Page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030339
Meeting #24, San Francisco, CA, USA, 14 - 18 July 2003
	CR-Form-v7

	CHANGE REQUEST

	

	(
	203.915-13
	CR
	-
	(
rev
	-
	(
Current version:
	0.0.1
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (symbols.

	

	Proposed change affects:
(
	UICC apps(
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(
	Extension of standard datatypes supported by TpPolicy

	
	

	Source:
(
	John-Luc Bakker (Telcordia, jlbakker@research.telcordia.com)

	
	

	Work item code:
(
	OSA3
	
	Date: (
	02/07/2003

	
	
	
	
	

	Category:
(
	D
	
	Release: (
	Rel-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(
	TpPolicyAtomicType is a copy of TpAttributeType, adding P_BOOLEAN. CR N5-030xxx adds P_BOOLEAN to TpAttributeType. In order to prevent increasing the number of types in OSA common types have been defined. This CR proposes to use common type TpAttributeType rather than a custom copy for reasons of clarity to application developers, flexibility and ease of maintenance.

Additionally, the type TpPolicyAtomicType does not allow customization through the (dreaded) SP_ rule. Hence, the current definition of TpPolicyAtomicType was found to restrictive and to implementation specific.

	
	

	Summary of change:
(
	TpAttributeType is extended with the CORBA standard primitive types, CORBA complex types, and an XML datatype, allowing any IDL or XML-expressable and verifiable datatype to be passed, including Boolean, Digit and Date. TpPolicyAtomicType only allows 4 types. TpPolicyAtomicType was found to restrictive and is replaced by the existing and common TpAttributeType.

	
	

	Consequences if
(
not approved:
	Limited applicability of the Policy Management API; Policy Management API cannot manage, e.g., currency amount based policies such that such policies are portable. Policy typing system not rigourously defined.

	
	

	Clauses affected:
(
	10.2.3, 10.2.7, 10.4

	
	

	
	Y
	N
	
	

	Other specs
(
	X
	
	 Other core specifications
(
	29.198-2 (CR N5-030337)

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(
	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

10.4.3

	
	

	
	

	
	

	
	

	
	

	
	

10.2.7 TpPolicyType

This is a Tagged Choice of Data Elements with a TpPolicyTypeInfo discriminator, and can be one of the following:

	
	Tag Element Type
	

	
	TpPolicyTypeInfo
	

	Tag Element Value
	Choice Element Type
	Choice Element Name

	P_PM_TYPE_ATOMIC
	TpAttributeType
	AtomicType

	P_PM_TYPE_RECORD
	TpPolicyRecordType
	RecordType

	P_PM_TYPE_LIST
	TpPolicyListType
	ListType

TpPolicyType allows us to define arbitrarily nested complex types as shown below. The level of nested data types actually supported is implementation specific.

The choice elements represent the following:

AtomicType:
Defines an atomic type.
RecordType:
Defines a record type with named fields.

ListType:
Defines a homogeneous list type. Heterogeneous lists are not supported.

10.5 Example Scenarios

We now present a high-level scenario that illustrates how all the different extensions are tied together. The rulegroup that we will use contains only one rule, which uses two variables x, and y, which are of the type:

x: struct {

a: TpInt32;

b: TpFloat;

}

y: TpInt32;

Moreover, let us assume that there is onle one rulegroup (“testgroup”) associated with the domain we are considering, and the rulegroup contains only one rule of the form (it is easy to extend this scenario to the general case):

if (x.b < 3)

then

 y = x.a;

end

Finally, assume that the value of x is to be supplied for rule evaluation, and the value of y is to be returned back to the client. The steps that need to be performed are as follows given below (we will give psuedo-code for all the steps):). Note that the actual implementations (e.g., CORBA, Java etc.) corresponding to these may differ slightly from that presented below.

1) Provision variables:

// get the manager

IpPolicyManagerRef manager = …;

// start transaction

manager.startTransaction();

// get the domain

IpPolicyDomainRef domain = manager.getDomain(“testdomain”);

// create a variable set

domain.createVariableSet(“vset”);

// define the type of x

// note that we can use the int_type defined as part of this

// process, for the type of y as well

TpPolicyType int_type = TpPolicyType(TpAttributeType(P_INT32));

TpPolicyType float_type = TpPolicyType(TpAttributeType (P_FLOAT));

Vector<TpString> field_names = [“a”, “b”];

Vector<TpPolicyType> field_types = [int_type, float_type];

TpPolicyType x_type = TpPolicyType(TpRecordType(field_names,field_types));

// define the type of y

TpPolicyType y_type = TpPolicyType(TpAttributeType (P_INT32));

// create the variables in the variable set

domain.createVariable(“vset”, “x”, x_type);

domain.createVariable(“vset”, “y”, y_type);

// set the values of x and y

TpAny x_value = {1, 2.5};

TpAny y_value = 3;

domain.setVariableValue(“vset”, “x”, x_value);

domain.setVariableValue(“vset”, “y”, y_value);

2) Create signature:

IpPolicySignatureRef sig = domain.createSignature(“test_sig”);

// set input and output variables

TpStringSet input_vars = [“x”];

TpStringSet output_vars = [“y”];

sig.setInputVariables(input_vars);

sig.setOutputVariables(output_vars);

// set groups and roles

TpStringSet groups = [“testgroup”];

TpStringSet roles = []; // no roles specified

sig.setGroupNames(groups);

sig.setRoleNames(roles);

3) Provision the rules:
The given rule is provisioned with the rulegroup. The variable declarations provisioned in (1) of the parent domain of the rulegroup need to be utilized to verify that the rule being provisioned is valid. For example, the condition (x.b < 3) can be verified as being valid, since “x” has a record type, and has “b” as a field, and “x.b” is a TpFloat. As an example, if the type of “x.b” had been TpString, then during provisioning, the rule condition would have been determined to be as invalid, and an exception thrown. The steps for creating the group are not shown in this example.

// commit transaction

manager.commitTransaction();

4) Sending a decision request:
The first three steps happen during provisioning time. In this step, we describe how the client may use the IpPolicyDomain.evalPolicy() method, as well as the notion of signatures, to request a decision to be rendered. We consider two scenarios: 1) where the value of x is explicitly specified by the client, and 2) where it is not.

· Case 1:

TpAny x_value = {4, 2.7};

TpPolicyNameValue x_name_val = {“x”, x_value};

TpPolicyNameValueList inputs = [x_name_value]; // input values

TpPolicyNameValueList outputs = domain.evalPolicy(“test_sig”, inputs);

Here, the explicit value of x overrides the value of x set via setVariableValue(). Hence, before rules are evaluated for this decision, the value of x is set to {4, 2.7}. The rule condition will then be true, and the value of z will be set to 4. Hence the outputs list will contain the value of y as being 4.

Note that if the value of x was specified as:

TpAny x_value = {4, 9.0};

The rule condition would not be true, which implies that the rule action would not be executed. However, the signature “sig_test” specified that y was an output variable and hence its value was to be sent back to the client. However (as mentioned earlier in our assumptions about variable semantics), y started out as being uninitialized, and hence an exception would be returned back to the client.

· Case 2:

TpPolicyNameValueList inputs = []; // input values

TpPolicyNameValue outputs = domain.evalPolicy(“test_sig”, inputs);

Here, the explicit value of x is not set. Hence the value of x set via setVariableValue() is used during rule evaluation, which implies that y will be set to to the value 1. As in the first case, the outputs list will contain one element, which would be the value of variable y.

CR page 1

