joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030580

Meeting #25, Bangkok, THAILAND, 27 - 31 October 2003

Source:
Ultan Mulligan, ETSI PTCC
Title:
Changing TpOctetSet to mean List of TpOctet

Agenda Item:
OSA2 (3GPP Rel-5 / Parlay 4 / ETSI OSA 2)

OSA1 (3GPP Rel-4 / Parlay 3 / ETSI OSA 1)

Document for:
Discussion
1.
Problem

A number of times over the past 6 months, our attention has been brought to the following:

TpOctetSet is defined as "a Numbered Set of Data elements of TpOctet".

A Numbered Set of Data Elements is defined as "a data type which comprises an integer which indicates the total number of data elements in the set (the number part), and an unordered set of data elements (the data part). Set data types do not contain duplicate data elements."

A Numbered List of Data Elements is defined as "a data type which comprises an integer which indicates the total number of data elements in the set (the number part), and an ordered set of data elements (the data part). List data types can contain duplicate data elements. "

TpOctetSet is , among other things, the type used to carry input or output of our encryption and authentication methods. Clearly, an unordered type which cannot contain duplicate data elements is not suitable for use in this case.

In fact, in all cases where TpOctetSet is used in the APIs, TpOctetList, i.e. a Numbered List of TpOctet, should have been used. This is one of the most misleading parts of our specifications as they are currently written.

2.
Proposed Solution

We have a choice of solution:

We could create a new type TpOctetList, defined as a Numbered List of TpOctet, and replace each current use of TpOctetSet with TpOctetList. This would align the specification with other uses of Tp...Set and Tp...List types. But this could introduce many cases of backwards incompatibility in the specifications.

Alternatively, we could redefine TpOctetSet to mean the same as a TpOctetList. To ensure that this type is used correctly, we could also introduce a TpUnorderedOctetSet, which would contain the current definition of TpOctetSet. At present there is no use for this type, but creating it now might prevent a new incorrect use of TpOctetSet (using it where an unordered set is required).

The second proposal has been developed into CRs for part 2 (Release 4 and Release 5).

3.
Consequences of Solution

The only part of the specification that would require changing, under the second proposal above, is part 2, in the Word document.

In the IDL, Numbered Set of Data Elements, and Numbered List of Data Elements, both resolve to the same thing (a sequence of <data element>):

typedef sequence <TpString> TpStringList;

typedef sequence <TpString> TpStringSet;

Therefore no change is required in the IDL if TpOctetSet is redefined.

In the WSDL, likewise both types resolve to the same thing - a sequence of the base data element (albeit with a strange element name):

<xsd:complexType name="TpStringList">

<xsd:sequence>

<xsd:element name="TpStringList" type="osaxsd:TpString" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="TpStringSet">

<xsd:sequence>

<xsd:element name="TpStringSet" type="osaxsd:TpString" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>
So, again no change is required in the WSDL if TpOctetSet is redefined.

In the Java APIs, for J2SE, J2EE Local and J2EE Remote, Numbered Sets of Data Elements and Numbered Lists of Data Elements resolve to arrays (TpOctetSet, or even TpOctet, do not exist in the Java code).

Therefore, there should be no backwards compatibility issue with any implementation based on the IDL, WSDL or Java files included in the specification.

4.
Where is TpOctetSet used?

Part 3 (Framework):

IpClientAPILevelAuthentication.authenticate (challenge : in TpOctetSet) : TpOctetSet

IpClientAPILevelAuthentication.challenge (challenge : in TpOctetSet) : TpOctetSet

IpClientAccess.terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpOctetSet) : void

IpAPILevelAuthentication.authenticate (challenge : in TpOctetSet) : TpOctetSet

IpAPILevelAuthentication.challenge (challenge : in TpOctetSet) : TpOctetSet

IpAccess.terminateAccess (terminationText : in TpString, digitalSignature : in TpOctetSet) : void

IpAccess.relinquishInterface (interfaceName : in TpInterfaceName, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

IpAppServiceAgreementManagement.signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm) : TpOctetSet

IpAppServiceAgreementManagement.terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

IpServiceAgreementManagement.terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

11.3.10
TpSignatureAndServiceMgr

This is a Sequence of Data Elements containing the digital signature of the Framework for the service agreement, and a reference to the SCF manager interface of the SCF.

	Sequence Element Name
	Sequence Element Type

	DigitalSignature
	TpOctetSet

	ServiceMgrInterface
	IpServiceRef

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application.

The ServiceMgrInterface is a reference to the SCF manager interface for the selected SCF.

Part 4-1 (Common Call Control Data Types):

6.3
TpCallChargePlan

Defines the Sequence of Data Elements that specify the charge plan for the call.

	Sequence Element Name
	Sequence Element Type
	Description

	ChargeOrderType
	TpCallChargeOrderCategory
	Charge order

	TransparentCharge
	TpOctetSet
	Operator specific charge plan specification, e.g. charging table name / charging table entry. The associated charge plan data will be send transparently to the charging records.

Only applicable when transparent charging is selected.

	ChargePlan
	TpInt32
	Pre-defined charge plan. Example of the charge plan set from which the application can choose could be : (0 = normal user, 1 = silver card user, 2 = gold card user).

Only applicable when predefined charge plan is selected.

	AdditionalInfo
	TpOctetSet
	Descriptive string which is sent to the billing system without prior evaluation. Could be included in the ticket.

	PartyToCharge
	TpCallPartyToChargeType
	Identifies the entity or party to be charged for the call or call leg.

	PartyToChargeAdditionalInfo
	TpCallPartyToChargeAdditionalInfo
	Contains additional information regarding the charged party.

Part 4-3 (Multi Party Call Control):

9.2.47
TpCarrierID

This data type is identical to a TpOctetSet. For encoding of the field, depending on the network, either ITU-T Recommendation Q.763 or ANSI ISUP T1.113 applies.

Part 5 (User Interaction):

11.17
TpUIInfo

Defines the Tagged Choice of Data Elements that specify the information to send to the user.

	
	Tag Element Type
	

	
	TpUIInfoType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_UI_INFO_ID
	TpInt32
	InfoId

	P_UI_INFO_DATA
	TpString
	InfoData

	P_UI_INFO_ADDRESS
	TpURL
	InfoAddress

	P_UI_INFO_BIN_DATA
	TpOctetSet
	InfoBinData

	P_UI_INFO_UUENCODED
	TpString
	InfoUUEncData

	P_UI_INFO_MIME
	TpOctetSet
	InfoMimeData

	P_UI_INFO_WAVE
	TpOctetSet
	InfoWaveData

	P_UI_INFO_AU
	TpOctetSet
	InfoAuData

The choice elements represent the following:

InfoID:
defines the ID of the user information script or stream to send to an end-user. The values of this data type are operator specific.

InfoData:
defines the data to be sent to an end-user's terminal. The data is free-format and the encoding is depending on the resources being used.

InfoAddress:
defines the URL of the text or stream to be sent to an end-user's terminal.

InfoBinData:
defines the binary data to be sent to an end-user's terminal. The data is a free-format, 8-bit quantity that is guaranteed not to undergo any conversion when transmitted.

InfoUUEncData:
defines the UUEncoded data to be sent to an end-user’s terminal.

InfoMimeData:
defines the MIME data to be sent to an end-user’s terminal.

InfoWaveData:
defines the WAVE data to be sent to an end-user’s terminal.

InfoAuData:
defines the AU data to be sent to an end-user’s terminal.

11.27
TpUIEventNotificationInfo

Defines the Sequence of Data Elements that specify a UI event notification

	Structure Element Name
	Structure Element Type
	Structure Element Description

	OriginatingAddress
	TpAddress
	Defines the originating address.

	DestinationAddress
	TpAddress
	Defines the destination address.

	ServiceCode
	TpString
	Defines a 2-digit code indicating the UI to be triggered.
The value is operator specific.

	DataTypeIndication
	TpUIEventInfoDataType
	Identifies the type of contents in UIEventData

	UIEventData
	TpOctetSet
	Freely defined data according to the network policy.

e.g 7 bit USSD encoded

Part 12 (Charging)

11.1.22
TpChargingParameterValue

Defines the Tagged Choice of Data Elements that identify a charging parameter.

	
	Tag Element Type
	

	
	TpChargingParameterValueType
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_CHS_PARAMETER_INT32
	TpInt32
	IntValue

	P_CHS_PARAMETER_FLOAT
	TpFloat
	FloatValue

	P_CHS_PARAMETER_STRING
	TpString
	StringValue

	P_CHS_PARAMETER_BOOLEAN
	TpBoolean
	BooleanValue

	P_CHS_PARAMETER_OCTETSET
	TpOctetSet
	OctetValue

Part 14 (PAM)

11.7.1
TpPAMCredential

This is the same as TpOctetSet. This data is opaque to the application and is implementation dependent. As this data is valid only in the context of a single session with the service and hence cannot be used across multiple services, there are no inter-operability issues here. The application simply uses the credential returned from the getAuthToken() method in all other methods that require the credentials.

