Joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030569

Meeting #25, Bangkok, THAILAND, 27 - 31 October 2003

Source:
Musa Unmehopa (mailto:unmehopa@lucent.com)
Title:
Review feedback on GMS Extensions in N5-030551

Agenda Item:
OSA3 (3GPP Rel-6 / Parlay 5 / ETSI OSA 3)

Document for:
Decision
Introduction

Lucent Technologies has had the opportunity to review N5-030551 “ES 202 915-9: Correct GMS Messaging Problems”. The next section in this paper will provide some detailed feedback on the material presented in N5-030551. Lucent Technologies kindly requests the meeting to discuss these issues and decide on a disposition.

Detailed Feedback

The 6 issues in N5-030551

The contribution N5-030551 itself does not contain a description or summary of the changes, however the e-mail that accompanied its submission (distributed by Erwin van Rijssen on 8-10-2003 to 3GPP_TSG_CN_WG5_JOINTAPIWORK@LIST.ETSI.ORG) listed 6 issues. We have copied these here for convenience:

1. Textual clarifications to some of the method explanations, to make it easier for the users of the specification to understand what the different methods do.

2. Refine the definition of datatype TpMessageHeader, to faciltate the usage of message headers

3. Additional parameter bodyPartHeaders in method getMessageBodyPartRes()

4. New asynchronous method getMessageBody to retrieve the raw body of a message. In this way we will have the following methods for retrieving (particular parts of) the message:

· getMessageContent: retrieve the entire, raw message

· getMessageProperties: retrieve some basic information of the message

· getMessageHeaders: retrieve the headers of the message

· getMessageBody: retrieve the raw body of the message

· getMessageBodyPartProperties: retrieve a list that shows what body parts are contained in the message (i.e. showing the nesting of body parts)

· getMessageBodyPart: retrieve one of the body parts contained in the message

5. Change TpTerminatingAddressList into TpMessageInfoPropertySet (in the method sendMessageReq)

6. Clarifying text explaining the difference between sendMessageRes() and messageDeliveryNotification()

Lucent feedback on the 6 issues

In this section we will itemize our feedback according to the above itemized list of 6 issues.

1. Approve.

2. On this issue we would like to kindly request additional information before we are in a position to provide our opinion and decision. We think, in essence, N5-030551 is defining a list of properties to be part of a message header. However, the way the document is edited makes it difficult to understand exactly what is being proposed. Particularly, section 10.2.35 has no title, save for a single sentence, section 10.2.36 has no content, and the table entitled TagElementType has only a single entry, "TpMessagePropertySet," leaving the meaning of this data in question. Request clarification.

3. Approve.

4. Lucent feels that getMessageHeaders and getMessageBody together duplicate getMessageContent. Lucent Technologies is concerned with each of these little additions that duplicate behaviour and introduces redundancy in our specification set. Not approve.

5. Although Lucent does feel that this change improves the interface spec for sendMessgeReq, in N5-030550 we do not approve with the introduction of sendMessageReq in the first place (see issue 19 in N5-030550). Not approve.

6. Approve.

Feedback on the responses to Open API Solution questions

The afore-mentioned e-mail then continues to provide answers to issues raised by Open API Solutions and Lucent. Regarding IpMessagingManager.sendMessageReq, N5-030551 states that since GMS is meant to be generic messaging API, and that it should support more than just mailbox oriented messaging. This is in contradiction with the very first sentence in N5-030551, which states the following “The Generic Messaging Service provides generalized message mailbox support for multimedia messages ”.

Lucent Technologies believes this goes against the principle that the mailbox paradigm should be strongly defended. We feel that extending the focus of GMS to beyond the mailbox paradigm will introduce unwanted redundancy between GMS and UI.

To further support this claim, below we provide two excerpts from the UI SCF specification and the GMS SCF specification:

From the UI spec (section 4):

"The IpUI Interface provides functions to send information to, or gather information from the user, i.e. this interface allows applications to send SMS and USSD messages. An application can use this interface independently of other SCFs. The IpUICall Interface provides functions to send information to, or gather information from the user (or call party) attached to a call."

From the GMS spec (section 8):

"The Generic Messaging Service interface (GMS) is used by applications to send, store and receive messages. GMS has voice mail and electronic mail as the messaging mechanisms. The messaging service interface can be used by both. A messaging system is assumed to have the following entities:

· Mailboxes. This is the application's main entry point to the messaging system. The framework may or may not need to authenticate an application before it accesses a mailbox

· Folders. A mailbox has at least the inbox and the outbox as folders. The name of the inbox is "INBOX", and the name of the outbox is "OUTBOX". These folders may have sub-folders. The names of these sub-folders are appended to their parents' names with '/' as the delimiter. For instance, if there is a sub-folder in INBOX called 'Personal' and a sub-folder in that folder called 'archive' then the fully qualified names, which are required for all operations, of the four folders are 'INBOX', 'OUTBOX', 'INBOX/Personal', and 'INBOX/Personal/archive'. The names are case sensitive. A messaging service may have other folders other than the inbox and the outbox.

· Messages. Messages are stored in folders. Messages usually have properties associated with them. The GMS is represented by the IpMessagingManager, IpMailbox, IpMailboxFolder and IpMessage interfaces to services provided by the network. To handle responses and reports, the developer must implement IpAppMessagingManager to provide the callback mechanism for the Messaging service manager."

Summary

In conclusion, Lucent Technologies strongly believe the mailbox paradigm should remain the cornerstone of the GMS SCF. Lucent Technologies believe that it is simply too late in the game to make these kinds of rigorous and impacting changes to the intent and philosophy of this SCF. We strongly support the re-design efforts in a much-needed attempt to correct deficiencies and shortcomings in the GMS specification, but persist that this should be undertaken within the confines of the original paradigm.

