joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030061

Meeting #22, Bangkok, THAILAND, 27 – 31 January 2003

Source:
AePONA (Eamonn Murray)
Title:
OSA 1,2: Integrity Management and Service Instance Issue.

Agenda Item:
5,6 OSA Version 1,2

Document for:
Decision
Category:
Fault

Work Item ID:
OSA1 (ETSI ver.1, Parlay 3, 3GPP Rel-4)

OSA2 (ETSI ver.2, Parlay 4, 3GPP Rel-5)

Doc Summary:
Framework Integrity Management functionality is supported through interfaces established using the obtainInterfaceWithCallback method. This method is tightly coupled to the client or service access session with the framework rather than using explicit identification. AePONA believes that the current specification is ambiguous and could result in framework and service interoperability problems, or potentially an inability to support Integrity Management functionality.

Specs involved:
ETSI ES 201 915-3,
ETSI ES 202 915-3

3GPP TS 29.198-3 v4.6.0, 3GPP TS 29.198-3 v5.1.0

Problem Description:

AePONA considers that there is a weakness in the current specification of the framework API. In order to support integrity management functionality, the framework uses callback references supplied by the application or service. Such callback references are established by using the obtainInterfaceWithCallback method on the framework IpAccess interface. As the method itself contains no identification of the application or service, the framework must use the IpAccess interface in order to resolve the identification of the client or service.
Consider the Fault Management sequence below, taken from the current framework API specification:

[image: image1.wmf]Service :

IpSvcFaultManager

Application :

IpAppFaultManager

 :

IpFaultManager

Framework :

IpFaultManager

The Framework identifies the service

instance to conclude which

Application the test is directed at, and

comunicates internally to Framework

interface to the Application.

The application

carries out the

activity test and

returns the result to

the Framework.

Internal Framework

Communications.

1: activityTestReq()

2: appActivityTestReq()

3: appActivityTestRes()

4: activityTestRes()

1:
The service instance asks the framework to invoke an activity test on the client application.

2:
The framework asks the application to do the activity test. It is assumed that there is internal communication between the service facing part of the framework (i.e. IpFwFaultManager interface) and the part that faces the client application.

3:
The application does the activity test and returns the result to the framework.

4:
The framework internally passes the result from its application facing interface (IpFaultManager) to its service facing side, and sends the result to the service.

In order to map method 1 from the service to method 2 to the application, the framework is required to identify the service instance, and from this determine the application instance. Therefore each client or service instance MUST have a unique access session with the framework in order to support unique identification. However it is not clear how the identification and correlation shall happen, as each client and service instance access session is independent of the other, and no identifier is passed to the framework in order to match client and service instances. The service instance identifier used in service instance access, and the service manager object reference returned during signServiceAgreement cannot be reconciled by the framework.

If it is the intention to have an access session for each service instance, then the serviceInstanceLifecycleManager must ensure that any shared serviceID that results in multiple service instances results in multiple Fw-Svc access sessions. However this must still be extended in order to inform the framework which service instance or application instance the access session relates to, in order to ensure that Integrity management is supported. If indeed it is not the case that a unique access session for each service instance is needed, then currently much of the integrity management functionality cannot be supported, as enabling integrity management at a service level alone is not sufficient to allow the framework to identify a unique application.

This point is not explicitly made in section 9 of the current framework API specification, and if indeed a unique service instance access session is assumed, then as a minimum, additional sequences should be introduced to explain how the service instance access session is established to support integrity management. For example, is it necessary to authenticate each and every service instance, or can the service be authenticated and each instance of the service thereafter create a separate access session using requestAccess? It could be argued that it should not be necessary to uniquely authenticate each and every instance of the service if the service itself has already been authenticated, particularly as the service is generic, and each application that results in a service instance shall have already been authenticated. However the current requestAccess method cannot identify or distinguish between multiple instances or images of a service that share a common authentication. It would therefore appear necessary with the current API to carry out full authentication, requestAccess and obtainInterfaceWithCallBack to enable each service instance for framework integrity management. (Note: currently TpAuthDomain indicates service instance, however the description of initiateAuthentication specifies service and both types are strings!)

In addition to clarifying the intended behaviour above, the Fw-Svc Fault management interfaces continue to use TpServiceIDList in a number of methods, further confusing whether there is intended to be support for both a service level and service instance view of integrity management.

Consider the scenario represented in the figure below:

[image: image2.wmf]A2

Fw

App A

App B

App C

A1

B1

C1

Service 1

Service 2

Key:

Application – Service Instance

Application – Framework Integrity Mgt

Framework - Service Instance Integrity Mgt

Framework – Service Integrity Mgt

A number of services, service 1 and service 2 are considered. Service 1 is used by multiple applications A, B and C. On the application to framework integrity management interfaces it is possible for applications to request load or fault management functionality for a list of services (e.g application A request load reports for service 1 and service 2). Currently it is up to the implementation whether the load or fault condition with respect to the service (as represented by the ‘logical’ blue lines) or only with respect to the service instance (as represented by the red lines) is required. In order to do this, the framework is nevertheless required to be aware of each instance of the service in order to generate a summary or amalgamated view. It is currently not clear however how a summary view of Fault or Load Management information across a service could be derived from a number of unique service instances. (The alternative would be for the service also to provide a service access session in which case the logical blue lines become instantiated, and the service itself is responsible for summarising total load or fault conditions). Alternatively, to create a service instance view particular to the requesting client, the framework would need to reconcile each instance of a service to a particular client. However in the absence of instance identification in the access session or obtainInterfaceWithCallback this is not currently possible. Therefore in either case there appears to be limitations with the current specification.

AePONA believe that it is desirable to support both levels of granularity, as this presents the capability to view load on a service instance as a result of that applications use of that service, and also at a service level. For example it should be possible for an application such as A above to select 2 services, e.g different grades of UI service with different SLA and cost plans. The application should be able to determine the load on the particular instance of a service and the service as a whole in order to decide which UI service instance to use. To support both service and service instance integrity management capability, the integrity management APIs would require modification to indicate whether the application was interested in service or service instance information.

Finally, the problems and issues highlighted do not consider the case were multiple instances or images of a single client exist as a result of supporting application high availability. (Note a further contribution, N5-030XXX Application HA support using callback covering this particular issue in further detail is also presented for discussion to the CN5#22 Bangkok meeting). An example is represented in the figure below

[image: image3.wmf]Fw

App A

App A’

A1

Service 1

Key:

Application – Service Instance

Application – Framework Integrity Mgt

Framework - Service Instance Integrity Mgt

Framework – Service Integrity Mgt

In the situation above, the service instance may make a request for application related load or fault management functionality. Once again the absence of identifiers shall mean that the framework is responsible for resolving the request to a particular application instance. For a HA solution therefore the framework shall need to implement a policy to determine the primary or secondary application, or alternatively create a summary report for the service. If the model is extended to load distribution, again it should be possible for the service to select whether an application wide or application instance report is required.

This contribution has highlighted a number of issues and concerns regarding how to ensure consistent support for the framework integrity management functionality. In particular these issues result from lack of clear and unambiguous identification between the service and the framework, and the behaviour that is expected to be carried out by the framework. AePONA would like to propose that the Framework Integrity management is revisited in order to ensure a complete specification. In order to do this AePONA propose the following:

1. Review the Management Model. Agree what management functionality is necessary at a service, service instance, client, client instance and framework (framework instance for federated Frameworks?) is needed.

2. Once the requirements are agreed – resolve the issue of identification. Either agree on unique parameter based identification (Explicit), or continue with a hidden (Implicit) identification mechanism based on the access session.

3. Based on 1 and 2 above make corrections to the API to clarify the functionality of the API and behaviour of the framework, client and service.

_1104910093.doc

Fw

App A

App B

App C

A1

B1

C1

Service 1

Service 2

A2

Key:

Application – Service Instance

Application – Framework Integrity Mgt

Framework - Service Instance Integrity Mgt

Framework – Service Integrity Mgt

_1104910119.doc

Fw

App A

App A’

A1

Service 1

Key:

Application – Service Instance

Application – Framework Integrity Mgt

Framework - Service Instance Integrity Mgt

Framework – Service Integrity Mgt

