joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030192

Meeting #23, San Diego, CA, USA, 19 - 23 May 2003

Source:
AePONA (Eamonn Murray)
Title:
OSA 1,2: Application High Availability Using Callback

Agenda Item:
5,6 OSA Version 1,2

Document for:
Decision
Category:
Fault

Work Item ID:
OSA1 (ETSI ver.1, Parlay 3, 3GPP Rel-4)

OSA2 (ETSI ver.2, Parlay 4, 3GPP Rel-5)

Doc Summary:
Highly Available application implementations may be supported

via API callback mechanisms. Currently this is restricted to the

Application – SCS interface. As a result Application – FW

functionality cannot be supported in a highly available fashion

with the existing APIs.

This document outlines a proposed solution to this issue.

Every effort has been made to ensure a backward compatible

solution and to minimise resulting change to the API. In

addition to the solution, the document identifies the

specifications that would require change in order to implement

the solution.

Specs involved:
ETSI ES 201 915-3, ES 201 915-4, ES 201 915-5, ES 201 915-8

ETSI ES 202 915-3, ES 202 915-4-2, ES 202 915-4-3,

ES 202 915-4-4, ES 202 915-5, ES 202 915-8

3GPP TS 29.198-3 v4.6.0, TS 29.198-4 v4.5.0, TS 29.198-5 v4.5.0

TS 29.198-8 v4.5.0

3GPP TS 29.198-3 v5.1.0, TS 29.198-4-2 v5.1.0,

TS 29.198-4-3 v5.1.0, TS 29.198-4-4 v5.1.0, TS 29.198-5 v5.1.0

TS 29.198-8 v5.1.0

References:
CN5#22 Bangkok N5-030060

CN5#21 Dublin N5-021092

CN5#21 Dublin N5-021041

CN5#23 San Diego N5-030187 Tdoc: Framework Integrity Mgt
Issues

Overview:

A number of contributions have been made to both CN5#21Dublin and CN5#22 Bangkok, in order to highlight the limitation within the current API with respect to supporting application high availability by means of additional application instances and API callback mechanisms.

This document seeks to present some of the known or currently understood issues that AePONA believes requires some form of discussion and decision. Where possible similar or interrelated issues are presented together and a proposal to reach satisfactory resolution is made.

The areas covered include:

· Requirement for API based HA

· Solution for API based HA

· Recommended API changes

1. Requirement for API based HA
Description:
Additional application callbacks are supported within the SCSs, whereby an application may use setCallBack and notification provisioning mechanisms (e.g. enableCallNotification) supported within the API to create a secondary callback to an identical application instance or image that may be used in the event of application failover. However no such mechanism for informing the framework of the additional application instance or image is available.

This limitation results in a dependancy on a purely middleware based approach to ensure highly available applications, and consequently a significant risk of interoperability problems as a consequence of differing middleware behaviour and functionality. Note that although the primary motivation for this proposal is to ensure application high availability, any solution may be equally applicable to ensure support for additional application instances with a view to supporting load sharing between gateway and applications.

Observations:

Is there indeed a requirement to provide API based High Availability support? If there is a decision that all High Availability and Redundancy issues are best addressed through middleware and vendor implementation then this should be clearly indicated in the specification set, and possibly the API based HA features removed in order to prevent confusion.

Proposal: A purely middleware based solution to Application High Availability can result in a single point of failure between the Gateway OSA Parlay SCSs and Framework, and the Application Domain. In the CORBA domain for example, the use of persistent application IORs may be used, however the Application Domain shall be required to operate in a CORBA server mode and therefore the server itself can represent a single point of failure. The traditional approach to resolving CORBA server resilience and high availability is to employ clustering style solutions. Whilst this approach succeeds in non-Application server deployments where persistent IORs and a common or shared IP address within a cluster may be configured, Application Server Platforms typically employ a different clustering design that requires dual IP addresses.

It is primarily for this reason that AePONA believes that an API based HA solution is necessary. However an additional motivating factor is to provide an API based or programmatic solution that may be employed to encourage enhanced mutli-vendor interoperability, particularly via multiple middleware vendor solutions. If it is agreed that an API based HA solution is indeed required the remainder of this document outlines a number of proposals for further discussion.

2. Solution for API based HA
Description:
In order to rectify the limitations of the API based HA solution it is necessary that the framework must also be made aware of the existence of a secondary application image or instance. In proposing the solution outlined below the following criteria have been used.

1. Ensure multiple identical application instances may be used thereby hiding API complexity and behaviour from the application developer.

2. Limit the introduction of additional methods within the Framework and where possible ensure changes are backward compatible.

3. Ensure Framework security is maintained.

4. Successfully integrate with existing SCS additional callback mechanisms, requiring no change to Service behaviour.

5. Ensure application initialisation and application recovery be supported by the same sequences.

Observations:
The use of a ‘setCallBack’ style solution as used within the SCSs was considered inappropriate as it could result in many changes to Framework Interface classes in order to ensure support for all Application – Framework relationships required to ensure HA operation. In addition, such a mechanism would also presume that application instances would share Framework object references in order to establish callback references. This is considered a potentially serious security loophole. In addition, the Framework obtainInterface(WithCallBack) paradigm already exists to provide applications and framework a mechanism to establish interface and callback references.

Proposal: The solution proposed here assumes that existing Application and Framework message sequences are re-used between primary and secondary application instance, with the addition of sufficient identification so that the Framework can reconcile between primary and secondary and allow application recovery. This approach ensures that the Trust and Security mechanisms resident within the framework are rigorously applied to both primary and secondary application instances.

This is outlined by the figure below.

[image: image4.wmf]Client instance

1

Framework

Client instance

2

:

IpClientAccess

instance 1 :

IpAccess

1:

endAccess

(

)

Client instance 1 sets the

endAccess property

END_ACCESS_SCOPE to

P_SCOPE_APPLICATION

2:

terminateAccess

(

)

As a result of the scope parameter

the access session with the other

Iapplication instance is terminated. The

framework shall also destroy

the relevant service manager.

A single application is provided that requires a unique application ID with respect to the Parlay Gateway/Framework. To ensure HA operation the application consists of a number of identical instances (A & A’) to provide a primary/secondary solution. Each application instance behaves in an identical fashion both on initialisation and recovery as follows:

1. Initial Access, Authentication, Discovery, Selection and SignServiceAgreement.

2. createServiceManager

3. Create New SCS Manager

4. Enable Service Notifications or setCallBacks

During stage 1, the framework must recognise and distinguish between two instances of the same application ID. In order to do so the framework shall be required to generate and manage an application instance ID. An application ID may therefore relate to multiple application Instance Ids, each with their own access session with the framework.

During the process of service selection, multiple instances of a client application may select the same service and carry out a signServiceAgreement (framework validates identical SLA), however a single application instance may not select the service multiple times.

At any stage following authentication in stage 1, each application instance may set unique FW - Application call back references using the obtainInterfaceWithCallBack mechanism. The framework shall be responsible for associating all call back references defined on a given access session to the appropriate application instance. Integrity management actions relating to an application ID may then be mapped by the framework to the relevant application instance ID.

Note: this is where an element of framework behaviour is possible. The framework may choose based on the application ID to resolve to a single application instance ID, or could query all instances and amalgamate the result. (The latter approach may be used as part of a load balanced solution). These issues are further discussed in the additional contribution to CN5#23 N5-030187 Framework Integrity Management Issues.

During Stage 2, the framework carries out a createServiceManager for the service ID selected. This process is repeated for each instance of the application. The first instance shall result in the creation of an SCS instance (Stage 3) and the reference to the SCS Manager is returned to the framework and thereafter to the application instance. Subsequent instances of the same application ID are returned a reference to the same SCS manager object via the serviceLifecycleManager.

Each application instance has access to the same SCS Manager object and may establish call back associations between the SCS Manager and application instance via either the SCS notification management methods (e.g enableNotification), or explicit setCallBack methods, stage 4.

Note: At this point there exists a one to one correlation between an application (a unique application ID) and service instance (SCS Manager). Application HA is supported between SCS and application by way of the additional callbacks (established during stage 4), and assuming that the application instances have enabled integrity management with the framework any time after authentication, application HA is also supported between Framework and application.

Note: A policy to identify primary and secondary application instance may be required. It could be argued that this is considered implementation detail, however for consistency and integrity of end to end system operation (particularly in a multi-vendor solution), all logical gateway components whether framework or SCS must share the same understanding of primary and secondary application instance.

Proposal: It is proposed that the application instance identification include an identifier and timestamp pair. The current API specification recommends that the most recent callback created by an application should be considered by the Gateway as the primary. However it is suggested that this is not the best approach with which to allow applications to be taken out of service for maintenance and then recovered. Rather, the earliest instance should be considered the primary. It is also possible that a race condition exists between application instance 1 and application instance 2 when establishing Framework Callback and thereafter Service CallBack. Therefore the instance identifier and timestamp (created by the Framework) shall allow a common understanding of primary and secondary between Framework and Service.

The overall solution proposed above uses existing methods and interfaces to introduce full support for application High Availability without requiring communication of object references within the application domain. This maintains full secure authenticated use of the operator resources by the application domain. Minimal application programming changes are required to HA enable a monolithic application design or implementation.

In order to support the solution outlined above; there are a number of essential changes or modifications that are required, particularly with respect to uniquely identifying instances of applications. In addition a number of useful additional methods are suggested that would ease implementation of application recovery.

3. Recommended API changes:

1. Framework Changes:

1.1 Client Identification during authentication

Description:
During the initiateAuthentication process on IpInitial, the client is required to identify itself and in return is provided a framework identifier. This mutual identification is currently based on domainIDs, however to support multiple instances or images of an application that share a common domainID in a HA configuration, the identification must be extended to support the unique identification of instances.

AePONA propose that the Framework be responsible for the generation and management of the application instance identifiers, thereby ensuring that the framework has full knowledge of all client instances that are currently using the framework and SCSs.

This could be achieved in two ways. Either:

· Extend the TpAuthDomain type to include support for instance identification, and re-use existing initiateAuthentication method.

Or;

· Introduce new methods and data types to support unique instance identification in a HA environment.

For the first alternative, if the TpAuthDomain was modified as follows:

structure TpAuthDomain {

domainID:
TpDomainID;

authInterface:
IpInterfaceRef;

instanceID
TpInt32;

};

structure TpInstanceID {

instanceCount
TpInt32;

instanceDate
TpDateAndTime;

};

The instanceID when passed from application to Framework could be used to specify a known or pre-existing instance ID understood by the application (recovery), or a default (instanceCount = -1) to indicate initial access. When passed as a return value from framework to application, the instance ID field can be used to specify the instance Identifier assigned to the application image by the framework.

Observations:
Modification of TpAuthDomain to introduce support for an instanceID as shown above, although resulting in least change, would create a non-backward compatible solution, and the interpretation of the instanceID element is dependent upon the direction in which the data type was passed (ie. Client to Fw or Fw to Client). For these reasons, the second alternative outlined below is recommended.

Proposal: In the definition of IpInitial, introduce an additional authentication method to support multiple application instances.

6.3.1.3 Interface Class IpInitial

Inherits from: IpInterface.

The Initial Framework interface is used by the client to initiate the mutual authentication with the Framework.

<<Interface>>

IpInitial

initiateAuthentication (clientDomain : in TpAuthDomain, authType : in TpAuthType) : TpAuthDomain

initiateAuthenticationInstance (clientDomain : in TpAuthDomain, authType : in TpAuthType, instanceNumber : in TpInstanceID) : TpAuthDomainInstance

Method

initiateAuthenticationInstance()

In the case where multiple instances or images of a single client exist, this method must be used by each client instance in order to start the process of mutual authentication with the framework, and request the use of a specific authentication method. Note that a common domain identifier must apply to each instance of the client. By supporting authentication and access sessions for each individual client instance, framework support for a highly available client implementation is provided.

Returns <fwDomainInstance> : This provides the client with a framework identifier, a reference to call the authentication interface of the framework, and an instance id by which the framework shall uniquely identify the particular instance of the client.

structure TpAuthDomainInstance {

domainID:
TpDomainID;

authInterface:
IpInterfaceRef;

instanceID
TpInstanceID;

};

structure TpInstanceID {

instanceCount
TpInt32;

instanceDate
TpDateAndTime;

};

The domainID parameter is an identifier for the framework (i.e. TpFwID). It is used to identify the framework to the client.

The authInterface parameter is a reference to the authentication interface of the framework. The type of this interface is defined by the authType parameter. The client uses this interface to authenticate with the framework.

The instanceID parameter is returned to the client instance to indicate the identifier by which the framework shall recognise the given instance or image of the application that is initiating the authentication.

If an application is recovering after an abnormal termination, and has previously been allocated an instanceID, it can initiateAuthenticationInstance() supplying an instanceID returned previously by the framework. The framework can then choose to re-establish the existing session, updating any stored callback references during the sequence, or it can return a new instanceID, which must then be used by the application instance. If a new instanceID is returned by the framework, the previously used instanceID becomes invalid. The application must always use the last instanceID returned by the framework. Applications are required to follow the same sequence whether they are starting for the first time or recovering from an abnormal termination.

Parameters

clientDomain : in TpAuthDomain

This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:
TpDomainID;

authInterface:
IpInterfaceRef;

};

The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an existing registered service (i.e. TpServiceID) or for a service supplier
(i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticate() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).

The authInterface parameter is a reference to call the authentication interface of the client. The type of this interface is defined by the authType parameter. If the interface reference is not of the correct type, the framework returns an error code (P_INVALID_INTERFACE_TYPE).

authType : in TpAuthType

This identifies the type of authentication mechanism requested by the client. It provides operators and clients with the opportunity to use an alternative to the API level Authentication interface, e.g. an implementation specific authentication mechanism like CORBA Security, using the IpAuthentication interface, or Operator specific Authentication interfaces. OSA API level Authentication is the default authentication mechanism (P_OSA_AUTHENTICATION). If P_OSA_AUTHENTICATION is selected, then the clientDomain and fwDomain authInterface parameters are references to interfaces of type Ip(Client)APILevelAuthentication. If P_AUTHENTICATION is selected, the fwDomain authInterface parameter references to interfaces of type IpAuthentication which is used when an underlying distribution technology authentication mechanism is used.

instanceID : in TpInt32

The instanceID parameter is used to identify the application image in a situation where multiple application images are being used to provide high availability or load-sharing. The instanceID should be set to –1 if this is the first time this instance has authenticated. In this case the framework will return an instanceID as part of the TpAuthDomainInstance to be used by this application instance. If an application is recovering, it may supply an instanceID previously assigned to it by the framework using this parameter. The framework on receipt of a pre-existing instance ID may choose to re-use the existing instanceID, or assign a new instanceID to the application.

Returns

TpAuthDomainInstance

Raises

TpCommonExceptions, P_INVALID_DOMAIN_ID, P_INVALID_INTERFACE_TYPE, P_INVALID_AUTH_TYPE, P_INVALID_INSTANCE_ID
A new exception has been introduced to support this behaviour P_INVALID_INSTANCE_ID

1.2 Extend Behaviour of ‘endAccess’

Description:
Once the capability of supporting a unique access session for each instance of an application has been introduced, the behaviour of the framework when the application chooses to end its access session must be clarified.

Proposal: It is proposed to modify the behaviour of the existing ‘endAccess’ method as detailed below. Note the change recommended is fully backward compatible.

6.3.1.6 Interface Class IpAccess

Inherits from: IpInterface.
<<Interface>>

IpAccess

obtainInterface (interfaceName : in TpInterfaceName) : IpInterfaceRef

obtainInterfaceWithCallback (interfaceName : in TpInterfaceName, clientInterface : in IpInterfaceRef) : IpInterfaceRef

endAccess (endAccessProperties : in TpEndAccessProperties) : void

listInterfaces () : TpInterfaceNameList

releaseInterface (interfaceName : in TpInterfaceName) : void

The text in red indicates modifications or new functionality required for the endAccess method.

Method

endAccess()

The endAccess operation is used by the client instance to request that its access session with the framework is ended. After it is invoked, the client instance will no longer be authenticated with the framework. The client instance will not be able to use the references to any of the framework interfaces gained during the access session. Any calls to these interfaces will fail.

Parameters

endAccessProperties : in TpEndAccessProperties

 This is a list of properties that can be used to tell the framework the actions to perform when ending the access session (e.g. existing service sessions may be stopped, or left running). If a property is not recognised by the framework, an error code (P_INVALID_PROPERTY) is returned.

In the case were multiple instances of a single application client each have an access session with the framework, the endAccessProperty END_ACCESS_SCOPE is used to define the required framework behaviour. If the application instance sets the value of this property as P_SCOPE_INSTANCE, then only the access session related to the given instance of the application is ended. Alternatively if the application instance sets the value of this property as P_SCOPE_APPLICATION, all access sessions relating to all application instances or images that share a common application ID are ended.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_PROPERTY

To further clarify this behaviour an additional framework sequence diagram may be required, e.g.

[image: image1.wmf]Appn

A

Appn

A’

FW

Service

Lifecycle

Mgr

SCS

Mgr

1

1

2

3

4

4

1.3 Extend Service Agreement Management Behaviour

Description:
To support multiple instances of an application, the behaviour of the Service Agreement Management interface also requires slight modification in order to ensure that application logic is identical in each instance.

Proposal: It is proposed to modify the behaviour of a number of the existing interfaces and methods as detailed below. Note the change recommended are fully backward compatible.

7.3.2.2 Interface Class IpServiceAgreementManagement

Inherits from: IpInterface.
<<Interface>>

IpServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

selectService (serviceID : in TpServiceID) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

The text in red indicates modifications or new functionality required for the methods.

Method

signServiceAgreement()

This method is used by the client application to request that the framework sign an agreement on the service, which allows the client application to use the service. If the framework agrees, both parties sign the service agreement, and a reference to the service manager interface of the service is returned to the client application. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned.

There must be only one service instance per client application. Therefore, in case it happened that the client has crashed and the client attempts to select a service for which it has already signed a service agreement for, a reference to the already existing service manager will be returned.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement, and a reference to the service manager interface of the service.

structure TpSignatureAndServiceMgr {

digitalSignature:
TpOctetSet;

serviceMgrInterface:
 IpServiceRef;

};

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application.

The serviceMgrInterface is a reference to the service manager interface for the selected service.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.
Returns

TpSignatureAndServiceMgr

Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_AGREEMENT_TEXT,P_INVALID_SERVICE_TOKEN,P_INVALID_SIGNING_ALGORITHM,P_SERVICE_ACCESS_DENIED
Method

selectService()

This method is used by the client application to identify the service that the client application wishes to use. If the client application is not allowed to access the service, then the P_SERVICE_ACCESS_DENIED exception is thrown. The P_SERVICE_ACCESS_DENIED exception is also thrown if the client attempts to select a service for which it has already signed a service agreement for, and therefore obtained an instance of. This is because There must be only one service instance per client application. The exception P_SERVICE_ACCESS_DENIED is therefore thrown if the client application attempts to select a service for which it has already signed an agreement for, multiple times within a single framework access session.

However different instances of the same client application, each with a separate access session, may each call this method to establish contact with service managers, however there must be only one service instance per client application.

Returns <serviceToken> : This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain operator specific information relating to the service level agreement. The serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client application or framework invokes the endAccess method on the other's corresponding access interface.

Parameters

serviceID : in TpServiceID

This identifies the service required. If the serviceID is not recognised by the framework, an error code (P_INVALID_SERVICE_ID) is returned.

Returns

TpServiceToken

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_ID, P_SERVICE_ACCESS_DENIED
9.3.2.1 Interface Class IpServiceInstanceLifecycleManager

Inherits from: IpInterface.
The IpServiceInstanceLifecycleManager interface allows the Framework to create and destroy Service Manager Instances.

<<Interface>>

IpServiceInstanceLifecycleManager

createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList, serviceInstanceID : in TpServiceInstanceID) : IpServiceRef

destroyServiceManager (serviceInstance : in TpServiceInstanceID) : void

Method

createServiceManager()

This method returns a new service manager interface reference for the specified application. The service instance will be configured for the client application using the properties agreed in the service level agreement.

In case there is already a service manager available for the specified application and serviceInstanceID this reference is returned and no new service manager is created.

Returns <serviceManager> : Specifies the service manager interface reference for the specified application ID.

Parameters

application : in TpClientAppID
Specifies the application for which the service manager interface is requested.
serviceProperties : in TpServicePropertyList
Specifies the service properties and their values that are to be used to configure the service instance. These properties form a part of the service level agreement. An example of these properties is a list of methods that the client application is allowed to invoke on the service interfaces.
serviceInstanceID : in TpServiceInstanceID
Specifies the Service Instance ID that the new Service Manager is to be identified by.
Returns

IpServiceRef
Raises

TpCommonExceptions, P_INVALID_PROPERTY
To further clarify this behaviour an additional framework sequence diagram may be required, e.g.

[image: image2.wmf]Client instance

1

Framework

Client instance

2

:

IpClientAccess

instance 1 :

IpAccess

1:

endAccess

(

)

Client instance 1 sets the

endAccess property

END_ACCESS_SCOPE to

P_SCOPE_APPLICATION

2:

terminateAccess

(

)

As a result of the scope parameter

the access session with the other

Iapplication instance is terminated. The

framework shall also destroy

the relevant service manager.

Note: the remaining methods in the IpServiceAgreementManagement and IpServiceInstanceLifecycleManager interface classes do not require modification.

Description:
It is anticipated that much of the behaviour of the methods required to support application HA is implementation detail for each vendor. However further consideration may be required for Service Tokens.

For example shall a service token common to all application instances be used, or alternatively shall a unique service token for each application instance be supported?

In the first case the framework shall implement a single serviceLevelAgreement for all service instances and create and terminate the serviceLevelAgreement for all instances of the service used by a given application. In the second case a serviceLevelAgreement is supported for each application instance – service instance pair. This may be particularly useful if the implementation is extended to support load balancing.

In either case the framework shall be responsible for ensuring that the signServiceAgreement returns a reference to the same service manager for all application Instances. However if the latter is supported, further clarification in the Framework methods that use Service Tokens shall be required.

Proposal: Agree whether application instance or global application service tokens shall be supported. If there is agreement to support application instance – service instance Service Tokens, prepare further contributions to Framework modifications.

2. Service Changes:

The Generic Call Control service is considered as a sample service for the purposes of considering the changes necessary to integrate the SCSs with the need for multiple instances or images of a single application, and the framework modifications outlined above required to support application high availability.

The changes required, relate to the management of callback references within the service manager for each instance of the application image, and in particular simplifying the update or refreshing of application callbacks in the event of application failure and recovery.

In addition to the changes recommended below for GCCS, same or similar changes are also required for the following SCSs. MPCC, MMCC, UI, DSC.

2.1 Modify behaviour of application provisioned Notifications

Description:
In order to support application high availability, it is necessary to ensure that an application may fail and thereafter recover all provisioned interfaces and callback references, and in so doing does not result in loss of service or change of behaviour in another application instance. This requirement results in slight modification of the notification enabling methods in order to guarantee a unique assignment ID for each application instance. In the event of application recovery, the service manager is therefore able to distinguish between application instances and thus which application image callbacks need updating and which require no modification.

Proposal: Clarify the behaviour of enableCallNotification method and introduce additional method that allows an application instance to refresh callback references. Note that normal initialisation of the two application instances may result in a race condition when establishing initial callbacks using the enableCallNotification method. It is essential that both Framework and SCS share a common understanding of application instances in order to enforce any behaviour resulting from Primary/Secondary identification. Rather than modify the existing enableCallNotification method, it is suggested that a normal initialisation followed by an immediate refresh to include application instance identification is carried out.

The text in red indicates modifications or new functionality required for the SCS. If the proposal is agreed, the changes below and further additional sequences shall be submitted to the meeting.

6.3.1 Interface Class IpCallControlManager

Inherits from: IpService

This interface is the 'service manager' interface for the Generic Call Control Service. The generic call control manager interface provides the management functions to the generic call control service. The application programmer can use this interface to provide overload control functionality, create call objects and to enable or disable call-related event notifications.
<<Interface>>

IpCallControlManager

createCall (appCall : in IpAppCallRef) : TpCallIdentifier

enableCallNotification (appCallControlManager : in IpAppCallControlManagerRef, eventCriteria : in TpCallEventCriteria) : TpAssignmentID

disableCallNotification (assignmentID : in TpAssignmentID) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

changeCallNotification (assignmentID : in TpAssignmentID, eventCriteria : in TpCallEventCriteria) : void

getCriteria () : TpCallEventCriteriaResultSet

updateAssignedCallBackReferences (appInstanceID : in TpInstanceID, TpcallBackReferences : in TpGCCSAssignedCallBackReferenceSet) : void

Method

enableCallNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an application has to do to get initial notification of calls happening in the network. When such an event happens, the application will be informed by callEventNotify(). In case the application is interested in other events during the context of a particular call session it has to use the routeReq() method on the call object. The application will get access to the call object when it receives the callEventNotify(). (Note that the enableCallNotification() is not applicable if the call is setup by the application).

The enableCallNotification method is purely intended for applications to indicate their interest to be notified when certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria, the request is refused with P_GCCS_INVALID_CRITERIA. The criteria are said to overlap if both originating and terminating ranges overlap and the same number plan is used and the same CallNotificationType is used.

If a notification is requested by an application with the monitor mode set to notify, then there is no need to check the rest of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed over. Only one application can place an interrupt request if the criteria overlaps.

If the same application requests two notifications with exactly the same criteria but different callback references, the second callback will be treated as an additional callback. Both notifications will share the same assignment ID be allocated unique assignment IDs. The gateway will always use the most recent callback. In case this most recent callback fails the second most recent is used. In order to indicate to the service which callback relates to which application instance, the updateAssignedCallbackReferences method must be used.

In case the enableCallNotification contains no callback, at the moment the application needs to be informed the gateway will use as callback the callback that has been registered by setCallback().

Returns assignmentID: Specifies the ID assigned by the generic call control manager interface for this newly-enabled event notification.

Method

updateAssignedCallbackReferences()

This method is used by the application to refresh the callback(s) associated with event criteria introduced by an application instance with the enableCallNotification method. Any stored callback reference associated with a specified assignmentID will be replaced with the specified callback reference. The method is also used to identify to the service the application instance associated with the callbacks. The Service implementation shall use the application instance identifier to determine the application instance with the earliest time stamp, and therefore to determine the primary instance of the application.

Parameters

callbackReferences : in TpGccsAssignedCallbackReferenceSet

Specifies the new set of callback references to be used by the manager with the specified assignmentIDs. TpGccsAssignedCallbackReferenceSet is a set of assignmentID / callback reference pairs.

instanceID : in TpInstanceID

The instanceID parameter is used to identify the application image in a situation where multiple application images are being used to provide high availability or load-sharing. When an application is recovering, it must supply the instanceID previously assigned to it by the framework during the current access session.

Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_INSTANCE_ID
A new exception has been introduced to support this behaviour P_INVALID_INSTANCE_ID

� EMBED Word.Picture.8 ���

[image: image3.emf]AppLogic :

IpAppServiceAgreementManagement

 : IpAppCallControlManager : IpInitial

 :

IpServiceAgreementManagement

1: selectService()

3: signServiceAgreement()

4: new()

We assume that the application instance 1 has already signed the service agreement. This is application instance 2 which has already authenticated and

discovered the same service. The behaviour of selectService() will now allow different application instances to selectthe same service.

2: signServiceAgreement()

 : IpCallControlManager

5: setCallback(in IpInterfaceRef)

This call is effectively a dummy as

the service agreement has already

been signed. However, this action

allows the application logic to be

identical. The framework is

responsible for ensuring that the

same service manager instance is

returned

_1104262310.doc

Appn

A

Appn

A’

FW

Service Lifecycle Mgr

SCS Mgr

1

1

2

3

4

4

_1113402610.doc

Client instance

1

Framework

Client instance 2

: IpClientAccess

instance 1 :

IpAccess

1: endAccess()

Client instance 1 sets the

endAccess property

END_ACCESS_SCOPE to

P_SCOPE_APPLICATION

2: terminateAccess()

As a result of the scope parameter

the access session with the other

Iapplication instance is terminated. The

framework shall also destroy

the relevant service manager.

