Page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030225
Meeting #23, San Diego, CA, USA, 19 - 23 May 2003

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-04
	CR
	CRNum
	(

rev
	-
	(

Current version:
	4.6.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	x

	

	Title:
(

	The OSA Application disconnecting of callbacks is not deterministic in CC

	
	

	Source:
(

	Scott Broussard (IBM, scottjb@us.ibm.com)

	
	

	Work item code:
(

	OSA1
	
	Date: (

	14/05/2003 (May 14)

	
	
	
	
	

	Category:
(

	C
	
	Release: (

	REL-4

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	The OSA Application should be able to disconnect callback objects reliably and predictably at specific points without complicated logic. The OSA application using CORBA must disconnect() the callback when it is no longer in use to avoid memory leaks.

The IpAppCall and IpAppMultiPartyCall callbacks can not routinely be disconnected after a release because the IpAppCall.getCallInfoRes/Err or IpAppMultiPartyCall.getInfoRes/Err callbacks may be received subsequently.

This causes an unnecessary complication for OSA application code and middle-ware that needs to disconnect CORBA callbacks. Consequently, the decision on disconnecting of callbacks needs to be delegated to the application which is problematic, because un-disconnected callbacks cause memory leaks, and additionally, OSA middle-ware that is between the application and the OSA Gateway (such as a bridge for Web Services-CORBA or The Java Realization API - CORBA layer) have a difficult time determining when to automatically disconnect callbacks.

The end-of-use of a callback within OSA is almost completely regular, and can be predicted at specific OSA API or callback points, except for the two listed above.

In order to determine if the callback can be disconnected, after a GCC/MPCC release() method returns requires some state and complicated logic. If no getInfoReq() was made a disconnect can be done after the release, if there was one made, and the response has been received, this the disconnect can be done, otherwise, the disconnect must be done in the getInfoRes/Err callback.

This is not ideal.

	
	

	Summary of change:
(

	This change requests that the IpCall.release() and IpMultiPartyCall.release() methods don’t return until all outstanding callbacks to the application have been delivered. This will allow the callback to always be disconnected after the release() returns.

	
	

	Consequences if
(

not approved:
	Complicated callback disconnect logic contributes to memory leaks.

	
	

	Clauses affected:
(

	29.198-04, 6.1.9

29.198-04, 6.3.3

29.198-04, 7.3.3

	
	

	
	Y
	N
	
	

	Other specs
(

	
	x
	 Other core specifications
(

	

	Affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

29-198-04: GCC

6.1.9
Number Translation 4

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the call control service. Before the call is routed to the translated number, the application requests for all call related information to be delivered back to the application on completion of the call.

[image: image1.png]Comeal oAz 1 Co i Marager eatal EaCortatenaEr
e lpfppl o

e

: 2{enableCali tficatior)

3:calle

atoward evant
PR

Siffano

[—

=

7 getC alintiReal)

senenl)

GroutsRaz >

10:ormaid vt

; i 1 getCalintoR es()
12 owadd evert

T 13 candac)

15:demsignda)

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward the previous message to the IpAppLogic.

5:
 This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6:
 This message invokes the number translation function.

7:
The application instructs the object implementing the IpCall interface to return all call related information once the call has been released.

8:
The returned translated number is used to route the call towards the destination.

9:
This message passes the result of the call being answered to its callback object.

10:
This message is used to forward the previous message to the IpAppLogic.

11:
Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object implementing the IpCall with the call information. Now that the call has completed, the object implementing the IpCall interface passes the call information to its callback object.

12:
This message is used to forward the previous message to the IpAppLogic

13:
This causes a callEnded event to be passed to the object implementing the IpAppCall object.

14:
This message is used to forward the previous message to the IpAppLogic.

15:
After the last information is received, the application deassigns the call. This will free the resources related to this call in the gateway.

29-198-04: GCC IpCall

6.3.3

Method

release()

This method requests the release of the call object and associated objects. The call will also be terminated in the network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these reports will still be sent to the application, and will be delivered to the application before release() returns.
The application should always either release or deassign the call when it is finished with the call, unless a callFaultDetected is received by the application.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
cause : in TpCallReleaseCause

Specifies the cause of the release.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE
Method

getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address.

A report is received when the destination leg or party terminates or when the call ends. The call object will not exist after the call is ended. If information is required to be sent to the application at the end of the call, it will be sent before the callEnded(). In case the originating party is still available the application can still initiate a follow-on call using routeReq.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
Method

callEnded()

This method indicates to the application that the call has terminated in the network. The application is expected to deassign the call object after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it.

Parameters

callSessionID : in TpSessionID

Specifies the call sessionID.
report : in TpCallEndedReport

Specifies the reason the call is terminated.
29-198-04: MPCC IpMultiPartyCall

7.3.3

Method

release()

This method requests the release of the call object and associated objects. The call will also be terminated in the network. If the application requested reports to be sent at the end of the call (e.g., by means of getInfoReq) these reports will still be sent to the application, and will be delivered to the application before release() returns.

Parameters

callSessionID : in TpSessionID

Specifies the call session ID of the call.
cause : in TpReleaseCause

Specifies the cause of the release.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

