joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-030047

Meeting #22, Bangkok, Thailand, 27 Jan – 31 Jan 2003

Source:
Ericsson (Erwin van Rijssen)
Title:
Rel-6: continued discussion on event notification extension

Agenda Item:

Document for:
Discussion and approval
Category:

Work Item ID:
OSA3 (ETSI ver.3, Parlay 5, 3GPP Rel-6)

Doc Summary:

Specs involved:
ETSI ES 201 915-3, 3GPP TS 29.198-3

1 Introduction

During the Miami meeting, an initial proposal for extending the Framework event notification mechanism to allow the Framework to inform application providers about new SCSs and their level of Backward compatibility with respect to a previous SCS version was discussed. It was concluded that a number of use cases, explaining the desired functionality would be useful in order to assess the proposal.

An updated version of the contribution was discussed in Dublin (N5-021034). The meeting agreed that Alternative 2 (new notification criterion on FW to Application API; and additional standardised service properties on FW to Service API) is the preferred solution. However, the meeting felt the following changes are needed before the document can be approved:

· simplify the backwards compatibility matrix

· simplify the mechanism by limiting it to Advertising of new SCS, thus removing the “Immediate migration” as a specialisation

This contribution has incorporated the Dublin comments and provides some futher clarification on the use cases.

2 Problem

When a new SCS becomes available it is useful to inform application providers that are using an older version of the SCF type about the level of backward compatibility (or non-compatibility) involved. This allows an application provider to have an indication about the effort on his side required in migrating from the older to the newer version.

There exists today no mechanism in OSA to convey such information to an Application.

3 Use cases for Advertising of new SCS

The following use cases can be distinguished:

· The new SCS is replacing the SCS currently in use

· The new SCS is made available in addition to the current SCS

The differences between these use cases do not impact the interfaces, but only differ in service property values.

Preconditions:

· The application is using an SCS, offering an implementation of an SCF for Parlay / OSA version x.y.

· The application subscribed to the notification mechanism and indicated it is interested to be notified when new SCSs of certain type become available.

An implementation of a newer version of the SCF type, the application is currently using, is registered to the Parlay / OSA Framework in one of the following ways:

· Self-registration of the SCS via the Framework – Service interface

· Registration directly in the Framework, via manual management action or via another management interface beyond the scope of Parlay / OSA

The SCF implementation the application is using continues running. During registration, the new implementation indicates to the Framework that it has a specific backward compatibility level compared to the previous version of the specification. Futhermore the new SCS can specify properties like for instance:

· The date and time when it desires applications to be migrated to the new version.

· An indication whether or not data (e.g. notifications) are migrated to the new version

· An indication whether or not a new SLA needs to be signed

· An indication whether it replaces the existing SCS or is an additional SCS of the same type

It is also possible that these properties are not provided by the new SCS, but added by the Framework operator.

The Framework then forwards all migration related information to the application (via the notification mechanism).

Based on this information, the application provider can determine his / her strategy for migrating the application to the newer implementation.

4 Solution

4.1 General

When a new SCS (functional entity providing the SCF / Service implementation) is made available, it first registers to the OSA / Parlay framework and during this process it supplies the Framework with the properties supported in this implementation of the SCF.

The Framework knows about all the SCF implementations that are available in the specific network operator domain and also about the applications using them and the restrictions that apply on the usage (so-called Service Level Agreements).

Therefore the Framework could do a check of the properties of the new SCF implementation against previous versions. From this check an indication can be obtained about to what extent the new SCF implementation is backward compatible with the other versions. This information could then be forwarded to the applications using previous versions together with references to interfaces of the new SCS. To achieve the latter, an extension to the current Framework notification mechanism should be made.

The Framework notification mechanism can be guided by dedicated service properties that specify that the SCF implementation replaces or outdates a specified older SCF implementation or that specify the migration strategy.

4.2 Migration Notification support on the Framework-to-Application API

An Application can subscribe for a notification with a new criterion P_EVENT_FW_COMPATIBLE_SERVICE_AVAILABLE. When a compatible SCF becomes available the Application is informed of this. The information that is sent to the Application contains additional migration information.

The solution is worked out in the chapter Required changes in the 29.198-3 specification.

4.3 Migration support on the Framework-to-Service API

Dedicated standardized Service Properties guide the migration mechanism, for example:

P_COMPATIBLE_WITH_SERVICE
ServiceId

The solution is worked out in the chapter Required changes in the 29.198-3 specification.

5 Required changes in the 29.198-3 specification

9.1.1.1 Interface Class IpFwServiceRegistration

Inherits from: IpInterface.

The Service Registration interface provides the methods used for the registration of network SCFs at the framework.

<<Interface>>

IpFwServiceRegistration

registerService (serviceTypeName : in TpServiceTypeName, servicePropertyList : in TpServicePropertyList) : TpServiceID

announceServiceAvailability (serviceID : in TpServiceID, serviceInstanceLifecycleManagerRef : in service_lifecycle::IpServiceInstanceLifecycleManagerRef) : void

unregisterService (serviceID : in TpServiceID) : void

describeService (serviceID : in TpServiceID) : TpServiceDescription

unannounceService (serviceID : in TpServiceID) : void

9.1.1.1.1 Method registerService()

The registerService() operation is the means by which a service is registered in the Framework, for subsequent discovery by the enterprise applications. Registration can only succeed when the Service type of the service is known to the Framework (ServiceType is 'available'). A service-ID is returned to the service supplier when a service is registered in the Framework. When the service is not registered because the ServiceType is 'unavailable', a P_SERVICE_TYPE_UNAVAILABLE is raised. The service-ID is the handle with which the service supplier can identify the registered service when needed (e.g. for withdrawing it). The service-ID is only meaningful in the context of the Framework that generated it.

Returns <serviceID> : This is the unique handle that is returned as a result of the successful completion of this operation. The Service Supplier can identify the registered service when attempting to access it via other operations such as unregisterService(), etc. Enterprise client applications are also returned this service-ID when attempting to discover a service of this type.

Parameters

serviceTypeName : in TpServiceTypeName

The "serviceTypeName" parameter identifies the service type. If the string representation of the "type" does not obey the rules for identifiers, then an P_ILLEGAL_SERVICE_TYPE exception is raised. If the "type" is correct syntactically but the Framework is able to unambiguously determine that it is not a recognised service type, then a P_UNKNOWN_SERVICE_TYPE exception is raised.

servicePropertyList : in TpServicePropertyList

The "servicePropertyList" parameter is a list of property name and property value pairs. They describe the service being registered. This description typically covers behavioural, non-functional and non-computational aspects of the service. Service properties are marked "mandatory" or "readonly". These property mode attributes have the following semantics:

a. mandatory - a service associated with this service type must provide an appropriate value for this property when registering.

b. readonly - this modifier indicates that the property is optional, but that once given a value, subsequently it may not be modified.

Specifying both modifiers indicates that a value must be provided and that subsequently it may not be modified. Examples of such properties are those which form part of a service agreement and hence cannot be modified by service suppliers during the life time of service.

If the type or the semantics of the type of any of the property values is not the same as the declared type (declared in the service type), then a P_PROPERTY_TYPE_MISMATCH exception is raised. If the "servicePropertyList" parameter omits any property declared in the service type with a mode of mandatory, then a P_MISSING_MANDATORY_PROPERTY exception is raised. If two or more properties with the same property name are included in this parameter, the P_DUPLICATE_PROPERTY_NAME exception is raised.

If a service is registered with the property P_COMPATIBLE_WITH_SERVICE in its servicePropertyList, then the Framework shall notify all applications using instances of services identified by this property, using the P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE event, if they have registered for such a notification. If an incorrect combination of properties is included in conjunction with P_COMPATIBLE_WITH_SERVICE, a P_MISSING_MANDATORY_PROPERTY exception is raised.

Returns

TpServiceID

Raises

TpCommonExceptions, P_PROPERTY_TYPE_MISMATCH, P_DUPLICATE_PROPERTY_NAME, P_ILLEGAL_SERVICE_TYPE, P_UNKNOWN_SERVICE_TYPE, P_MISSING_MANDATORY_PROPERTY, P_SERVICE_TYPE_UNAVAILABLE

10 Service Properties

10.1 Service Property Types

The service type defines which properties the supplier of an SCF supplier shall provide when he registers an SCF.

At Service Registration the properties of a type shall be interpreted as the set of values that can be supported by the service. If a service type has a certain property (e.g. "CAN_DO_SOMETHING"), a service registers with a property value of {"true", "false"}. This means that the SCS is able to support Service instances where this property is used or allowed and instances where this property is not used or allowed. This clarifies why sets of values shall be used for the property values instead of primitive types.

At establishment of the Service Level Agreement the property can then be set to the value of the specific agreement. The context of the Service Level Agreement thus restricts the set of property values of the SCS and will thus lead to a sub-set of the service property values. When the correct SCF is instantiated during the discovery and selection procedure (see Note), the Service Properties shall thus be interpreted as the requested property values.

NOTE:
This is achieved through the createServiceManager() operation in the Service Instance Lifecycle Manager interface.

All property values are represented by an array of strings. The following table shows all supported service property types.

Service Property type name
Description
Example value (array of strings)
Interpretation of example value

BOOLEAN_SET
set of Booleans
{"FALSE"}
The set of Booleans consisting of the Boolean "false".

INTEGER_SET
set of integers
{"1", "2", "5", "7"}
The set of integers consisting of the integers 1, 2, 5 and 7.

STRING_SET
set of strings
{"Sophia", "Rijen"}
The set of strings consisting of the string “Sophia" and the string "Rijen"

ADDRESSRANGE_SET
set of address ranges
{"123??*", "*.ericsson.se"}
The set of address ranges consisting of ranges 123??* and *.ericsson.se.

INTEGER_INTERVAL
interval of integers
{"5", "100"}
The integers that are between or equal to 5 and 100.

STRING_INTERVAL
interval of strings
{"Rijen", "Sophia"}
The strings that are between or equal to the strings "Rijen" and "Sophia", in lexicographical order.

INTEGER_INTEGER_MAP
map from integers to integers
{"1", "10", "2", "20", "3", "30"}
The map that maps 1 to 10, 2 to 20 and 3 to 30.

The bounds of the string interval and the integer interval types may hold the reserved value "UNBOUNDED". If the left bound of the interval holds the value "UNBOUNDED", the lower bound of the interval is the smallest value supported by the type. If the right bound of the interval holds the value "UNBOUNDED", the upper bound of the interval is the largest value supported by the type.

When an SCF is registerd by the Service Supplier, Service Properties of type BOOLEAN_SET shall not contain an empty set. When a service is discovered by an application, this application shall specify either {TRUE} or {FALSE} as value for service properties of type BOOLEAN_SET.
10.2 General Service Properties

Each service instance has the following general properties:

· Service Name
· Service Version
· Service Instance ID
· Service Instance Description
· Product Name
· Product Version
· Supported Interfaces
· Operation Set
· Compatible Service

· Backward Compatibility Level

· Migration Required
· Data migrated

· Migration Date and Time

The following sections describe these general service properties in more detail. The values for the mode are defined in the type TpServiceTypePropertyMode.

10.2.1 Service Name

Property
Type
Mode
Description

P_SERVICE_NAME
STRING_SET
MANDATORY_READONLY
This property contains the name of the service, e.g. “UserLocation”, “UserLocationCamel”, “UserLocationEmergency” or “UserStatus”.

10.2.2 Service Version

Property
Type
Mode
Description

P_SERVICE_VERSION
STRING_SET
MANDATORY
This property contains the version of the APIs, to which the service is compliant. It is a set of strings as specified in the TpVersion type.

10.2.3 Service ID

Property
Type
Mode
Description

P_SERVICE_ID
STRING_INTERVAL
READONLY
This property uniquely identifies a specific service. Note that the Framework generates this property value when the Service Supplier registers the service. This property should not be confused with the serviceInstanceID generated by the Framework when a Client Application signs a Service Agreement to obtain the Service Manager

10.2.4 Service Description

Property
Type
Mode
Description

P_SERVICE_DESCRIPTION
STRING_SET
MANDATORY_READONLY
This property contains a textual description of the service. It should not be interpreted as a description of a Service Instance (as identified by a serviceInstanceID generated by the Framework when a Client Application signs a Service Agreement to obtain the Service Manager).

10.2.5 Product Name

Property
Type
Mode
Description

P_PRODUCT_NAME
STRING_SET
READONLY
This property contains the name of the product that provides the service, e.g. “Find It”, “Locate.com”.

10.2.6 Product Version

Property
Type
Mode
Description

P_PRODUCT_VERSION
STRING_SET
READONLY
This property contains the version of the product that provides the service, e.g. “3.1.11”.

10.2.7 <<deprecated>> Supported Interfaces

This property contains a list of strings with interface names that the service supports, e.g. “IpUserLocation”, “IpUserStatus”. This property is deprecated and will be removed in a future version of the specification.

10.2.8 Operation Set

Property
Type
Mode
Description

P_OPERATION_SET
STRING_SET
MANDATORY
Specifies set of the operations the SCS supports.

The notation to be used is : {“Interface1.operation1”,”Interface1.operation2”, “Interface2.operation1”}, e.g.:

{“IpCall.createCall”,”IpCall.routeReq”}.

10.2.10 Compatible Service

Property
Type
Mode
Description

P_COMPATIBLE_WITH_SERVICE
STRING_SET
READONLY
Specifies the Set of Services, identified by its ServiceIDs, with which this new service is compatible with.

This property should at least be accompanied with the properties P_BACKWARD_COMPATIBILITY_LEVEL, P_MIGRATION_REQUIRED.
Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties like Migration Required, Data Migrated, etc. For all these properties the order of the Services should be consistent.

10.2.9 Backward Compatibility Level

Property
Type
Mode
Description

P_BACKWARD_COMPATIBILITY_LEVEL
BOOLEAN_SET
READONLY
Specifies if the new service is completely backwards compatible with the service identified in the P_COMPATIBLE_WITH_SERVICE property:

Value = TRUE: Service is completely backwards compatible

Value = FALSE: SCS is not completely backwards compatible.

This property requires the presence of P_COMPATIBLE_WITH_SERVICE property.
Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties. For all these properties the order of the Services should be consistent.

10.2.9 Migration Required

Property
Type
Mode
Description

P_MIGRATION_REQUIRED
BOOLEAN_SET
READONLY
Specifies if the new service is replacing the service identified in the P_COMPATIBLE_WITH_SERVICE property:

Value = TRUE: new service is replacing the existing one – migration is required before the date/time indicated in P_MIGRATION_DATE_AND_TIME property.

Value = FALSE: new service is not replacing the existing one – migration not required, the existing service is retained.

Only one value is permitted in the value set of this property at service registration.

This property requires the presence of P_COMPATIBLE_WITH_SERVICE property. If the value set of P_MIGRATION_REQUIRED contains TRUE, P_DATA_MIGRATED and P_MIGRATION_DATE_AND_TIME properties shall also to be present.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties. For all these properties the order of the Services should be consistent.

10.2.10 Data Migrated

Property
Type
Mode
Description

P_DATA_MIGRATED
BOOLEAN_SET
READONLY
Indicates if the data (e.g. notifications) from the existing service identified in the P_COMPATIBLE_WITH_SERVICE property is also available in this Service.

Value = TRUE: all data is migrated

Value = FALSE: no data is migrated

This property requires the presence of P_COMPATIBLE_WITH_SERVICE and the P_MIGRATION_REQUIRED properties and having the P_MIGRATION_REQUIRED with value TRUE.

Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties. For all these properties the order of the Services should be consistent.

10.2.11 Migration Date And Time

Property
Type
Mode
Description

P_MIGRATION_DATE_AND_TIME
STRING_SET
READONLY
This property contains the date and time, in the format described in TpDateAndTime, by which point applications shall have migrated from existing services to this new service.

Migration to the new service requires the application to terminate the existing service agreement, and sign a new one.

Failure to do this by the migration date and time indicated in this property may result in the service agreement being terminated by the Framework, since the service supplier may choose to unregister the service following this date and time.

Only one value of TpDateAndTime is permitted to be present in this property at service registration.

This property requires the presence of P_COMPATIBLE_WITH_SERVICE, P_MIGRATION_REQUIRED and P_DATA_MIGRATED properties and having the P_MIGRATION_REQUIRED with value TRUE.
Note that the new Service can be compatible with more than one Service that is currently registered to the Framework. Therefore this Property is a SET, as well as all related properties. For all these properties the order of the Services should be consistent.

11 Data Definitions

This clause provides the Framework specific data definitions necessary to support the OSA interface specification.

The general format of a data definition specification is the following:


Data type, that shows the name of the data type;


Description, that describes the data type;


Tabular specification, that specifies the data types and values of the data type;


Example, if relevant, shown to illustrate the data type.

All data types referenced but not defined in this clause are common data definitions which may be found in 3GPP TS 29.198-2.

...

10.2 Event Notification Data Definitions

10.2.1 TpFwEventName

Defines the name of event being notified.

Name
Value
Description

P_EVENT_FW_NAME_UNDEFINED
0
Undefined

P_EVENT_FW_SERVICE_AVAILABLE
1
Notification of SCS(s) available

P_EVENT_FW_SERVICE_UNAVAILABLE
2
Notification of SCS(s) becoming unavailable

P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE
3
Notification of a backwards compatible SCS becoming available, to which the application can migrate.

10.2.2 TpFwEventCriteria

Defines the Tagged Choice of Data Elements that specify the criteria for an event notification to be generated.

Tag Element Type

TpFwEventName

Tag Element Value
Choice Element Type
Choice Element Name

P_EVENT_FW_NAME_UNDEFINED
TpString
EventNameUndefined

P_EVENT_FW_ SERVICE_AVAILABLE
TpServiceTypeNameList
ServiceTypeNameList

P_EVENT_FW_SERVICE_UNAVAILABLE
TpServiceTypeNameList
UnavailableServiceTypeNameList

P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE
TpServiceTypeNameList
CompatibleServiceTypeNameList

10.2.3 TpFwEventInfo

Defines the Tagged Choice of Data Elements that specify the information returned to the application in an event notification.

Tag Element Type

TpFwEventName

Tag Element Value
Choice Element Type
Choice Element Name

P_EVENT_FW_NAME_UNDEFINED
TpString
EventNameUndefined

P_EVENT_FW_ SERVICE_AVAILABLE
TpServiceIDList
ServiceIDList

P_EVENT_FW_SERVICE_UNAVAILABLE
TpServiceIDList
UnavailableServiceIDList

P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE
TpFWMigrationServiceAvailableInfo
MigrationServiceAvailableList

10.2.4 TpFwMigrationServiceAvailableInfo

Defines the information to be supplied when an SCS becomes available

Sequence Element

Name
Sequence Element

Type
Documentation

ServiceType
TpServiceTypeName
Type of SCS that has become available

ServiceID
TpServiceID
ID of the SCS that has become available

CompatibleServiceID
TpServiceID
ID of the SCS with which this new SCS is compatible with.

BackwardCompatibilityLevel
TpBoolean
Specifies if the new SCS is completely backwards compatible with the currently used SCS.

Value = TRUE: SCS is completley backwards compatible

Value = FALSE: SCS is not completely backwards compatible. Contact the Framework operator for more information.on how to migrate.

MigrationRequired
TpBoolean
Specifies if the new SCS is replacing the existing SCS

Value = TRUE: new SCS is replacing the existing one - migration is required before the date/time indicated in MigrationDateAndTime field

Value = FALSE: new SCS is not replacing the existing one, but is provided in addition.

All migration to the new SCS, whether required or not, shall involve the application terminating the existing service agreement and signing a new one.

DataMigrated
TpBoolean
Indicates whether all the data the application set in the previous SCS (e.g. notifications) is also available in the new SCS.

Value = FALSE : the new SCS has not obtained all data (e.g. notifications) related to the old SCS and the application needs to reset all the previous data.

Value = TRUE: the new SCS has obtained data (e.g. notifications) related to the old SCS, the application can use the new SCS without resetting data.

MigrationDataAndTime
TpDataAndTime
Indicates the date and time before which applications shall have migrated from existing the existing SCS to this new SCS.

Migration to the new SCS requires the application to terminate the existing service agreement, and sign a new one.

Failure to do this by the migration date and time indicated in this field may result in the service agreement being terminated by the Framework, since the service supplier may choose to unregister the service following this date and time.

MigrationAdditionalInfo
TpMigrationAdditionalInfoSet
Contains additional migration information. This is initially provided to permit addition of information in later releases without impacting backwards compatibiltiy.

11.2.1 TpMigrationAdditionalInfo

Defines the Tagged Choice of Data Elements that specify additional migration-related information.

Tag Element Type

TpMigrationAdditionalInfoType

Tag Element Value
Choice Element Type
Choice Element Name

P_MIGRATION_INFO_UNDEFINED
NULL
MigrationInfoUndefined

11.2.2 TpMigrationAdditionalInfoType

Defines the type of migration-related additional information.

Name
Value
Description

P_MIGRATION_INFO_UNDEFINED
0
Undefined

11.2.3 TpMigrationAdditionalInfoSet

Defines a Numbered Set of Data Elements of TpMigrationAdditionalInfo.
6 Conclusions

In order to add a function to the Framework that helps application providers with migration to newer SCSs we have investigated the impact on the Parlay/OSA specs. The impact is mainly extension of data-types used in the Framework Event Notification function and addition of general Service Properties.

Ericsson kindly requests to consider these proposed extensions to the standard.

