joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030219
Meeting #23, San Diego, CA, USA, 19 - 23 May 2003

Source:
Gareth Carroll (Open API Solutions)
Title:
The role of the activity timer needs to be clarified
Agenda Item:
5, 6, 11.4 (Call Control)

Document for:
Discussion
Category:

Work Item ID:
OSA1, OSA2 and OSA3

Doc Summary:
The role of the activity timer, when it should be started and stopped, and where it actually resides needs to be discussed.
Specs involved:
ETSI ES 201 915-4,
ETSI ES 202 915-4
In the multi party call control specification there is mention of an activity timer. Section 7.2 states:

“When an IpMultiPartyCall is created using createCall, or when an IpMultiPartyCall is given to the application for a notification with a monitor mode of P_CALL_MONITOR_MODE_INTERRUPT, an activity timer is started. The activity timer is stopped when the application invokes a method on the IpMultiPartyCall. The action upon expiry of this activity timer is to invoke callEnded() on the IpAppMultiPartyCall with a release cause of P_TIMER_EXPIRY. In the case when no IpAppMultiPartyCall is available on which to invoke callEnded(), callAborted() shall be invoked on the IpAppMultiPartyCallControlManager as this is an abnormal termination. “

This activity timer is also provided when legs are given to the application having been INTERRUPTed, as the call leg STD section specifies that in most states the activity timer is being provided and also the action to take when the activity timer expires.

We feel that there are ambiguities over when the timer should be stopped and also over what the timer is guarding against. We feel that it should be guarding against holding network resources, not just object resources, which simply creating a call object doesn’t actually do. Picture this scenario:

The application creates a call and invokes createAndRouteCallLegReq a couple of times, requesting events in INTERRUPT mode. These events can come back concurrently, so two call legs have been halted and the activity timer is running. With the current definition of the activity timer, calling ANY method on the IpMultiPartyCall will stop the activity timer. The application could invoke getInfoReq, and this would therefore stop the activity timer.
The problem with the scenario above is that there are still two call legs with processing suspended and nothing to guard against them being held that way indefinitely. This is taking up valuable network resources.

We feel that the call has no actual direct connection to network resources, the legs do, and that the activity timer should therefore be for the legs. With this in mind, if there is only one activity timer per call, then doing a continueProcessing on one of the legs in the scenario above might be expected to stop the activity timer as activity has occurred. However this would not be desirable as the other leg can still remain interrupted. We feel that the activity timer should be on a per leg basis.
If the activity timer is to remain on a call level, then it must still somehow guard against holding network resources, not just against keeping an object alive in a gateway somewhere.

General objective number 5 in section 7.3 emphasises that the processing on each is distinct. If the application is to call continueProcessing on a leg to continue processing of that leg, then it is easy to see how the activity timer should also apply only to that leg.

We ask the meeting to first decide whether the activity timer should only be guarding against the call object being held indefinitely or whether there should be an activity timer on the legs to guard against holding network resources indefinitely. If the latter, then we request that the meeting should then discuss whether to still have an activity timer on the call level to ensure that the call object is not held indefinitely. We could perhaps have both.

Open API Solutions would like to propose that the activity timer should be on a per leg basis. There are no API changes required for this, as the activity timer is purely a behavioural thing. All we would need to do would be to modify section 7.2 (call STD) and section 7.3 (call leg STD) to state that the activity timer should be started when the leg is interrupted and to state which methods on the call leg should stop that activity timer (we believe it should be routeReq, release, deassign and continueProcessing).

If the meeting agrees with the proposal, then Open API Solutions will produce a CR with the necessary text changes to be considered at this meeting or to go for e-mail approval.
