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29-198-04: GCC   

6.1.9
Number Translation 4 

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the call control service. Before the call is routed to the translated number, the application requests for all call related information to be delivered back to the application on completion of the call.  
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1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface. 

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled.  When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object. 

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface. 

4:
This message is used to forward the previous message to the IpAppLogic. 

5:
 This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify. 

6:
 This message invokes the number translation function. 

7:
The application instructs the object implementing the IpCall interface to return all call related information once the call has been released. 

8:
The returned translated number is used  to route the call towards the destination. 

9:
This message passes the result of the call being answered to its callback object. 

10:
This message is used to forward the previous message to the IpAppLogic. 



11:
Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object implementing the IpCall with the call information.  Now that the call has completed, the object implementing the IpCall interface passes the call information to its callback object. 

12:
This message is used to forward the previous message to the IpAppLogic 

13:
This causes a callEnded event to be passed to the object implementing the IpAppCall object. 

14:
This message is used to forward the previous message to the IpAppLogic. 

15:
After the last information is received, the application deassigns the call. This will free the resources related to this call in the gateway. 

29-198-04: GCC   IpCall

6.3.3

Method

release()

This method requests the release of the call object and associated objects. The call will also be terminated in the network. If the application requested reports to be sent at the end of the call (e.g., by means of getCallInfoReq) these reports will still be sent to the application, and will be delivered to the application before release() returns.
The application should always either release or deassign the call when it is finished with the call, unless a callFaultDetected is received by the application. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
cause : in TpCallReleaseCause

Specifies the cause of the release.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE
Method

getCallInfoReq()

This asynchronous method requests information associated with the call to be provided at the appropriate time (for example, to calculate charging). This method must be invoked before the call is routed to a target address. 

A report is received when the destination leg or party terminates or when the call ends. The call object will not exist after the call is ended. If information is required to be sent to the application at the end of the call, it will be sent before the callEnded(). In case the originating party is still available the application can still initiate a follow-on call using routeReq. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
callInfoRequested : in TpCallInfoType

Specifies the call information that is requested.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID
Method

callEnded()

This method indicates to the application that the call has terminated in the network.  The application is expected to deassign the call object after having received the callEnded.

Note that the event that caused the call to end might also be received separately if the application was monitoring for it. 

Parameters 

callSessionID : in TpSessionID

Specifies the call sessionID.
report : in TpCallEndedReport

Specifies the reason the call is terminated.
29-198-04: MPCC     IpMultiPartyCall

7.3.3

Method

release()

This method requests the release of the call object and associated objects. The call will also be terminated in the network. If the application requested reports to be sent at the end of the call (e.g., by means of getInfoReq) these reports will still be sent to the application, and will be delivered to the application before release() returns. 

Parameters 

callSessionID : in TpSessionID

Specifies the call session ID of the call.
cause : in TpReleaseCause

Specifies the cause of the release.
Raises

TpCommonExceptions, P_INVALID_SESSION_ID, P_INVALID_NETWORK_STATE
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