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10.2.7 TpPolicyType

This is a Tagged Choice of Data Elements with a TpPolicyTypeInfo discriminator, and can be one of the following:

	
	Tag Element Type
	

	
	TpPolicyTypeInfo
	


	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_PM_TYPE_ATOMIC
	TpAttributeType
	AtomicType

	P_PM_TYPE_RECORD
	TpPolicyRecordType
	RecordType

	P_PM_TYPE_LIST
	TpPolicyListType
	ListType


TpPolicyType allows us to define arbitrarily nested complex types as shown below. The level of nested data types actually supported is implementation specific.

The choice elements represent the following:

AtomicType: 
Defines an atomic type. 
RecordType:
Defines a record type with named fields.

ListType:
Defines a homogeneous list type. Heterogeneous lists are not supported.

10.5 Example Scenarios

We now present a high-level scenario that illustrates how all the different extensions are tied together. The rulegroup that we will use contains only one rule, which uses two variables x, and y, which are of the type:


x: struct {



a: TpInt32;



b: TpFloat;


}


y: TpInt32;

Moreover, let us assume that there is onle one rulegroup (“testgroup”) associated with the domain we are considering, and the rulegroup contains only one rule of the form (it is easy to extend this scenario to the general case):


if (x.b < 3)


then


   y = x.a;


end

Finally, assume that the value of x is to be supplied for rule evaluation, and the value of y is to be returned back to the client. The steps that need to be performed are as follows given below (we will give psuedo-code for all the steps):). Note that the actual implementations (e.g., CORBA, Java etc.) corresponding to these may differ slightly from that presented below.

1) Provision variables:



// get the manager



IpPolicyManagerRef manager = …;



// start transaction



manager.startTransaction();



// get the domain



IpPolicyDomainRef domain = manager.getDomain(“testdomain”);



// create a variable set



domain.createVariableSet(“vset”);



// define the type of x



// note that we can use the int_type defined as part of this



// process, for the type of y as well



TpPolicyType int_type = TpPolicyType(TpAttributeType(P_INT32));



TpPolicyType float_type = TpPolicyType(TpAttributeType (P_FLOAT));



Vector<TpString> field_names = [“a”, “b”];



Vector<TpPolicyType> field_types = [int_type, float_type];



TpPolicyType x_type = TpPolicyType(TpRecordType(field_names,field_types));



// define the type of y



TpPolicyType y_type = TpPolicyType(TpAttributeType (P_INT32));



// create the variables in the variable set



domain.createVariable(“vset”, “x”, x_type);



domain.createVariable(“vset”, “y”, y_type);



// set the values of x and y



TpAny x_value = {1, 2.5};



TpAny y_value = 3;



domain.setVariableValue(“vset”, “x”, x_value);



domain.setVariableValue(“vset”, “y”, y_value);

2) Create signature:


IpPolicySignatureRef sig = domain.createSignature(“test_sig”);



// set input and output variables



TpStringSet input_vars = [“x”];



TpStringSet output_vars = [“y”];



sig.setInputVariables(input_vars);



sig.setOutputVariables(output_vars);



// set groups and roles



TpStringSet groups = [“testgroup”];



TpStringSet roles = []; // no roles specified



sig.setGroupNames(groups);



sig.setRoleNames(roles);

3) Provision the rules:
The given rule is provisioned with the rulegroup. The variable declarations provisioned in (1) of the parent domain of the rulegroup need to be utilized to verify that the rule being provisioned is valid. For example, the condition (x.b < 3) can be verified as being valid, since “x” has a record type, and has “b” as a field, and “x.b” is a TpFloat. As an example, if the type of “x.b” had been TpString, then during provisioning, the rule condition would have been determined to be as invalid, and an exception thrown. The steps for creating the group are not shown in this example.



// commit transaction



manager.commitTransaction();

4) Sending a decision request:
The first three steps happen during provisioning time. In this step, we describe how the client may use the IpPolicyDomain.evalPolicy() method, as well as the notion of signatures, to request a decision to be rendered. We consider two scenarios: 1) where the value of x is explicitly specified by the client, and 2) where it is not.

· Case 1:



TpAny x_value = {4, 2.7};



TpPolicyNameValue x_name_val = {“x”, x_value};



TpPolicyNameValueList inputs = [x_name_value]; // input values



TpPolicyNameValueList outputs = domain.evalPolicy(“test_sig”, inputs);

Here, the explicit value of x overrides the value of x set via setVariableValue(). Hence, before rules are evaluated for this decision, the value of x is set to {4, 2.7}. The rule condition will then be true, and the value of z will be set to 4. Hence the outputs list will contain the value of y as being 4.

Note that if the value of x was specified as:



TpAny x_value = {4, 9.0};

The rule condition would not be true, which implies that the rule action would not be executed. However, the signature “sig_test” specified that y was an output variable and hence its value was to be sent back to the client. However (as mentioned earlier in our assumptions about variable semantics), y started out as being uninitialized, and hence an exception would be returned back to the client.

· Case 2: 



TpPolicyNameValueList inputs = []; // input values



TpPolicyNameValue outputs = domain.evalPolicy(“test_sig”, inputs);

Here, the explicit value of x is not set. Hence the value of x set via setVariableValue() is used during rule evaluation, which implies that y will be set to to the value 1. As in the first case, the outputs list will contain one element, which would be the value of variable y. 
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