joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030039
Meeting #22, Bangkok, THAILAND, 27 – 31 January 2003

Source:
Telcordia Technologies (John-Luc Bakker)
Title:
Simple and complex data types
Agenda Item:
Common Types
Document for:
Decision, Discussion
Category:

Work Item ID:
OSA3 (ETSI ver.3, Parlay 5, 3GPP Rel-6)

Doc Summary:

Specs involved:
ETSI ES 202 915-02, 3GPP TS 29.198-02
Introduction
Requirement S1-021721 calls for the Policy Management API to support additional simple and complex data types. To satisfy this requirement, this contribution identifies three increasingly powerful and easy to use approaches.
A comprehensive set of types is listed in XML Schema (see [1] for a list of types). This first option proposes to align with XML Schema’s data types because XML Schema is the representation of choice for stringified/textual data type expression. XML Schema defines data types such as Boolean, Int (with value space equal to TpInt32), Long, Decimal (e.g. well suited for expressing currency amounts), Float, String, DateTime, anyURI, etc. One not so elegant implementation is shown in “Detailed changed (proposal 1)” below. The implementation changes are partially given; XML Schema supports a long list of data types and it defines the rendering to text for each (where appropriate links are given). As a consequence, developers would have to support all or a partial set of strings to implementation-language-datatype renderings, as well as the validation capability (e.g. a decimal type which corresponding value is encoded as “0-3.14” is invalid).
Alternatively, a second option is to express simple types purely in XML. As a consequence, developers don’t have to learn a new typing system (even though it is aligned with a popular, existing typing system) and can use the tools they have grown accustomed too. Tools will parse the provided XML and decide whether it is valid or not. Usage of generated code greatly enhances productivity of developers. Below, two examples are given; an attribute called “fiets” of type “decimal” and value “12.50” and an attribute called “brommer” of type “anyURI” and value “http://www.parlay.org”.
<?xml version="1.0" encoding="UTF-8"?>
 <fiets xmlns:xsd='http://www.w3.org/2001/XMLSchema' type="xsd:decimal">12.50</fiets>
<?xml version="1.0" encoding="UTF-8"?>
<brommer xmlns:xsd='http://www.w3.org/2001/XMLSchema' type="xsd:anyURI">http://www.parlay.org</brommer>

XML Schema documents that validate the above XML documents representing attributes follow:
<xsd:schema xmlns:xsd='http://www.w3.org/2001/XMLSchema'><xsd:element name="fiets"/></xsd:schema>
<xsd:schema xmlns:xsd='http://www.w3.org/2001/XMLSchema'><xsd:element name="brommer"/></xsd:schema>

Finally, using XML Schema to represent types also opens up the possibility to exchange arbitrary complex typed variables, e.g.:

<?xml version="1.0" encoding="UTF-8"?>

<fiets xsi:noNamespaceSchemaLocation='fiets.xsd' xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <stuur/>

 <wiel><spaken aantal="3"/></wiel>

 <wiel><spaken aantal="4"/></wiel>

</fiets>
Clearly, the second approach fully satisfies requirement S1-021721. Additional advantages are the (earlier mentioned) code generation potential, familiarity of the technology with Parlay’s targeted developer audience, and the documentational aspects of XML Schema; types are available offline such that both the application as well as the service know exactly what to expect and where to adhere to. Implementation of this approach is shown in “Detailed changed (proposal 2)” below.
An example TpAttribute instance conforming to the changes suggested in “Detailed changed (proposal 2)” is given below. It instanciates the type “amount” and assigns it the value USD 120.50. It is assumed that the application and service are aware of the example namespace http://example.com/common (the XML Schema document defining the types in this name space was shared offline). In this namespace the acceptable values and attributes for amount are defined (we assume that valid values for currency are enumerated according to ISO-4217). In the example below, The bicyclePrice is USD 120.50. If we assume that 120.50’s type is defined as a decimal, the XML parser will validate whether the 120.50 is indeed a decimal and subsequently render the stringified decimal representation in an applicable target language type instance. The XML parser will also validate the value assigned to the attribute currency and render it into an applicable target language type.
TpAttribute {

AttributeName : “bicyclePrice”

AttributeType : “P_XML”

AttributeValue : “
<?xml version='1.0' encoding='UTF-8'?>
<example_common:amount
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns:example_common='http://example.com/common'

 currency="USD">120.50</example_common:amount>”
}
References

[1]
http://www.w3.org/TR/xmlschema-2/
Detailed changes (proposal 1)
5.1.13
TpAttributeType

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the type of an attribute. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". The following values are defined.

	Character String Value
	Description

	NULL
	An empty (NULL) string indicates no attribute type

	P_STRING
	Attribute type is type TpString.

	P_INT32
	Attribute type is type TpInt32.

	P_FLOAT
	Attribute type is type TpFloat.

	P_BOOLEAN
	Attribute type is type TpBoolean.

	P_DATETIME
	Attribute type is defined here [http://www.w3.org/TR/xmlschema-2/#dateTime]. For example, to indicate 1:20 pm on May the 31st, 1999 for Eastern Standard Time which is 5 hours behind Coordinated Universal Time (UTC), one would write: 1999-05-31T13:20:00-05:00.

	P_DECIMAL
	Attribute type is defined here [http://www.w3.org/TR/xmlschema-2/#decimal]. Examples are -1.23, 12678967.543233, +100000.00, 210.

	…
	…

Detailed changes (proposal 2)

5.1.12
TpAttribute

This is a Sequence of Data Elements containing the attribute name, type, and value. The attribute Value is interpreted based on the value of the attribute Type.

	Sequence Element Name
	Sequence Element Type
	Notes

	AttributeName
	TpString
	The name of the attribute.

	AttributeType
	TpAttributeType
	The type of the attribute. Valid values for Type must include at least P_STRING, P_INT32 and P_FLOAT. If the Type’s value is P_XML, then the sequence element AttributeValue will contains the XML document as a TpString that specifies both the attribute type and its value.

	AttributeValue
	TpAny
	The values for the attribute. This model allows multi-valued attributes. Cannot be an empty list.

5.1.13
TpAttributeType

This data type is identical to a TpString, and is defined as a string of characters that uniquely identifies the type of an attribute. Other Network operator specific capabilities may also be used, but should be preceded by the string "SP_". The following values are defined.

	Character String Value
	Description

	NULL
	An empty (NULL) string indicates no attribute type

	P_STRING
	Attribute type is type TpString.

	P_INT32
	Attribute type is type TpInt32.

	P_FLOAT
	Attribute type is type TpFloat.

	P_XML
	Attribute type is type XML.

