joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030187

Meeting #23, San Diego, CA, USA, 19 - 23 May 2003

Source:
AePONA (Eamonn Murray)
Title:
OSA 1,2: Integrity Management Issues.

Agenda Item:
5,6 OSA Version 1,2

Document for:
Discussion / Decision
Category:
Fault

Work Item ID:
OSA1 (ETSI ver.1, Parlay 3, 3GPP Rel-4)

OSA2 (ETSI ver.2, Parlay 4, 3GPP Rel-5)

Doc Summary:
A number of significant issues in the Framework Integrity Management specification have been identified. AePONA believes that the current specification is ambiguous and could result in framework and service interoperability problems, or potentially an inability to support Integrity Management functionality.

Specs involved:
ETSI ES 201 915-3,
ETSI ES 202 915-3

3GPP TS 29.198-3 v4.7.0, 3GPP TS 29.198-3 v5.2.0

References:
CN5#22 Bangkok N5-030061

CN5#23 San Diego N5-030188 –189 CR Service To Framework

Access Sessions

CN5#23 San Diego N5-030190 - 191 CR TpDomainID Correction

CN5#23 San Diego N5-030192 Tdoc: Application HA Using

Callback

Overview:

A number of problem areas have been identified within the existing Framework and SCS API definitions. Although some of these have been previously submitted to the joint working group for discussion, late submission of the contributions and meeting time pressures have prevented a full discussion and satisfactory resolution. Subsequently the first ETSI Interoperability Plug Test event has confirmed that sufficient ambiguity regarding certain functionality and behaviour exists within the specifications, resulting in significant implementation variance and barriers to interoperability.

This document seeks to present some of the known or currently understood issues that AePONA believes requires some form of discussion and decision. Where possible similar or interrelated issues are presented together and a proposal to reach satisfactory resolution is made.

The areas covered include:

· Framework Integrity Management and Access Sessions

· Integrity Management Identification and Behaviour

· Integrity Management and Distributed (HA) Applications

1. Framework Integrity Management and Access Sessions

Problem #1 Unique Access Sessions

Description:

In order to support integrity management functionality, the framework uses callback references supplied by the application or service. Such callback references are established by using the obtainInterfaceWithCallback method on the framework IpAccess interface.

The obtainInterfaceWithCallback method itself contains no identification of the application or service, the framework must use the IpAccess interface on which it was called in order to resolve the identification of the client or service.
Consider the Fault Management sequence below, taken from the current framework API specification:

[image: image1.wmf]Service :

IpSvcFaultManager

Application :

IpAppFaultManager

 :

IpFaultManager

Framework :

IpFaultManager

The Framework identifies the service

instance to conclude which

Application the test is directed at, and

comunicates internally to Framework

interface to the Application.

The application

carries out the

activity test and

returns the result to

the Framework.

Internal Framework

Communications.

1:

activityTestReq

()

2:

appActivityTestReq

()

3:

appActivityTestRes

()

4:

activityTestRes

()

1:
The service instance asks the framework to invoke an activity test on the client application.

2:
The framework asks the application to do the activity test. It is assumed that there is internal communication between the service facing part of the framework (i.e. IpFwFaultManager interface) and the part that faces the client application.

3:
The application does the activity test and returns the result to the framework.

4:
The framework internally passes the result from its application facing interface (IpFaultManager) to its service facing side, and sends the result to the service.
In order to map method 1 from the service to method 2 to the application, the framework is required to identify the service instance, and from this determine the application instance. Therefore each client or service instance MUST have a unique access session with the framework in order to support unique identification.

Observations:

If it is the intention to have an access session for each service instance, then the serviceInstanceLifecycleManager must ensure that any serviceID that results in multiple service instances results in multiple Fw-Svc access sessions.

If however it is not the case that a unique access session for each service instance is needed, then currently much of the integrity management functionality cannot be supported, as enabling integrity management at a service level alone is not sufficient to allow the framework to identify a unique application.

Proposals:

AePONA believes that section 8 of the current framework API specification is not clear in defining the requirements for access session at either a Service or Service Instance level. AePONA propose that supporting access sessions at both of these levels is required, and have submitted a CR to this meeting to clarify the sequences and behaviour required. The reason for supporting access sessions at both levels could be for example to allow integrity management at both a process and individual thread level for a multithreaded SCS implementation.

Proposal:(N5-030188 - 189 CR Service To Framework Access Sessions)

In clarifying the need for Service to Framework access sessions however, a number of ripple effects have been identified that require further consideration and/or decision.

Problem #2 Authentication of Unique Access Sessions

Description:

Following from above, is it necessary to authenticate each and every service instance, or is it sufficient for the service to be authenticated and each instance of the service thereafter create a separate ‘direct’ access session using requestAccess directly?

Observations:

It could be argued that it should not be necessary to uniquely authenticate each and every instance of the service if the service itself has already been authenticated, particularly as the service is generic, and each application that results in a service instance shall have already been authenticated.

However the current requestAccess method cannot identify or distinguish between multiple instances or images of a service that share a common authentication. It would therefore appear necessary with the current API to carry out full authentication, requestAccess and obtainInterfaceWithCallBack to enable each service instance for framework integrity management. The authentication step would require agreement on any key sharing necessary as a result of this.

Proposal: Retain existing requestAccess functionality. Overhead of service instance authentication may be minimised through appropriate use of one of the supported authentication mechanisms, the choice of which is implementation detail. If agreed an appropriate CR can be drafted and submitted to the meeting.

If the proposal above is acceptable. How can it be guaranteed that all service instances shall successfully authenticate? To do otherwise would prevent correct integrity management. Should we mandate a trusted authentication for service instances?

Alternate Proposal: Retain existing requestAccess functionality. Mandate the use of trusted authentication sequence for service instances. If agreed an appropriate CR can be drafted and submitted to the meeting.

Problem #3 Correction to TpAuthDomain

Description:

The initiateAuthentication method on the Framework IpInitial interface currently contains the following text description for the input parameter.

Parameters

clientDomain : in TpAuthDomain
This identifies the client domain to the framework, and provides a reference to the domain's authentication interface.

structure TpAuthDomain {

domainID:

TpDomainID;

authInterface:

IpInterfaceRef;

};

The domainID parameter is an identifier either for a client application (i.e. TpClientAppID) or for an enterprise operator (i.e. TpEntOpID), or for an existing registered service (i.e. TpServiceID) or for a service supplier (i.e. TpServiceSupplierID). It is used to identify the client domain to the framework, (see authenticate() on IpAPILevelAuthentication). If the framework does not recognise the domainID, the framework returns an error code (P_INVALID_DOMAIN_ID).

In addition the Framework data definitions include the following definitions for TpDomainID:

TpDomainID

Defines the Tagged Choice of Data Elements that specify either the Framework or the type of entity attempting to access the Framework.

Tag Element Type

TpDomainIDType

Tag Element Value
Choice Element Type
Choice Element Name

P_FW
TpFwID
FwID

P_CLIENT_APPLICATION
TpClientAppID
ClientAppID

P_ENT_OP
TpEntOpID
EntOpID

P_SERVICE_INSTANCE
TpServiceInstanceID
ServiceID

P_SERVICE_SUPPLIER
TpServiceSupplierID
ServiceSupplierID

TpDomainIDType

Defines either the Framework or the type of entity attempting to access the Framework.

Name
Value
Description

P_FW
0
The Framework

P_CLIENT_APPLICATION
1
A client application

P_ENT_OP
2
An enterprise operator

P_SERVICE_INSTANCE
3
A service instance

P_SERVICE_SUPPLIER
4
A service supplier

Observations:

The descriptive text and the data definitions are not fully aligned or consistent, as the authentication domainID is described as one of client Application, enterprise Operator, Service or Service Supplier; whereas the domainID structure supports only clientApplication, enterprise Operator, Service Instance and Service Supplier. Both ServiceInstanceID and ServiceID are of type TpString, however in order to support access sessions at both a Service and Service Instance level, both domain Types should be supported within the data definition and method description.

Proposal: Modify Framework TpDomainID to support both ServiceID and ServiceInstanceID. N5-030190 - 191 CR TpDomainID Correction has been submitted to the meeting.

2. Integrity Management Identification and Behaviour

Description:

Currently the Framework Integrity Management functionality provides the following:

· Fault Management

· HeartBeat Management

· Load Management

Different models for identification have been applied for each integrity management capability, and when combined with the access session and instance level identification issues described in section 1 above, clarification on the intended behaviour and operation of the Framework and Integrity Management capabilities is required.

Observations:

In the case of Fault Management, the App-Fw interface includes ServiceID and ServiceIDLists to identify the target for fault management requests or notifications (empty list or string represents Fw). The Fw-Svc interface uses a subjectType to distinguish between the Framework or Application (Note: there is an implicit assumption that a service instance relates to a single application instance. This has clear dependency on any application HA solution as detailed below in section 3).

Proposal: There is one exception to the pattern observed above on the Fw-Svc Fault Management API. The methods genFaultStatsRecordReq/Res/Err include a TpServiceIDList that appears to serve no purpose on this interface. If it is agreed that this is a bug in the API it is proposed that a CR be generated and submitted to the meeting in order to remove this data.

In the case of HeartBeat Management, no identification is used to establish App-Fw and/or Fw-Svc heartbeat. It is therefore not possible to correlate in any App – Svc HeartBeat. Enabling any heartbeat operation or behaviour is implementation detail on the part of the application, framework or service.

Proposal: Recommend that no modification of HeartBeat is required, as App-Svc healthcheck can be supported via the Integrity Fault Management interfaces. Is the Framework descriptive text sufficiently clear and unambiguous regarding the role of HeartBeat?

In the case of Load Management, the App-Fw interface includes ServiceID and ServiceIDLists to identify the target for load management requests or notifications (empty list or string represents Fw). The Fw-Svc interface uses a subjectType to distinguish between the Framework or Application (Note: there is an implicit assumption that a service instance relates to a single application instance. This has clear dependency on any application HA solution as detailed below in section 3).

The question is posed as to whether there is intended to be support for both a service level and service instance view of Integrity Management.

Proposal: In the case of HeartBeat Management, as HeartBeat to and from the Service and or Service Instance is related to the existence of the appropriate access session (discussed previously in section 1), the implications relate to ensuring consistent implementation of Frameworks and Services, and likely interoperability in a multi-vendor environment. It is recommended that both service level and service instance level heartbeat management be supported such that the framework can determine whether individual instances of a service are available or not, and whether the service is available or not (i.e discriminate between Processes and threads within a process for example). There are no required API changes to support this, however the Framework HeartBeat management behaviour should be clarified to explain that it is the Framework implementation that is responsible for carrying out heartbeat on the appropriate access session, and that the service implementation is responsible for providing supporting functionality on the relevant access session.

Proposal: In the case of Fault and Load Management, it is again recommended that both a service instance and service Level view of load and fault capability is required. This shall allow application or management clients to distinguish between ‘global’ conditions that apply at a service level, or conditions that relate to the individual instance of the service that is particular to the requesting client.

Consider the scenario represented in the figure below:

[image: image2.wmf]A2

Fw

App A

App B

App C

A1

B1

C1

Service 1

Service 2

Key:

Application – Service Instance

Application – Framework Integrity Mgt

Framework - Service Instance Integrity Mgt

Framework – Service Integrity Mgt

A number of services, service 1 and service 2 are considered. Service 1 is used by multiple applications A, B and C. On the application to framework integrity management interfaces it is possible for applications to request load or fault management functionality for a list of services (e.g application A request load reports for service 1 and service 2). Currently the documented recommendation is that the Framework resolves the ServiceID or ServiceIDList to the appropriate service instance (as represented by the red lines), and that load or fault condition with respect to the service (as represented by the ‘logical’ blue lines is not supported.

In order to create a service level view, the Framework could use each instance of the service in order to generate a summary or amalgamated view. It is currently not clear however how a summary view of Fault or Load Management information across a service could be derived from a number of unique service instances. The alternative would be to use the service level access session (the logical blue lines), and the service itself is responsible for summarising total load or fault conditions.

AePONA believe that it is desirable to support both levels of granularity, as this presents the capability to view load on a service instance as a result of that applications use of that service, and also at a service level. For example it should be possible for an application such as A above to select 2 services, e.g different grades of UI service with different SLA and cost plans. The application should be able to determine the load on the particular instance of a service and the service as a whole in order to decide which UI service instance to use.

In order to support both service and service instance integrity management capability, the integrity management Load and Fault Management APIs would require modification to indicate whether the requesting application was interested in service level or service instance level information. If it is agreed that this is a desirable feature of the Framework Integrity Management specification, a set of CRs may be drafted to support discrimination between service and service instance, and submitted to the meeting for approval.

3. Integrity Management and Distributed (HA) Applications

Description:

In addition to the Integrity Management Identification and Behaviour issues highlighted in section 2 above, further consideration is required in the case were multiple instances or images of a single client exist as a result of supporting application high availability.

Note a further contribution, N5-030192 Application HA support using callback covering this particular issue in further detail is also presented for discussion / decision to the CN5#23 San Diego meeting.

An example is represented in the figure below:

[image: image3.wmf]Fw

App A

App A’

A1

Service 1

Key:

Application – Service Instance

Application – Framework Integrity Mgt

Framework - Service Instance Integrity Mgt

Framework – Service Integrity Mgt

Observations:

In the situation above, the service instance may make a request for application related load or fault management functionality, through the use a subjectType to distinguish between the Framework or Application. The absence of explicit identifiers shall mean that the framework is responsible for resolving the request to a particular application instance.

For a HA solution therefore the framework shall need to implement a policy to determine the primary or secondary application, or alternatively create a summary report for the service for all application instances.

Proposal: In order to support Integrity Management for HA applications the Framework needs to be made aware of multiple application instances (subject of N5-030xyz Application HA Support Using CallBack). It is essential that both the Framework and Service Instance have a common understanding of the Primary and Secondary application image and therefore a consistent application instance identification and policy on defining primary and secondary is required. The Integrity Management Fault and Load Management specifications should be modified to allow the service instance to select either the Application (global) or a particular Application Instance. Selecting Global, unlike the case above in section 2, shall require the framework to query each application instance in turn and provide a summary report to the service instance.

If the Application HA model is in the future to be extended to load distribution, again it should be possible for the service to select whether an application wide or application instance report is required. For this reason an arbitrary Primary / Secondary instance identification is not proposed and rather an explicit, possibly date-time stamped instance identification schema is recommended.

If this proposal is agreed, a number of Framework Integrity Management CRs may be drafted and submitted to the meeting.
Document Summary:

This contribution has highlighted a number of issues and concerns regarding how to ensure consistent support for the framework integrity management functionality. In particular these issues result from lack of clear and unambiguous identification between the service and the framework, and the behaviour that is expected to be carried out by the framework. AePONA would like to propose that the Framework Integrity management is revisited in order to ensure a complete specification.

_1104910119.doc

Fw

App A

App A’

A1

Service 1

Key:

Application – Service Instance

Application – Framework Integrity Mgt

Framework - Service Instance Integrity Mgt

Framework – Service Integrity Mgt

_1113739744.doc

Service :

IpSvcFaultManager

Application :

IpAppFaultManager

 :

IpFaultManager

Framework :

IpFaultManager

The Framework identifies the service

instance to conclude which

Application the test is directed at, and

comunicates internally to Framework

interface to the Application.

The application

carries out the

activity test and

returns the result to

the Framework.

Internal Framework

Communications.

1: activityTestReq()

2: appActivityTestReq()

3: appActivityTestRes()

4: activityTestRes()

_1104910093.doc

Fw

App A

App B

App C

A1

B1

C1

Service 1

Service 2

A2

Key:

Application – Service Instance

Application – Framework Integrity Mgt

Framework - Service Instance Integrity Mgt

Framework – Service Integrity Mgt

