of each supervision period the application is informed and a new period is started.

9:
The message is forwarded to the application.

10:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

11:
At the end of each supervision period the application is informed and a new period is started.

12:
The message is forwarded to the application.

13:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer expires it will indicate that the user is almost out of credit.

14:
When the user is almost out of credit the application is informed.

15:
The message is forwarded to the application.

16:
The application decides to play an announcement to the parties in this call. A new UICall object is created and associated with the call.

17:
An announcement is played informing the user about the near-expiration of his credit limit.

18:
When the announcement is completed the application is informed.

19:
The message is forwarded to the application.

20:
The application releases the UICall object.

21:
The user does not terminate so the application terminates the call after the next supervision period.

22:
The supervision period ends

23:
The event is forwarded to the logic.

24:
The application terminates the call. Since the user interaction is already explicitly terminated no userInteractionFaultDetected is sent to the application.

5.1.5 Pre-Paid with Advice of Charge (AoC)

This sequence shows a Pre-paid application that uses the Advice of Charge feature. The application will send the charging information before the actual call setup and when during the call the charging changes new information is sent in order to update the end-user. Note that the Advice of Charge feature requires an application in the end-user terminal to display the charges for the call, depending on the information received from the application.

[image: image5.wmf]Prepaid : (Logical

View::IpAppLogic)

 :

IpAppCallControlManager

 :

IpCallControlManager

 : IpCall

 : IpUICall

 : IpUIManager

 : IpAppUICall

 : IpAppCall

1: new()

2: enableCallNotification()

3: callEventNotify()

4: "forward event"

8: routeReq()

11: superviseCallReq()

15: superviseCallReq()

7: superviseCallReq()

24: superviseCallReq()

27: release()

6: setAdviceOfCharge()

21: sendInfoReq()

19: createUICall()

20: new()

22: sendInfoRes()

23: "forward event"

28: userInteractionFaultDetected()

5: new()

9: superviseCallRes()

10: "forward event"

12: superviseCallRes()

13: "forward event"

14: setAdviceOfCharge()

16: superviseCallRes()

17: "forward event"

18: new()

25: superviseCallRes()

26: "forward event:

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) are met, other messages (not shown) are used to create the call and associated call leg object.

3:
The incoming call triggers the Pre-Paid Application (PPA).

4:
The message is forwarded to the application.

5:
A new object on the application side for the Call object is created

6:
The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff switch time). (it shall be noted the PPA contains ALL the tariff information and knows how to charge the user).
During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g., 18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!)

7:
The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber.

8:
The application requests to route the call to the destination address.

9:
At the end of each supervision period the application is informed and a new period is started.

10:
The message is forwarded to the application.

11:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.

12:
At the end of each supervision period the application is informed and a new period is started.

13:
The message is forwarded to the application.

14:
Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tariff switch time. Again, at the tariff switch time, the network will send AoC information to the end-user.

15:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer expires it will indicate that the user is almost out of credit.

16:
When the user is almost out of credit the application is informed.

17:
The message is forwarded to the application.

18:
The application creates a new call back interface for the User interaction messages.

19:
A new UI Call object that will handle playing of the announcement needs to be created

20:
The Gateway creates a new UI call object that will handle playing of the announcement.

21:
With this message the announcement is played to the parties in the call.

22:
The user indicates that the call should continue.

23:
The message is forwarded to the application.

24:
The user does not terminate so the application terminates the call after the next supervision period.

25:
The user is out of credit and the application is informed.

26:
The message is forwarded to the application.

27:
With this message the application requests to release the call.

28:
Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The UICall object is terminated in the gateway and no further communication is possible between the UICall and the application.

5.2 Generic User Interaction Administration Sequence Diagrams

5.2.1 Message Administration

The following sequence diagram shows how an application can manage the user announcement and recorded messages.

[image: image6.png]
1:
The application is started. The application creates a new IpAppUIAdminManager to handle callbacks.

2:
The putMessageReq method is invoked on the IpUIAdminManager interface to create a new pre-defined message for use by sending to the user.

3:
The putMessageRes response notifies the application of the messageID on the callback interface.

 4:
The response is forwarded to the application logic.

5:
The getMessageReq method is invoked on the IpUIAdminManager interface to retrieve the contents of a user announcement or recorded message.

6:
The getMessageRes response notifies the application of the contents of a message.

 7:
The event is forwarded to the application.

6 Class Diagrams

6.1 Generic and Call User Interaction Class Diagrams

The application generic user interaction service package consists of one IpAppUIManager interface, zero or more IpAppUI interfaces and zero or more IpAppUICall interfaces.
The generic user interaction service package consists of one IpUIManager interface, zero or more IpUI interfaces and zero or more IpUICall interfaces.
The class diagram in the following figure shows the interfaces that make up the application generic user interaction service package and the generic user interaction service package. Communication between these packages is done via the <<uses>> relationships.
The IpUICall implements call related user interaction and it inherits from the non call related IpUI interface. The same holds for the corresponding application interfaces.

[image: image7.wmf]IpInterface

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

<<Interface>>

IpAppUIManager

userInteractionAborted()

<<deprecated>> reportNotification()

userInteractionNotificationInterrupted()

userInteractionNotificationContinued()

<<new>> reportEventNotification()

<<Interface>>

IpUIManager

createUI()

createUICall()

createNotification()

destroyNotification()

changeNotification()

getNotification()

<<new>> enableNotifications()

<<new>> disableNotifications()

<<Interface>>

IpAppUI

sendInfoRes()

sendInfoErr()

sendInfoAndCollectRes()

sendInfoAndCollectErr()

userInteractionFaultDetected()

<<Interface>>

IpUI

sendInfoReq()

sendInfoAndCollectReq()

release()

<<new>> setOriginatingAddress()

<<new>> getOriginatingAddress()

<<Interface>>

IpAppUICall

recordMessageRes()

recordMessageErr()

deleteMessageRes()

deleteMessageErr()

abortActionRes()

abortActionErr()

<<Interface>>

IpUICall

recordMessageReq()

deleteMessageReq()

abortActionReq()

<<Interface>>

<<uses>>

<<uses>>

<<uses>>

Figure : Generic User Interaction Package Overview

6.2 Generic User Interaction Administration Class Diagrams

The application generic user administration service package consists of one IpAppUIAdminManager interface and one IpUIAdminManager interfaces.
The class diagram in the following figure shows the interfaces that make up the application generic user administration service package. Communication between these packages is done via the <<uses>> relationships.
[image: image8.png]
Figure: Generic User Administration Package Overview
8.5 Interface Class IpUICall

Inherits from: IpUI.
The Call User Interaction Service Interface provides functions to send information to, or gather information from the user (or call party) to which a call leg is connected. An application can use the Call User Interaction Service Interface only in conjunction with another service interface, which provides mechanisms to connect a call leg to a user. At present, only the Call Control service supports this capability.

This interface, or the IpUI interface, shall be implemented by a Generic User Interaction SCF as a minimum requirement. The minimum required methods of interface IpUI shall be implemented.

	<<Interface>>

IpUICall

	

	recordMessageReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, criteria : in TpUIMessageCriteria) : TpAssignmentID

deleteMessageReq (usrInteractionSessionID : in TpSessionID, messageID : in TpInt32) : TpAssignmentID

abortActionReq (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID) : void

<<new>> getMessageReq (userInteractionSessionID : in TpSessionID, messageID : TpInt32) : TpAssignmentID

8.5.4 Method getMessageReq()

This asynchronous method allows retrieving the recorded message content from the gateway. This method is applicable only to recorded messages.

Returns: assignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
messageID : in TpInt32

Specifies the message ID.
Returns

TpAssignmentID

Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_INVALID_NETWORK_STATE,P_ILLEGAL_ID,P_ID_NOT_FOUND
8.6 Interface Class IpAppUICall

Inherits from: IpAppUI.
The Call User Interaction Application Interface is implemented by the client application developer and is used to handle call user interaction request responses and reports.

	<<Interface>>

IpAppUICall

	

	recordMessageRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, response : in TpUIReport, messageID : in TpInt32) : void

recordMessageErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

deleteMessageRes (usrInteractionSessionID : in TpSessionID, response : in TpUIReport, assignmentID : in TpAssignmentID) : void

deleteMessageErr (usrInteractionSessionID : in TpSessionID, error : in TpUIError, assignmentID : in TpAssignmentID) : void

abortActionRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID) : void

abortActionErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

<<new>> getMessageRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, message : in TpUIInfo) : void

<<new>> getMessageErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

8.6.7 Method getMessageRes()

This method returns the message content if the message was retrieved successfully.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
message : in TpUIInfo

Specifies the UI Information containing the message content information.

8.6.8 Method getMessageErr()

This method indicates that the request to retrieve a message was not successful.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing.
8.7 Interface Class IpUIAdminManager

The Generic User Interaction Administration Manager Service interface is used by applications to manage user announcement and recorded messages on the gateway. This Service is represented by the IpUIAdminManager interface that interfaces to the service provided by the network. To handle responses and reports, the developer must implement IpAppUIAdminManager interface to provide the callback mechanism.

The application context will ensure that one application doesn’t interfere with the messages of another application.
The User Interaction Administration Manager Service Interface provides functions to manage the messages.

	<<Interface>>

IpUIAdminManager

	

	getMessageReq (usrInteractionSessionID : in TpSessionID, messageID : in TpInt32) : TpAssignmentID

putMessageReq (usrInteractionSessionID : in TpSessionID, info : in TpUIInfo) : TpAssignmentID

deleteMessageReq (usrInteractionSessionID : in TpSessionID, messageID : in TpInt32) : TpAssignmentID

8.7.1 Method getMessageReq()

This asynchronous method allows retrieving the user announcement or recorded message content from the gateway.

Returns: assignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
messageID : in TpInt32

Specifies the message ID.
Returns

TpAssignmentID

Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_INVALID_NETWORK_STATE,P_ILLEGAL_ID,P_ID_NOT_FOUND
8.7.2 Method putMessageReq()

This asynchronous method allows putting a user announcement message content onto the gateway. The gateway will allocate the messageID and return it to the application on the putMessageRes() confirmation.

Returns: assignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
info : in TpUIInfo

Specifies the information to send to the user. This information can be either an ID (for pre-defined announcement or text), a text string, or an URL (indicating the information to be sent, e.g. an audio stream).
Returns

TpAssignmentID

Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_ILLEGAL_ID,P_ID_NOT_FOUND
8.7.3 Method deleteMessageReq()

This asynchronous method allows deleting a user announcement or recorded message.

Returns: assignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
messageID : in TpInt32

Specifies the message ID.
Returns

TpAssignmentID

Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_ILLEGAL_ID,P_ID_NOT_FOUND
8.8 Interface Class IpAppUIAdminManager

The User Interaction Administration Manager Application Interface is implemented by the client application and is used to handle administration user interaction request responses and reports.

	<<Interface>>

IpAppUIAdminManager

	

	getMessageRes (usrInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, message : in TpUIInfo) : void

getMessageErr (usrInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

deleteMessageRes (usrInteractionSessionID : in TpSessionID, response : in TpUIReport, assignmentID : in TpAssignmentID) : void

deleteMessageErr (usrInteractionSessionID : in TpSessionID, error : in TpUIError, assignmentID : in TpAssignmentID) : void

putMessageRes (usrInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, messageID : in TpInt32) : void

putMessageErr (usrInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

8.8.1 Method getMessageRes()

This method returns the message content if the message was retrieved successfully.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
message : in TpUIInfo

Specifies the UI Information containing the message content information.

8.8.2 Method getMessageErr()

This method indicates that the request to retrieve a message was not successful.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing.
8.8.3 Method deleteMessageRes()

This method indicates that the request to delete a message was successful.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
response : in TpUIReport

Specifies the type of response received from the device where the message was stored.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
8.8.4 Method deleteMessageErr()

This method indicates that the request to delete a message was not successful.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
error : in TpUIError

Specifies the error which led to the original request failing.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
8.8.5 Method putMessageRes()

This asynchronous method confirms that the request to put the message content was successful.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
messageID : in TpInt32

Specifies the message ID that was allocated by the gateway.
8.8.6 Method putMessageErr()

This asynchronous method indicates that the request to put the message content resulted in an error.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing.
9.4 State Transition Diagrams for IpUIManagerAdmin
[image: image9.png]
Figure : State Transition Diagram for User Interaction Administration

9.4.1 Active State

In this state, a relation between the Application and the Generic User Interaction Administration Service Capability Feature has been established. It allows the application to make specific requests of the service.
Annex D (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Mar 2001
	CN_11
	NP-010134
	047
	--
	CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158)
	3.2.0
	4.0.0

	Jun 2001
	CN_12
	NP-010330
	001
	--
	Corrections to OSA API Rel4
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010468
	002
	--
	Changing references to JAIN
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010598
	003
	--
	Replace Out Parameters with Return Types
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010598
	004
	--
	Correction of description of sendInfoRes()
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010598
	005
	--
	Correction to handling of deassign on related object
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010598
	006
	--
	Correction to Exceptions Raised in UI
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010598
	007
	--
	Correction to values of TpUIInfoType
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020107
	008
	--
	Add P_INVALID_INTERFACE_TYPE exception to IpService.setCallback() and IpService.setCallbackWithSessionID()
	4.3.0
	4.4.0

	Jun 2002
	CN_16
	NP-020181
	009
	--
	Addition of support for Java API technology realisation
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020189
	010
	--
	Improve the vague description of P_ID_NOT_FOUND
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020182
	011
	--
	Addition of support for WSDL realisation
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020189
	012
	--
	Detach call leg before playing announcement or collecting digits
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020189
	013
	--
	Delete P_INVALID_CRITERIA from sendInfoAndCollectReq()
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020183
	014
	--
	Addition of Support for Network Controlled Notifications UI
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020189
	015
	--
	Correcting erroneous description of UI behaviour in call control
	4.4.0
	5.0.0

	Sep 2002
	CN_17
	NP-020432
	018
	--
	Add text to clarify requirements on support of methods
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020432
	019
	--
	Correction on use of NULL in User Interaction API
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020432
	020
	--
	Correction to TpUIInfo data type to support binary data for SMS services
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020395
	021
	
	Add text to clarify relationship between 3GPP and ETSI/Parlay OSA specifications
	5.0.0
	5.1.0

	Mar 2003
	CN_19
	NP-030021
	023
	--
	Correction to User Interaction Prepaid Sequence Diagrams
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030021
	025
	--
	Correction to getNotification to remove P_INVALID_CRITERIA exception
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030021
	028
	--
	Addition of status of methods to User Interaction interfaces
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030021
	031
	--
	Corrections to User Interaction
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030021
	033
	--
	Correction of User Interaction Event Notification to support non text encodings
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030033
	029
	--
	Inconsistent description of use of secondary callback
	5.1.0
	5.2.0

	Jun 2003
	CN_20
	NP-030238
	035
	--
	Correction of the description for callEventNotify & reportNotification
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030244
	036
	--
	Clarify IpUI sendInfoReq()
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030244
	037
	--
	Update TpUIInfo for consistency with GMS capabilities
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030299
	038
	1
	Specifying the origin of a GUI message
	5.2.0
	5.3.0

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 3

