joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030360

Meeting #24, San Francisco, CA, USA, 14 - 18 July 2003

Source:
Ultan Mulligan, ETSI Secretariat
Title:
Implementing Backwards Compatibility Rules

Agenda Item:
10, 11.6
Document for:
Decision
Summary

When the backwards compatibility process was introduced, we indicated that we would maintain deprecated methods in the specification for one full release.

With the preparation of Parlay 5.0, it is time now to decide what to do with those methods deprecated in Parlay 4.0.

4 alternative approaches are offered, with varying consequences on our specifications. One needs to be chosen.

Introduction

Our backwards compatibility mechanisms have been in operation for at least one year so far, and appear to be working well. We have a clear set of rules identifying what it is we can and cannot change in our specifications to ensure old applications can work with new versions of SCFs. We have a number of deprecated methods in most specifications, identified by the <<deprecated>> stereotype, and clearly identify new methods with a <<new>> stereotype.

In BT document N5-020445 (attached), from May 2002 (Budapest), and in the corresponding discussion recorded in the Budapest meeting minutes, the question was raised of how long to maintain the old <<deprecated>> methods and the <<new>> stereotypes associated with any new methods. It was decided then that we should keep the old methods for 1 full release.

Discussion on 445:

"Issue 3: We need to address how long we maintain BC between releases. If we do a level 3 fix to correct a key bug, do we keep the wrong part of the API forever? Or do we allow ourselves new versions, dumping the wrong parts, every now and then? In Java, for example, a corrected method stays for 18 months, when it finally disappears from the specification. This is related to the process, as in the following issue.

Richard proposes that we keep the wrong (deprecated) part for one release in Parlay and one release in ETSI (not sure if this will apply to 3GPP).

Agreed that this would apply to 3GPP too. Richard’s proposal is agreed."

The Parlay White Paper on backwards compatibility (N5-020422, from the same meeting, attached) seemed to give some indication as to what maintaining BC for one full release means:

"Shall we ensure backwards compatibility “forever”, or only for one major release? Consequence of limiting the scope of backwards compatibility would be the introduction of a deprecation mechanism. [Ed. Single implementation backwards compatibility, I think, should be for either a minor release. If backwards compatibility is for one major release, consider a 3.0 method that needs to be changed. The method will be marked deprecated in 3.1, 4.0 and 4.1, and only be purged in 5.0. That’s a long time (2 years?) to carry an old method. If it’s for a minor release, it would be purged in 4.0 (about 1 year?)."
How long to maintain deprecated methods?

The example given above in the Parlay White Paper is built on the assumption that Parlay 4.0 is later in time than any Parlay 3.x version, and similarly Parlay 5.0 is later in time than any Parlay 4.x version. If this were the case, we could follow this rule quite simply.

But in our case, Parlay 3.3 appeared after Parlay 4.0, and corresponds in time to Parlay 4.1. Therefore, deleting in Parlay 5.0 all Parlay 3.x deprecated methods would mean deleting methods which have been deprecated for the first time in Parlay 3.3, i.e. deprecated for the first time last March. This is clearly not acceptable.

Nor is it acceptable to attempt to count the time that deprecated methods remain in the specification.

Some alternatives present themselves:

Choices:

Alternative 1:

In Parlay 5.0, we remove any methods tagged as <<deprecated>> in Parlay 4.0, and remove the <<new>> tags from any <<new>> methods in Parlay 4.0. Anything which was deprecated or added after Parlay 4.0, retains their deprecated or new status for all of Parlay 5.

For Parlay 6.0, we remove any method tagged as <<deprecated>> in Parlay 5.0, and remove the <<new>> tags for any <<new>> methods in Parlay 5.0. This is where we get rid of those methods deprecated in Parlay 4.1, 4.2 (and 3.3, since that corresponds to 4.1 in time) etc.

We only remove deprecated methods and <<new>> stereotypes on a major release, never on a minor release.

Alternative 2:

In Parlay 5.0, we remove any methods tagged as <<deprecated>>, and remove the <<new>> tags from any <<new>> methods in the spec prior to Parlay 4.0 (in our case, Parlay 3.2).
For Parlay 6.0, we remove any method tagged as <<deprecated>> and remove the <<new>> tags from any <<new>> methods in the spec prior to Parlay 5.0 (in our case, Parlay 4.1).

Again, we only remove deprecated methods and <<new>> stereotypes on a major release, never on a minor release.

Alternative 3:

A mix of both: use the timescale in Alternative 1 to remove the <<new>> tags, and use the timescale in Alternative 2 to remove the deprecated methods. So the <<new>> tags get removed faster than the deprecated methods.

Alternative 4:

Do nothing. Reverse our earlier decision. Preserve backwards compatibility absolutely by never deleting methods.

Consequences

Consequences of Alternative 1:

Methods remain in the specification for at least one full release.

The methods which get deleted fastest are those which are in an x.0 release. I.e. Parlay 4.0 deprecated methods are deleted in Parlay 5.0. Parlay 4.1, Parlay 4.2 deprecated methods are deleted in Parlay 6.0. But if Parlay 4.3 is issued, it will appear later than Parlay 5.0 (which appears with Parlay 4.2), so any methods newly deprecated in 4.3 will not have been deprecated in 5.0, and so will not be deleted in 6.0, but in 7.0.

This alternative is quite easy to manage, as it is simply a case of opening the Parlay 4.0 specification, and removing all methods indicated in 4.0 as deprecated from the Parlay 5.0 model, and removing all <<new>> tags in 4.0 from the Parlay 5.0 model. Or, in terms of the ETSI specifications, any methods deprecated in the first issue of ES 202 915 (Parlay 4.0) get deleted in the first issue of ES 203 915 (Parlay 5.0).

The most immediate consequence for us would be the removal of methods such as initiateAuthentication(), selectEncryptionMethod() and authenticate() from the Framework, since all the old, Parlay 3 access and authentication methods were deprecated for the first time in Parlay 4.0. 10 methods would be deleted from the Framework, 1 from MPCC and 2 from DSC.

Consequences of Alternative 2:

Methods remain in the specification for well over 1 release, up to 2 full releases. Parlay 4.0, 4.1 deprecated methods get deleted in Parlay 6.0. Parlay 4.2, which is not prior to Parlay 5.0, would have its deprecated methods deleted in Parlay 7.0. If Parlay 4.3 and 5.1 come before Parlay 6.0, then it they would have their deprecated methods deleted in Parlay 7.0.

The difference with Alternative 1 is essentially with the x.0 version: The deprecated methods in Parlay 4.0 or 5.0 get deleted faster in Alternative 1 than in Alternative 2.

The immediate consequences for us would be: none. For 5.0, we would delete any methods which were deprecated in the specification prior to 4.0, i.e. in 3.2 But there were no deprecated methods in 3.2 - we started using our backwards compatibility mechanism in 4.0!

Consequences of Alternative 3:

The purpose of this alternative is to have fewer <<new>> methods, integrating them more in the specification, while not deleting the deprecated ones quite so quickly.

Process of deleting methods

Any methods which are to be deleted from the specification, regardless of the alternative chosen, shall be deleted using the CR process. So the JWG makes a decision of which methods to delete in each case.

If Alternative 3 is chosen, the removal of the <<new>> stereotypes could be considered editorial, not needing CRs. But the removal of methods will require CRs.

For the data types, again care should be taken. When a method is to be removed, a check should be performed that any data types used only by that method in the old version of the spec. are not used by a newly introduced method in a newer version. If they are not used at all, they can be removed without consequence. Again, CRs are required.

Exceptions:

Of course, for every rule there are exceptions: when we deprecated the Framework initiateAuthentication() and the corresponding authenticate() methods, we indicated that they should probably remain in the specs. longer than other deprecated methods, because of the catastrophic consequences on interworking if they are not supported. These were deprecated in Parlay 4.0, so under Alternative 1, would be subject to removal in 5.0 - hence the exception to leave them in.

Under Alternatives 2 or 3, they would be subject to removal in Parlay 6.0, if this ever exists.

Decision

As we are in the process of preparing Parlay 5.0, we need to decide which of these 4 alternatives should be applied, or indeed to choose another approach. The longer we leave the decision, the more we approach the 4th alternative (to do nothing).

