joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030363

Meeting #24, San Francisco, CA, USA, 14 - 18 July 2003

Source:
AePONA (Eamonn Murray)
Title:
OSA 1,2: Application High Availability Discussion (email thread)

Agenda Item:
5,6 OSA Version 1,2

Document for:
Information
Category:
Fault

Work Item ID:
OSA1 (ETSI ver.1, Parlay 3, 3GPP Rel-4)

OSA2 (ETSI ver.2, Parlay 4, 3GPP Rel-5)

Doc Summary:
Summary of email discussion on the application high

availability issue following CN5#23 (San Diego).

Specs involved:
See N5-030192

References:
See N5-030354 (San Francisco) and N5-030192 (San Diego)

Overview:

AePONA and IBM submitted several contributions to CN5#23 in San Diego that identified problems in supporting application high availability with the current APIs. At the San Diego meeting, a discussion on this topic took place, including the drafting of requirements or principles that should be considered in satisfactorily resolving this issue. No decisions were agreed during San Diego, and the meeting recommended that further email discussion should take place and that the topic would be further discussed during the San Francisco meeting.

This document outlines the email discussion that took place, post San Diego, via the email exploder. The full email text is repeated below, as it provides an accurate reflection of the current thinking, and also lists the requirements or principles that were drafted during the San Diego meeting. No decisions have been reached as a result of the email discussion.

This information is presented as input to the San Francisco meeting in order to recap on the discussions thus far.

Scott,

Thanks for replying and getting the ball rolling. I think broadly we share
many of the same concerns and have observed the same issues with the
APIs as they exist today. I have added some comments inline below.

Regards

Eamonn

Scott Broussard wrote:

Eamonn, as we discussed last week, I think in order to make good progess on
the complex issues around recovery that determing the approach to this
problem is important. I had drafted this note prior to receiving your
recent note and document, so don't take this as a direct response to that
note.

1) Get agreement within the JWG of the design requirements and decision
points for the level of recovery support within the Parlay API. Is there
already a recovery requirements statement? We should update it with the
appropriate specifics.

EM: I agree that we need to reach quick agreement within JWG on requirements and scope. I dont
believe that there is an existing statement in this area.

2) Make a list of problems that would need to be addressed.
3) Determine if any tactical solutions can be integrated into Rel-5, and
which strategic solutions should be made in Rel-6.

EM: I believe we should only propose and consider tactical solutions that are
also carried forward consistently with an overall strategic solution. We should
not consider introducing something into a release only for it to disappear in a
later release.

From the white board discussion on Recovery Requirements (reordered):

1) The High Availability solution must provide stable and continuous
operation across a failure recovery.

EM: I took a slightly different note on this point. Specifically the issue was that the existing
SCSs would operate conistently and without modification of behaviour whether they were
HA enabled and deployed, or not. Likewise this would equally apply to applications. The HA
solution must therefore be non-intrusive to the existing functionality. I think the point above is
valid, although perhaps a result of a correct realisation of the HA solution we decide upon.

2) Determine the levels of functionality, and if the solution restricted by
binary compatibility requirement, and the phases of implementation?
3) Need to determine the mode of operation (failover vs. load sharing)?
4) Redundancy of Parlay Managers and callbacks (and possibly other objects
that are long-lived objects) is necessary for continuous support.
5) How Many levels of redundancy should be supported (primary/secondary
only, or n-ary backups), or in other words how many concurrent failures can
be tolerated?
6) How will redundant callbacks/objects be specified (implicitly which is
compatible with current semantics and interfaces, or explicitly which would
require some extra parameters on certain methods)?
7) Bi-directional recovery model should be supported, meaning that not only
the client application can have backups, but also the gateway service
managers and framework can have backups?
8) How is recovery enabled?
 - What is the time/opportunity allowance mechanism for either system
to recover, without the other system terminating?
 - Does the FW need to have knowledge of all service managers and
SCSs?
 - Does the FW need to be notified when the client app or SCS is in a
recovery state?
 - At what points does security need to be enforced?

EM: I think I also noted another point (but perhaps you have combined this in those above).
Is the same level of redundancy required for all elements of the OSA solution. For example
to the same requirements apply for Applications, Framework and SCSs and the various
peer-peer relationships that can be established between these actors.

Some thoughts and proposed answers to these questions:

1) yes.
2) Document the recovery intentions of the current release and provide an
initial set of fixes that maintain binary compatibility for existing
methods, and then provide extended functionality in a new release. The
recovery fixes should be independent of transport techology (CORBA, Web
Services, RMI), therefore features like persistent IORs, fault-tolerant
CORBA, of features of particular ORBs or application servers should not be
leveraged.

EM: I agree with this.

3) All long lived objects should provide failover capabilities, but only
some of them may benefit from load sharing semantics. The failover
capabilities should be provided as a separate workitem from load sharing.

EM: I think it is very difficult to consider all the use cases and requirements for load sharing
without understanding all the potential deployment configurations that operators may choose. I think
what we can be sure of is that there will be a very wide range of deployment requirements, and whilst
I think that it is OK to separate the failover and load sharing into seperate work items, we must
ensure that any proposed solution in either area does not preclude for support in the other.

4) We should clearly define the object interfaces (for both client and
server side) that need redundancy and those that don't.

EM: I agree, and I think the table below is a good start and a vehicle for on-line drafting. However
we should ensure we stick to class names (IpServiceAgreementManagement) and also consider
the FW-SCS interface for completeness if required.

5 & 6) The current semantics imply implicit ordering primary/secondary of
some callbacks. For compatibility, we should complete the implicit
ordering of primary/secondary callbacks for all necessary objects. Then,
as a second level of work, provide n-ary explicit ordering. The key
question here is binary compatiblity. If binary compatibility is
necessary, then well-defined comprehensive implicit ordering of
primary/secondary callbacks can be implemented. If binary compatibility is
not a requirement, then explicit ordering and/or n-ary callbacks can be
implemented.

EM: I much prefer an explicit scheme that avoids any confusion for any development party and
prevents an exhaustive discussion on the merits of the English language as a specification tool. I
think the issue of backward compatibility is a little elastic here, as to my mind I dont see the
benefit in insisting on backward compatibility for a feature that is currently unworkable. At a
method level we can maintain backward compatibility but overall the current solution is not
workable. This would indicate that there are very few implementations existing today that are
using this 'feature' of the API.

7) As part of the list of objects needing redundancy and or minimally just
recoverability, both client and server side objects should be analysed.

Redundancy is necessary where there are a potentially large number of
callbacks that would need to be recovered in the event of a failure and
presumably this processing would take time (such as call notifications), so
redundancy is necessary for continuity of coverage. Conversely, some
objects can be recovered quickly and with priority in the event of a
failure, such as SCS Manager callbacks and Framework callbacks, so these
callbacks don't absolutely need to be redundant, but they certainly have to
be recoverable.

EM: I agree with this to a point, but think it is dangerous to talk in terms of SCS Manager callbacks
being recoverable but not neccessarily redundant. To my mind redundancy provides a capability
within the solution to have additional resource to call upon when required. There may be scenarios
where this feature is desirable for SCS manager callbacks - we shouldnt preclude implementations
from being able to support this. On the other hand being recoverable, ensures that a temporary
failure can occur and implementations may select appropriate course of actions in the knowledge that
at some point in the future the capability will return.

8) The client should notify the FW Fault Manager when it is in the process
of recovering callbacks, and notify the FW when it is complete so that they
framework doesn't terminate the client during this recovery period. The FW
already has a mechanism to notify the client through the Fault Manager
interface when a service is unavilable, it might need enhancement to notify
the client that a server has failed, but the services are recovering on
another machine, so that the client can utilize the backup service manager
objects and retrieve new references. Each client and SCS should uniquely
gain access to the Framework and maintain a unique set of FW interface
callbacks. Security should occur at the requestAccess() point, and the
client application is responsible to store the IpAccess reference, FW and
SCS Manager references in a secure location (memory or database),
therefore, security is ensured.

EM: This highlights the tight coupling between whatever we decide upon and the integrity management
and access session discussions that have taken place recently. I think we also need to ensure we
consider security. A recent publication from Xtradyne discussed areas where the current Parlay
security mechanism are weak, so we should think carefully before introducing additional threats.

9) Also, As part of this work we should determine if it is desireable to
split IpService, into IpServiceManager and IpServiceSession, and leave
IpService as an empty interface, and make sure that all other objects
properly inherit, so that setCallback() and setCallbackWithSessionID() are
not mutually exclusive in the same interface.

EM: I think it would help to identify which interfaces are session based and those that are not
to ensure that the API is consistent. If there is agreement on this approach at least we shall
then be sure that we arent introducing further complications.

Objects that need to be recoverable and/or redundant:

	Interface
	Recoverability and Redundancy Requirement

	IpAccess, IpClientAccess, IpClientAPILevelAuthentication
	Recoverable

	IpFaultManager, IpAppFaultManager
	recoverable (possibly redundant)

	IpLoadManager, IpAppLoadManager
	recoverable

	IpHeartbeatMgmt, IpAppHeartbeatMgmt
	recoverable

	IpOAM, IpAppOAM
	recoverable

	IpServiceAgreementManagement
IpAppServiceAgreementManagement
	recoverable

	IpEventNotification,
IpAppEventNotification
	recoverable

	IpServiceDiscovery
	recoverable

	TpSignatureAndServiceManager
	recoverable and redundant

EM: Can you explain the rationale for IpSeviceAgreementManagement being redundant, or am I
misinterpreting this?

	IpSvcXXXXX, IpFwXXXXX
	TBD

	IpCallControlManager
	recoverable and redundant

	IpAppCallControlManager (setCallback)
	recoverable and redundant

	IpAppCallControlManager (enableCallNotification)
	recoverable and redundant

	IpMultiPartyCallControlManager
	recoverable and redundant

	IpAppMultiPartyCallControlManager
(setCallback)
	recoverable and redundant

	IpAppMultiPartyCallControlManager
(enableCallNotification)
	recoverable and redundant

	Etc.
	TBD

Problems / Proposed Solutions:

1) IpClientAccess and IpClientAPILevelAuthentication can not be recovered
without terminating and re-authenticating, which invalidates all other
callbacks. A new method IpAccess.setAccessCallback() should be provided.

EM: Not sure I understand the justification for terminating an existing access session. The ability to
re-authenticate to an existing access session exists. During recovery an indication of recovery
should therefore be sufficient to refresh callbacks.

2) All assignment-oriented manager callbacks can not have a new callback
set without calling the create/enable API again, a
setCallbackWithAssignmentID() method is necessary on IpService (or
potentially IpServiceManager).

EM: Again a refresh mechanism on the appropriate Manager may be sufficient.

3) Non-assignment-oriented managers don't support redundancy or removal of
the manager callback. setCallback() should be updated to specify the
redundancy and removal semantics.

EM: I agree we need to look at the semantics but not just of the callback methods but also the
use and meaning of sessions and assignments and their relationship with HA. For example the
mobility SCS uses session IDs (called assignmentIDs for confusion), irrespective of whether
a single shot or triggered/periodic invocation is carried out. I think that the triggered and
periodic mechanisms are in some ways more like a 'notification' mechanism. I think the restriction
on only using either setCallBack or setCallBackWithSessionID also complicates the
behaviour.

4) If explicit ordering or n-ary backup support is desired, then a position
parameter needs to be provided on the appropriate setCallbackXXX methods,
and create/enable methods.

5) Service Manager objects returned in TpSignatureAndServiceManager are not
redundant. TpSignatureAndServiceManager should be updated to include a set
of IpService objects. Also, the FaultManager should be updated to provide
notifications for when an IpService reference becomes invalid.

EM: Is this requirement purely to avoid a middleware only solution. I think the current 1:1 relationship
rule will become very 'subjective' if we make all of these changes and dont include sufficiently
clear descriptions on behaviour.

6) The IpFaultManager interface should provide a mechanism for the client
to notify the framework that a recovery process is proceeding, so that the
Framework heartbeat or other error condition doesn't prematurely terminate
the client. The framework should have a way to determine of the clients
framework is functioning through the Fault Interface. This is slightly
different than a heartbeat. If no on-going heartbeat is setup, but a
failure occurs on the client, the service framework can determine if the
client's redundant framework callback is alive, before terminating.

7) Each client application and SCS should have a unique IpAccess session,
so that integrity management works.

8) Policy and PAM don't follow the typical design patterns and so
therefore, there may be recovery problems. More research is necessary.

9) All objects from SCSs inherit from IpService, but some are session
objects and others are manager objects. The IpService methods are mutually
exclusive. Also, none of the framework objects inherit from IpService, but
perhaps some (like integrity management) should?

10) Also, if an SCS Service Manager is redundant, and its callbacks are
redundant, it should be clearly stated that the app has to setup the
primary and secondary callback on the each service manager. Therefore,
with 2 managers and 2 callbacks, there needs to be 4 API calls. What if
there are n-ary? Is it n-squared API calls?

What other problems exist?

In order to address these problems effectively, there needs to be some
serious project management to ensure decisions are made, and drive the
various issues to resolution. Also, I'm not sure what kind of system
design documents are necessary for these broad scope changes.

EM: I agree that we need a clear plan to work towards.

