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4 Generic and Call User Interaction and Administration SCF

4.1 Generic and Call User Interaction SCF 

The Generic User Interaction service capability feature is used by applications to interact with end users. It consists of three interfaces:

1)
User Interaction Manager, containing management functions for User Interaction related issues;

2)
Generic User Interaction, containing methods to interact with an end-user.

3)
Call User Interaction, containing methods to interact with an end-user engaged in a call.

The Generic User Interaction service capability feature is described in terms of the methods in the Generic User Interaction interfaces.

The following table gives an overview of the Generic User Interaction methods and to which interfaces these methods belong.

Table 1: Overview of Generic User Interaction interfaces and their methods

	User Interaction Manager
	Generic User Interaction

	createUI
	sendInfoReq

	createUICall
	sendInfoRes

	createNotification
	sendInfoErr

	destroyUINotification
	sendInfoAndCollectReq

	reportNotification
	sendInfoAndCollectRes

	userInteractionAborted
	sendInfoAndCollectErr

	userInteractionNotificationInterrupted
	Release

	userInteractionNotificationContinued
	userInteractionFaultDetected

	changeNotification
	setOriginatingAddress

	getNotification
	getOriginatingAddress

	enableNotifications
	

	disableNotifications
	


The following table gives an overview of the Call User Interaction methods and to which interfaces these methods belong.

Table 2: Overview of Call User Interaction interfaces and their methods

	User Interaction Manager
	Call User Interaction

	As defined for the Generic User Interaction SCF
	Inherits from Generic User Interaction and adds:

	
	recordMessageReq

	
	recordMessageRes

	
	recordMessageErr

	
	deleteMessageReq

	
	deleteMessageRes

	
	deleteMessageErr

	
	abortActionReq

	
	abortActionRes

	
	abortActionErr

	
	getMessageReq

	
	getMessageRes

	
	getMessageErr


The IpUI Interface provides functions to send information to, or gather information from the user, i.e. this interface allows applications to send SMS and USSD messages. An application can use this interface independently of other SCFs. The IpUICall Interface provides functions to send information to, or gather information from the user (or call party) attached to a call.
4.2 Generic User Interaction Administration SCF 

The Generic User Interaction Administration service capability feature is used by application to interact with the service to manage the user announcement and recorded messages.  It consists of one interface:


1) User Interaction Administration Manager, containing message management functions for User Interaction.

Table 3: Overview of Call User Interaction Administration interfaces and their methods

	User Interaction Administration Manager

	getMessageReq

	putMessageReq

	deleteMessageReq

	

	

	


4.3 Generic User Interaction SCF Design Aspects 

The following clauses describe each aspect of the Generic User Interaction Service and Generic User Interaction Administration Service Capability Feature (SCF). 

The order is as follows:

· The Sequence diagrams give the reader a practical idea of how each of the SCFs is implemented. 

· The Class relationships clause show how each of the interfaces applicable to the SCF, relate to one another. 

· The Interface specification clause describes in detail each of the interfaces shown within the Class diagram part. This clause also includes Call User interaction.

· The State Transition Diagrams (STD) show the transition between states in the SCF. The states and transitions are well-defined; either methods specified in the Interface specification or events occurring in the underlying networks cause state transitions.

· The Data Definitions clause show a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the Common Data types part ES 202 915-2. 

5 Sequence Diagrams

5.1 Generic and Call User Interaction Sequence Diagrams 

5.1.1 Alarm Call 

The following sequence diagram shows a 'reminder message', in the form of an alarm, being delivered to a customer as a result of a trigger from an application. Typically, the application would be set to trigger at a certain time, however, the application could also trigger on events. 
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1:
This message is used to create an object implementing the IpAppCall interface. 

2:
This message requests the object implementing the IpCallControlManager interface to create an object implementing the IpCall interface. 

3:
Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) are met it is created. 

4:
This message instructs the object implementing the IpCall interface to route the call to the customer destined to receive the 'reminder message' 

5:
This message passes the result of the call being answered to its callback object. 

6:
This message is used to forward the previous message to the IpAppLogic. 

7:
The application requests a new UICall object that is associated with the call object. 

8:
Assuming all criteria are met, a new UICall object is created by the service. 

9:
This message instructs the object implementing the IpUICall interface to send the alarm to the customer's call. 

10:
When the announcement ends this is reported to the call back interface. 

11:
The event is forwarded to the application logic. 

12:
The application releases the UICall object, since no further announcements are required. Alternatively, the application could have indicated P_FINAL_REQUEST in the sendInfoReq in which case the UICall object would have been implicitly released after the announcement was played. 

13:
The application releases the call and all associated parties. 

5.1.2 Call Barring 1 

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is accepted and the call is routed to the original called party. 
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1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface. 

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range prompted for a password before the call is allowed to progress.  When a new call, that matches the event criteria set, arrives, a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) are met, other messages (not shown) are used to create the call and associated call leg object. 

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface. 

4:
This message is used to forward the previous message to the IpAppLogic. 

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify. 

6:
This message is used to create a new UICall object. The reference to the call object is given when creating the UICall. 

7:
Provided all the criteria are fulfilled, a new UICall object is created. 

8:
The call barring service dialogue is invoked. 

9:
The result of the dialogue, which in this case is the PIN code, is returned to its callback object. 

10:
This message is used to forward the previous message to the IpAppLogic. 

11:
This message releases the UICall object. 

12:
Assuming the correct PIN is entered, the call is forward routed to the destination party. 

13:
This message passes the result of the call being answered to its callback object. 

14:
This message is used to forward the previous message  to the IpAppLogic 

15:
When the call is terminated in the network, the application will receive a notification. This notification will always be received when the call is terminated by the network in a normal way, the application does not have to request this event explicitly. 

16:
The event is forwarded to the application. 

17:
The application must free the call related resources in the gateway by calling deassignCall. 

5.1.3 Network Controlled Notifications 

The following sequence diagram shows how an application can receive notifications that have not been created by the application, but are provisioned from within the network.  
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1:
The application is started. The application creates a new IpAppUIManager to handle callbacks.  

2:
The enableNotifications method is invoked on the IpUIManager interface to indicate that the application is ready to receive notifications that are created in the network. For illustrative purposes we assume notifications of type "B" are created in the network. 

3:
When a network created trigger occurs the application is notified on the callback interface. 

4:
The event is forwarded to the application.  

5:
When a network created trigger occurs the application is notified on the callback interface. 

6:
The event is forwarded to the application.  

7:
When the application does not want to receive notifications created in the network anymore, it invokes disableNotifications on the IpMultiPartyCallConrolManager interface. From now on the gateway will not send any notifications to the application that are created in the network. 

5.1.4 Prepaid 

This sequence shows a Pre-paid application.  The subscriber is using a pre-paid card or credit card to pay for the call. The application each time allows a certain timeslice for the call. After the timeslice, a new timeslice can be started or the application can terminate the call. In the following sequence the end-user will received an announcement before his final timeslice. 
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1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface. 

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled.  When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) are met, other messages (not shown) are used to create the call and associated call leg object. 

3:
The incoming call triggers the Pre-Paid Application (PPA). 

4:
The message is forwarded to the application. 

5:
A new object on the application side for the Generic Call object is created 

6:
The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber. 

7:
Before continuation of the call, PPA sends all charging information, a possible tariff switch time and the call duration supervision period, towards the GW which forwards it to the network.  

8:
At the end of each supervision period the application is informed and a new period is started. 

9:
The message is forwarded to the application. 

10:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration. 

11:
At the end of each supervision period the application is informed and a new period is started. 

12:
The message is forwarded to the application. 

13:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration.  When the timer expires it will indicate that the user is almost out of credit. 

14:
When the user is almost out of credit the application is informed. 

15:
The message is forwarded to the application. 

16:
The application decides to play an announcement to the parties in this call.  A new UICall object is created and associated with the call. 

17:
An announcement is played informing the user about the near-expiration of his credit limit. 

18:
When the announcement is completed the application is informed. 

19:
The message is forwarded to the application. 

20:
The application releases the UICall object. 

21:
The user does not terminate so the application terminates the call after the next supervision period. 

22:
The supervision period ends 

23:
The event is forwarded to the logic. 

24:
The application terminates the call. Since the user interaction is already explicitly terminated no userInteractionFaultDetected is sent to the application. 

5.1.5 Pre-Paid with Advice of Charge (AoC) 

This sequence shows a Pre-paid application that uses the Advice of Charge feature.  The application will send the charging information before the actual call setup and when during the call the charging changes new information is sent in order to update the end-user. Note that the Advice of Charge feature requires an application in the end-user terminal to display the charges for the call, depending on the information received from the application. 
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1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface. 

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a pre-paid service, it is likely that only new call events within a certain address range will be enabled.  When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) are met, other messages (not shown) are used to create the call and associated call leg object. 

3:
The incoming call triggers the Pre-Paid Application (PPA). 

4:
The message is forwarded to the application. 

5:
A new object on the application side for the Call object is created 

6:
The Pre-Paid Application (PPA) sends the AoC information (e.g. the tariff switch time). (it shall be noted the PPA contains ALL the tariff information and knows how to charge the user). 
During this call sequence 2 tariff changes take place. The call starts with tariff 1, and at the tariff switch time (e.g., 18:00 hours) switches to tariff 2. The application is not informed about this (but the end-user is!) 

7:
The Pre-Paid Application (PPA) requests to supervise the call. The application will be informed after the period indicated in the message. This period is related to the credits left on the account of the pre-paid subscriber. 

8:
The application requests to route the call to the destination address. 

9:
At the end of each supervision period the application is informed and a new period is started. 

10:
The message is forwarded to the application. 

11:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration. 

12:
At the end of each supervision period the application is informed and a new period is started. 

13:
The message is forwarded to the application. 

14:
Before the next tariff switch (e.g., 19:00 hours) the application sends a new AOC with the tariff switch time. Again, at the tariff switch time, the network will send AoC information to the end-user. 

15:
The Pre-Paid Application (PPA) requests to supervise the call for another call duration. When the timer expires it will indicate that the user is almost out of credit. 

16:
When the user is almost out of credit the application is informed. 

17:
The message is forwarded to the application. 

18:
The application creates a new call back interface for the User interaction messages. 

19:
A new UI Call object that will handle playing of the announcement needs to be created 

20:
The Gateway creates a new UI call object that will handle playing of the announcement. 

21:
With this message the announcement is played to the parties in the call. 

22:
The user indicates that the call should continue. 

23:
The message is forwarded to the application. 

24:
The user does not terminate so the application terminates the call after the next supervision period. 

25:
The user is out of credit and the application is informed. 

26:
The message is forwarded to the application. 

27:
With this message the application requests to release the call. 

28:
Terminating the call which has still a UICall object associated will result in a userInteractionFaultDetected. The UICall object is terminated in the gateway and no further communication is possible between the UICall and the application. 

5.2   Generic User Interaction Administration Sequence Diagrams 

5.2.1 Message Administration 

The following sequence diagram shows how an application can manage the user announcement and recorded messages. 
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1:
The application is started. The application creates a new IpAppUIAdminManager to handle callbacks.  

2:
The putMessageReq method is invoked on the IpUIAdminManager interface to create a new pre-defined message for use by sending to the user. 

3:
The putMessageRes response notifies the application of the messageID on the callback interface.

 4:
The response is forwarded to the application logic.

5:
The getMessageReq method is invoked on the IpUIAdminManager interface to retrieve the contents of a user announcement or recorded message.  

6:
The getMessageRes response notifies the application of the contents of a message.

 7:
The event is forwarded to the application.  

6 Class Diagrams

6.1 Generic and Call User Interaction Class Diagrams 

The application generic user interaction service package consists of one IpAppUIManager interface, zero or more IpAppUI interfaces and zero or more IpAppUICall interfaces.
The generic user interaction service package consists of one IpUIManager interface, zero or more IpUI interfaces and zero or more IpUICall interfaces.
The class diagram in the following figure shows the interfaces that make up the application generic user interaction service package and the generic user interaction service package. Communication between these packages is done via the <<uses>> relationships.
The IpUICall implements call related user interaction and it inherits from the non call related IpUI interface. The same holds for the corresponding application interfaces. 
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Figure : Generic User Interaction Package Overview 

6.2 Generic User Interaction Administration Class Diagrams 

The application generic user administration service package consists of one IpAppUIAdminManager interface and one IpUIAdminManager interfaces.
The class diagram in the following figure shows the interfaces that make up the application generic user administration service package. Communication between these packages is done via the <<uses>> relationships.
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Figure: Generic User Administration Package Overview 
8.5 Interface Class IpUICall 

Inherits from: IpUI.
The Call User Interaction Service Interface provides functions to send information to, or gather information from the user (or call party) to which a call leg is connected.  An application can use the Call User Interaction Service Interface only in conjunction with another service interface, which provides mechanisms to connect a call leg to a user. At present, only the Call Control service supports this capability.  















This interface, or the IpUI interface, shall be implemented by a Generic User Interaction SCF as a minimum requirement.  The minimum required methods of interface IpUI shall be implemented. 

	<<Interface>>

IpUICall

	

	recordMessageReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, criteria : in TpUIMessageCriteria) : TpAssignmentID

deleteMessageReq (usrInteractionSessionID : in TpSessionID, messageID : in TpInt32) : TpAssignmentID

abortActionReq (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID) : void

<<new>> getMessageReq (userInteractionSessionID : in TpSessionID, messageID : TpInt32) : TpAssignmentID




8.5.4    Method getMessageReq()

This asynchronous method allows retrieving the recorded message content from the gateway.  This method is applicable only to recorded messages. 

Returns: assignmentID 

Specifies the ID assigned by the user interaction interface for a user interaction request. 

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction. 
messageID : in TpInt32

Specifies the message ID.
Returns

TpAssignmentID

Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_INVALID_NETWORK_STATE,P_ILLEGAL_ID,P_ID_NOT_FOUND
8.6 Interface Class IpAppUICall 

Inherits from: IpAppUI.
The Call User Interaction Application Interface is implemented by the client application developer and is used to handle call user interaction request responses and reports.  

	<<Interface>>

IpAppUICall

	

	recordMessageRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, response : in TpUIReport, messageID : in TpInt32) : void

recordMessageErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

deleteMessageRes (usrInteractionSessionID : in TpSessionID, response : in TpUIReport, assignmentID : in TpAssignmentID) : void

deleteMessageErr (usrInteractionSessionID : in TpSessionID, error : in TpUIError, assignmentID : in TpAssignmentID) : void

abortActionRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID) : void

abortActionErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

<<new>> getMessageRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, message : in TpUIInfo) : void

<<new>> getMessageErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void




8.6.7 Method getMessageRes()

This method returns the message content if the message was retrieved successfully. 

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction. 
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
message : in TpUIInfo

Specifies the UI Information containing the message content information. 

8.6.8 Method getMessageErr()

This method indicates that the request to retrieve a message was not successful.  

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction. 
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing. 
8.7      Interface Class IpUIAdminManager 

The Generic User Interaction Administration Manager Service interface is used by applications to manage user announcement and recorded messages on the gateway.  This Service is represented by the IpUIAdminManager interface that interfaces to the service provided by the network. To handle responses and reports, the developer must implement IpAppUIAdminManager interface to provide the callback mechanism.

The application context will ensure that one application doesn’t interfere with the messages of another application.
The User Interaction Administration Manager Service Interface provides functions to manage the messages.    

	<<Interface>>

IpUIAdminManager

	

	getMessageReq (usrInteractionSessionID : in TpSessionID, messageID : in TpInt32) : TpAssignmentID

putMessageReq (usrInteractionSessionID : in TpSessionID, info : in TpUIInfo) : TpAssignmentID

deleteMessageReq (usrInteractionSessionID : in TpSessionID, messageID : in TpInt32) : TpAssignmentID




8.7.1    Method getMessageReq()

This asynchronous method allows retrieving the user announcement or recorded message content from the gateway. 

Returns: assignmentID 

Specifies the ID assigned by the user interaction interface for a user interaction request. 

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction. 
messageID : in TpInt32

Specifies the message ID.
Returns

TpAssignmentID

Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_INVALID_NETWORK_STATE,P_ILLEGAL_ID,P_ID_NOT_FOUND
8.7.2     Method putMessageReq()

This asynchronous method allows putting a user announcement message content onto the gateway. The gateway will allocate the messageID and return it to the application on the putMessageRes() confirmation.  

Returns: assignmentID 

Specifies the ID assigned by the generic user interaction interface for a user interaction request. 

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
info : in TpUIInfo

Specifies the information to send to the user. This information can be either an ID (for pre-defined announcement or text), a text string, or an URL (indicating the information to be sent, e.g. an audio stream). 
Returns

TpAssignmentID

Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_ILLEGAL_ID,P_ID_NOT_FOUND
8.7.3    Method deleteMessageReq()

This asynchronous method allows deleting a user announcement or recorded message.

Returns: assignmentID 

Specifies the ID assigned by the generic user interaction interface for a user interaction request. 

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
messageID : in TpInt32

Specifies the message ID.
Returns

TpAssignmentID

Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_ILLEGAL_ID,P_ID_NOT_FOUND
8.8   Interface Class IpAppUIAdminManager 

The User Interaction Administration Manager Application Interface is implemented by the client application and is used to handle administration user interaction request responses and reports.  

	<<Interface>>

IpAppUIAdminManager

	

	getMessageRes (usrInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, message : in TpUIInfo) : void

getMessageErr (usrInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

deleteMessageRes (usrInteractionSessionID : in TpSessionID, response : in TpUIReport, assignmentID : in TpAssignmentID) : void

deleteMessageErr (usrInteractionSessionID : in TpSessionID, error : in TpUIError, assignmentID : in TpAssignmentID) : void

putMessageRes (usrInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, messageID : in TpInt32) : void

putMessageErr (usrInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void




8.8.1 Method getMessageRes()

This method returns the message content if the message was retrieved successfully. 

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction. 
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
message : in TpUIInfo

Specifies the UI Information containing the message content information. 

8.8.2 Method getMessageErr()

This method indicates that the request to retrieve a message was not successful.  

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction. 
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing. 
8.8.3 Method deleteMessageRes()

This method indicates that the request to delete a message was successful. 

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
response : in TpUIReport

Specifies the type of response received from the device where the message was stored. 
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
8.8.4 Method deleteMessageErr()

This method indicates that the request to delete a message was not successful. 

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.
error : in TpUIError

Specifies the error which led to the original request failing.
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
8.8.5 Method putMessageRes()

This asynchronous method confirms that the request to put the message content was successful.  

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction. 
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
messageID : in TpInt32

Specifies the message ID that was allocated by the gateway.
8.8.6 Method putMessageErr()

This asynchronous method indicates that the request to put the message content resulted in an error.

Parameters

usrInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction. 
assignmentID : in TpAssignmentID

Specifies the ID assigned by the user interaction interface for a user interaction request.
error : in TpUIError

Specifies the error which led to the original request failing. 
9.4 State Transition Diagrams for IpUIManagerAdmin
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Figure : State Transition Diagram for User Interaction Administration 

9.4.1 Active State

In this state, a relation between the Application and the Generic User Interaction Administration Service Capability Feature has been established. It allows the application to make specific requests of the service.
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