Proposed Extensions to Parlay Policy Management Specifications
Based on SA-1 Requirements S1-021721/722

Lucent Technologies

1 On-Request Evaluation of Policies: An Overview

Heretofore we have seen that a client (e.g., a 3rd party application) may invoke the use of methods and interfaces that are related to the definition, generation, subscription or notification of events. The underlying paradigm in this case is based on the notion that a set of conditions, resulting from external stimuli [see section: 8.3.23]
 or through the interaction of policy rules [see section: 8.12, 8.13] trigger the generation of pre-defined events. Clients that have subscribed to an event receive notification if and when the event is triggered. This paradigm enables clients to receive notification when policy rules determine that, e.g., pre-established thresholds (such as network load, charging limits, etc.) have been crossed. A principal hallmark of the paradigm is that there is a many-many relationship between clients and events.

In contrast a request for evaluation (of policies) that is inherently exclusive to a client requires a different approach. A context needs to be established such that the request is unambiguously associated with the requesting entity and with a set of rules that are to be evaluated. Similarly a set of parametric values (e.g., variable name-value pairs) that are to be used in the evaluation must be unambiguously specified. This also holds for a set of return parameters (variable names) whose values are to be established as a result of the evaluation. In the following we define a method called evalPolicy(). This method may be invoked by a client using an ‘instance’ of a pre-defined method signature. A signature instance is characterized by 2 explicit input attributes. The values of the input attributes (1-2 below) are provided by the client at run-time. By virtue of the value of the first, i.e., the name of the underlying signature, an additional 2 attribute-value pairs are implicitly available for the requested evaluation. These (3- 4 below) are defined and provisioned, apriori, for each signature. For details and exact definitions see the specifications for IpPolicySignature and evalPolicy() in sections [5,6] of this document. Together the following 4 attributes and their values establish the context for an evaluation request
.

1. The name of the underlying signature

2. A list of input variable name-value pairs

3. A (possibly NULL) list of rule group names

4. A (possibly NULL) list of policy roles

Note that a list of input variables by themselves may not be sufficient to establish a ‘context’. This is illustrated by a simple example: consider 2 signature instances named “greatest_throughput” and “least_cost” respectively. Assume that the former is used by evalPolicy() to request a service name that supplies the maximum bandwidth available. Further assume that the latter is used by evalPolicy() to request the name of the least cost service. Both signature instances use an identical list of input variable name-value pairs.

The context for both requests is now defined by the following attribute-value pairs. For simplicity we do not show the attribute-value pair associated with the name of the signature. We also use an informal notation for ease of illustration.

Input Variables:=
names of supported service types, e.g., “platinum”, “gold”, “silver”, “bronze”.

Rule group name: =
name of the rule-group that is used for the evaluation, e.g., “service_selection”.

Policy role name :=
{“maximum_throughput” , the policy role-name for each rule in the rule-group {“service_selection” that is specified in the signature

 {“greatest_throughput” .

OR

Policy role name :=
{“minimum_cost”, the policy role-name for each rule in the rule-group {“service_selection” that is specified in the signature

 {“least_cost”.

Thus, when evalPolicy() is invoked with an instance of the first signature (“greatest_throughput”) rules from the “service_selection” group with policy role “maximum_throughput” are evaluated. The name of the service supplying the maximum throughput is returned. Similarly, when evalPolicy() is invoked with an instance of the second signature (“least_cost”) the name of the least cost service is returned. The example illustrates the usefulness of a signature in establishing different contexts for rule evaluation – in this case where an identical set of input variables is used in two different contexts. It also illustrates that input variables by themselves are not, in general, sufficient to unambiguously define a context.

[image: image1.wmf]Logical View

Application

IpPolicyManager

IpPolicyDomain

Logical View:

Policy Engine

Logical View:

Policy DB

1. evalPolicy()

New

2. Select Rules

RuleGroup=service_selection

PolicyRole=maximum_throughput

3. Down load & Evaluate Rules

4. TpNameValueList

IpPolicySignature

The following flow diagram illustrates a typical invocation of evalPolicy() and actions resulting from that it. Intermediate steps such as obtaining access to IpPolicyManager are not shown.

Note: The use of pre-defined signatures by evalPolicy() leverages a number of useful properties. Some of there are listed below:

· Abstraction: The 'signature' interface object abstracts details of rule/group configurations. Thus a client application evoking evalPolicy() does not need to know this information.

· Economy: Role combinations and group information are established during a provisioning session thus economizing on processing during decision rendering.

· Error management: Since role and group information is established during provisioning there is no penalty imposed by errors in transmitting these arguments during a decision rendering session.
2 General Note

We define a number of methods and one new interface (IpPolicySignature) in the following sections. Every method is labelled with one of the following: ‘P’ (used for provisioning only), ‘D’ (may be used in a provisioning or policy evaluation session) or ‘E’ (used in an policy evaluation session only). This is to ensure that no confusion arises due to similarity in method names. All methods defined below, with the exception of those that are defined under IpPolicySignature, are specific to a given policy domain and hence will be introduced under the IpPolicyDomain interface [see section 8.3]. IpPolicySignature will be introduced in the main body of the PM specifications as a new interface. Note: IpPolicySignature interfaces that are specific to an IpPolicyDomain may be accessed through methods defined in section 4 of this document.

3 Managing Variables

In this section we introduce variable scoping rules, variable management methods and run-time semantics for variables. The methods in this section complement the previously defined family of variable management methods [see sections 8.3.26 – 8.3.30]. We recommend that two previously defined variable management methods [see section 8.3.31 and 8.3.32] be deprecated. The definition of these has been rendered obsolete with the introduction of complex variables. The deprecated methods have been replaced by the following methods: createVariable(), removeVariable(), setVariableValue(), getVariableType(), getVariableValue().
NOTE: Definitions of data structures underlying the variable types defined in sections below can be found in the ‘Data Types for Variable’ section, i.e., in section 9 of this document.

3.1 Variable Scoping

Variable declarations can be scoped. For example, a variable declared in a parent domain is made available to all the children domains. However, a child domain is free to “override” the variable declaration, and define it’s own type as necessary. Groups will use the closest variable declaration used. We illustrate this with an informal example.

Consider a parent domain Dp and it’s child domain Dc. Let group G be associated with Dc. Let the following variables be declared with Dp and Dc:

Dp:
x: TpString,
y: List of TpInt32;

Dc:
x: List of TpFloat;

If G contains a rule that uses variables x and y, the types associated with that rule will be:

G:
x: List of TpFloat,
y: list of TpInt32;

since the type of x in Dc “overrides” the type of x in the parent domain Dp.

3.2 Variable Provisioning

Variables are associated with VariableSets, and VariableSets are associated with Domains. Note that the notion of VariableSets is only for logical grouping; it does not affect the scoping of variables. In particular, variable names must be unique across all VariableSets in any particular domain.

The following methods complement the variable management methods defined under IpPolicyDomain [section 8.3] . Note that the methods defined below replace the setVariable() and getVariable()methods from sections 8.3.31 and 8.3.32.

3.2.1 Method createVariable()

(P) Create a variable within a variable set.

Parameters

variableSetName : in TpString

The name of the variable set within which to set the specified variable.
variableName : in TpString
The name of the variable being created.
variableType : in TpType

The type of the variable being created.
Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS
3.2.2 Method setVariableValue()

(P) Set a variable value within a variable set.

Parameters

variableSetName : in TpString

The name of the variable set within which to set the specified variable value.
variableName : in TpString

The name of the variable being set.
variableValue: in TpAny
The value of the variable being created.
Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS
3.2.3 Method getVariableType()

(D) Get a copy of the type of a variable from a variable set.

Returns: A copy of the variable type.

Parameters

variableSetName : in TpString

The name of the variable set to find the variable in.
variableName : in TpString

The name of the variable whose type is to be retrieved.
Returns

TpType
Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR
3.2.4 Method getVariableValue()

(D) Get a copy of a variable value from a variable set.

Returns: A copy of the variable value.

Parameters

variableSetName : in TpString

The name of the variable set to find the variable in.
variableName : in TpString

The name of the variable whose value is to be retrieved.
Returns

TpAny
Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR
3.2.5 Method getVariable()

(D) Get a copy of a variable from a variable set.

Returns: A copy of the variable (i.e., a copy of its type and value).

Parameters

variableSetName : in TpString

The name of the variable set to find the variable in.
variableName : in TpString

The name of the variable to get a copy of.
Returns

TpVar

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR

3.2.6 Method removeVariable()

(P) Remove a variable from a variable set.

Parameters

variablSetName: in TpString

The name of the variable set from where to remove the variable.
variableName: in TpString

The name of the variable to be removed.
Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROGRESS

3.3 Run-time Semantics

What are the semantics of the values associated with variables? The current PM specifications (202 915-13 V0.0.7) are silent on this issue. In our opinion it is important to explicitly specify the semantics associated with the lifetime/scope/usage of variables, else confusion reigns. To address this gap we propose the following:

1. Any variable used in a rule needs to be explicity created via createVariable().

2. Values are set via setVariableValue() are assumed to be a avialable in a “global cache” for use by any decision request that requires them.

3. Values in the “global cache” can only be set/modified via explicit calls to setVariableValue().

4. All variable values that are required to be initially available to satisfy a decision request, need to be explicitly declared as input variables in the corresponding policy signature for that decision request.

5. The value of an input variable for a particular decision request can be explicitly passed via evalPolicy().
6.
7.
8. If a required input variable value is not explicitly passed via evalPolicy(), it is fetched from the “global cache”. In this case, if the corresponding variable value was not set in the “global cache” via setVariableValue(), an exception is returned back to the client making the decision request.

9. If an input variable has its value set via setVariableValue(), and a (possibly different) value for it is also supplied via evalPolicy(), the value supplied via evalPolicy()overrides the value available in the “global cache”, i.e., the value set via setVariableValue() has no effect on the decision being rendered. Note that there may be several concurrent evalPolicy() decision requests during a given time period.

10.
11. If a variable is not categorized as an input variable for a particular decision request, its value will NOT be retrieved from the "global cache", i.e., the value assigned via setVariableValue() is not used in the decision being rendered. Such variables must be assigned values in course of rule evaluation.

12. In course of a decision evaluation the value of a variable value may be (re)initialised or modified. For output variables, the modified value is returned back to the client. All other modifications to values are discarded. The "global cache" is not affected. The reason for this restriction is to enforce consistency, and to simplify the implementations (otherwise, all rules engine will need to implement some kinds of serialized transaction mechanisms). Here is an example that illustrates the ambiguities that can arise if this restriction is not in place. Consider the following two rulegroups:

Group G1:

Rule R11:

if (x > 0) then

y = 1;

end

Rule R12:

if (y > 0) then

z = 1;

end

Group G2:

Rule R21:

if (y > 1) then

z = 2;

end

Rule R22:

if (y == 0) then

z = 3;

end

The variables involved are x, y and z. Suppose they are all integers, and are all set to 0 via setVariableValue(). Supposed two decisions (D1 and D2) are requested in parallel, one that requires all the rules from G1, and the other that requires all the rules from G2. Suppose R11 condition is true. Now, if the rule action modifies the global value, the question then arises as to what should happen to the decision request D2 in progress. Should it use the new value of y for the rules that have not yet fired? Should it determine that the underlying value has changed, discard any current state, and re-execute the decision? Should it make a copy of y before firing any rules, and use that copy only? What happens to the value of z after both decisions are evaluated? If the "global cache" is to be updated, how are the writes prioritized, i.e., what will be the final value of z?

The semantics we choose are as following. Any decision request, if it requires values from the "global cache", makes a copy of that value for its internal use. That copy may be modified/used multiple times during that decision. At the end of the decision, if the variable is an output variable, its value is returned to the client - also see sample scenario in section 8 of this document.

4 Management methods supporting policy-evaluation capability.

These following methods used to manage signatures and to define new ones.

4.1.1 Method createSignature()

(P) Define a new policy-evaluation method signature, specifying the signature’s name.

Returns: A reference to the newly created definition.

Parameters

SignatureName : in TpString

The name of the new policy-evaluation method signature.

Returns

IpPolicySignatureRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS
4.1.2 Method getSignature()

(D) Get a reference to the signature for a policy-evaluation method signature.

Returns: A reference to the definition.

Parameters

SignatureName : in TpString

The name of the policy-evaluation method signature to get.
Returns

IpPolicySignatureRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR
4.1.3 Method removeSignature()

(P) Remove the policy-evaluation method signature from the domain.

Parameters

SignatureName : in TpString

The name of the signature to remove.
Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS
4.1.4 Method getSignatureCount()

(D) Returns the number of policy-evaluation signatures contained in this domain that the client is authorized to see.

Returns: The number of signatures.

Parameters

No Parameters were identified for this method

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS_VIOLATION
4.1.5 Method getSignatureIterator()

(D) Obtain a reference to an iterator that will return the names of each of the policy-evaluation signatures contained in this domain that the client is authorized to see.

Returns: A reference to the iterator.

Parameters

No Parameters were identified for this method

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

5 Interface Class IpPolicySignature

Inherits from: IpPolicy.
IpPolicySignature specifies the attributes needed to completely specify the ‘context’ of an evaluation request – also see definitions of createSignature(), evalPolicy(), and, section 1 of the document for an example. The input and output variable names referenced below must correspond to variables which have been created via the createVariable() method.

	<<Interface>>

IpPolicySignature

	

	setInputVariables(inputVariable: in TpStringSet) : void

setOutputVariables(outputVariable: in TpStringSet) : void

setgroupNames(groupNames: inTpStringSet): void

setPolicyRoles(roleNames: in TpStringSet) : void

getInputVariables() : TpStringSet

getOutputVariables() : TpStringSet

getgroupNames() : TpStringSet

getPolicyRoles() : TpStringSet

getParentDomain () : IpPolicyDomainRef

Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or categorizing a policy object. Keywords are of one of two types:

o Keywords defined in this document, or in documents that define subinterfaces of the interfaces defined in this document. These keywords provide a vendor-independent, installation-independent way of characterizing policy objects.

o Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and "Review in December 2000".

This document defines the following keywords: "P_PM_KEYWORD_UNKNOWN", " P_PM_KEYWORD_CONFIGURATION", " P_PM_KEYWORD_USAGE", " P_PM_KEYWORD_SECURITY", " P_PM_KEYWORD_SERVICE", " P_PM_KEYWORD_MOTIVATIONAL", " P_PM_KEYWORD_INSTALLATION", and " P_PM_KEYWORD_EVENT". These concepts were originally defined in [PCIM].

One additional keyword is defined: " P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

inputVariables: in TpStringSet

The names of input variables whose values are required to be available for decision request. This must not be an empty set.

outputVariables: in TpStringSet

The names of output variables whose values are to be sent back to a client after a decision has been rendered. This must not be an empty set.

groupNames : in TpStringSet

The set of names of the rule groups that must be included for policy evaluation. A group name is identical to the value of the CommonName attribute of a rule group (see section 8.4.1). The set groupNames may be empty or may contain one or more group names. If the set is empty then all groups under the relevant policy domain [see section 8.3] are to be considered in the evaluation. Also see (*) below.

In general, a rule belongs to a group (of rules) with which it shares common characteristics. See sections 8.4 and 8.6 for detailed definitions of a rule group and rule respectively.

roleNames : in TpStringSet

A roleName corresponds to a policy role [see section 8.6.1 for the defining syntax for the attribute ‘PolicyRoles’ and the use of roleName therein]. A roleName names the special role (or roles) of a rule within a group. Thus, e.g., roleName = content_streaming_charge && IP in a rule may be used to signify a combination of 2 roles. In this example the rule is used to compute charges for a content streaming service that is IP based . A roleName may transcend groups. Thus, e.g., 2 distinct rules in 2 distinct groups may have identical values for their policyRoles attribute. The set of roleNames may be empty or may have one or more elements. See (*) below.

(*)
a. groupNames = Null & roleNames = Null. In this case all rules under the relevant policy domain must be considered for the evaluation request.

b. groupNames != Null & roleNames = Null. In this case all rules within the named groups must be considered for the evaluation request.

c. groupNames != Null & roleNames != Null. In this case all rules from the named groups with the designated roleNames must be considered for the evaluation request.

d. groupNames = Null & policyRoles != Null. In this case all rules with the designated roleNames under the relevant policy domain must be considered.

The following methods are supported.

5.1.1 Method setInputVariables()

(P) Specify the names of the input variables that a policy-evaluation must include - also see the definition of the inputAttributes parameter for the method evalPolicy(). The types and names and initial values of these variables must be defined apriori via the setVariableType() and (if necessary) setVariableValue() methods.
Parameters

inputVariables: in TpStringSet

The names of the variables. This must not be an empty set.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS
5.1.2 Method setOutputVariables()

(P) Specify the names of the output variables that must be included in the output resulting from a policy-evaluation method call. These are names of variables whose values are to be returned back to the client by the evalPolicy() method. Also see the definition of the method evalPolicy(). The types and names and initial values of these variables must be set apriori via the setVariableType() and (if necessary) setVariableValue() methods.
Parameters

outputVariables: in TpStringSet

The names of the variables. This must not be an empty set.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

5.1.3 Method getInputVariables()

(D) Get the names of the input variables associated with this signature.

Returns: A copy of the set of input variable names.

Parameters

No Parameters were identified for this method

Returns

TpStringSet

Raises

TpCommonExceptions

5.1.4 Method getOutputVariables()

(D) Get the names of the output variables associated with this signature.

Returns: A copy of the set of output variable names.

Parameters

No Parameters were identified for this method

Returns

TpStringSet

Raises

TpCommonExceptions

5.1.5 Method setGroups()

(P) Specify the names of the groups that a policy-evaluation must include. A group name coincide with the value of the CommonName attribute of a relevant group [see section 8.4.1].
Parameters

groupNames: in TpStringSet

The names of the groups. Elements of groupNames take values from of the CommonName attribute relevant groups. This may be NULL.

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS
5.1.6 Method setRoles()

(P) Specify the names of the roles that a policy-evaluation must include.

Parameters

roleNames: in TpStringSet

The names of the roles. This may be NULL.
Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS

5.1.7 Method getGroups()

(D) Get the names of the groups associated with this signature.

Returns: A copy of the set of group names (this may be NULL).

Parameters

No Parameters were identified for this method

Returns

TpStringSet

Raises

TpCommonExceptions

5.1.8 Method getRoles()

(D) Get the names of the roles associated with this signature.

Returns: A copy of the set of role names (this may be NULL).

Parameters

No Parameters were identified for this method

Returns

TpStringSet

Raises

TpCommonExceptions

5.1.9 Method getParentDomain()

(D) Return a reference to the domain that contains this policy-evaluation signature.

Returns: A reference to the containing domain.

Parameters

No Parameters were identified for this method

Returns

IpPolicyDomainRef

Raises

TpCommonExceptions

6 Method for policy-evaluation.

Introduced in Interface Class IpPolicyDomain

6.1.1 Method evalPolicy()

(E) Invoke an evaluation of policy rules. Note that an evalPolicy() request is associated with a signature name that is specified through the attribute signatureName. This is to ensure that a ‘context’ is established for the evaluation request. This also allows for cross validation of the names of the input variables that are specified below via the attribute inputAttributes.

Returns: The output values included in the associated output structure, TpNameValueList

Parameters

signatureName : in TpString

The name of the signature that is to be used for this request. Must be a valid signature name in the relevant domain, i.e., the value of signatureName must correspond to the CommonName attribute of an IpPolicySignature created under the relevant IpPolicyDomain.
inputVariables: in TpNameValueList

The input variable name-value pairs that will be included in this request. Note that the collection of variable name specified in inputVariables must correspond to (a subset of) variables names set in the inputVariables attribute of the signature ‘signatureName’. Also see section 3.3 (Run-Time Semantics) in this document.

Returns

TpNameValueList.

This contains the values of the output attributes to be returned.
Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR

7 Extensions for condition/action expressions

A proposed EBNF for the action/condition expressions follows – note that these express constraints on the Expression attribute of IpPolicyCondition and IpPolicyExpression [sections 8.12, 8.14]. Also note that (as in the current BNF) the EBNF rules specified below do not completely enforce all the constraints necessary. Some constraints will need to be caught by associated parsing actions.

Also, the EBNF specifies rules for conditions/action expressions only (i.e., condition groups, negation of conditions are assumed to be handled at some higher level). Moreover, rules are given only for a single action expression, whereas a rule can contain multiple action expressions.
Basic Definitions

We define some basic tokens that are used in the rest of the EBNF. The “…” used below indicate a range of corresponding characters. For example, the “…” in letter corresponds to all letters between b and z, both lower and uppercase). Similarly, the “…” in char corresponds to printable characters.

digit

::= "0" | "1" | ... | "9";

letter

::= "a" | "b" | ... | "z" | "A" | "B" | ... | "Z";

alphanumeric
::= digit | letter;

char

::= alphanumeric | "\"" | "\'" | "." | "+" | ...;

identifier

::= letter {[alphanumeric | "_"]}*;

Note: Each ‘policy enabled’ SCF defines its own variable name-space. However, variable naming conventions in these SCFs’ must conform with the identifier and variable access rules of the EBNF.
Constants (literals)

These define the basic literals allowed. Examples include boolean literals (true and false), character literals (e.g., ‘x’, ‘a’), string literals (e.g., “Parlay”, “CORBA”), integer constants (e.g., -4, +23, 45, 05), float constants (e.g., -2.3, 4., 5.6e-23). We also define a number to be either an integer or a float, and a const to be any of the these constant types.

bool_const

::= "true" | "false";

char_const

::= "'" char "'";

string_const
::= '"' {char}* '"';

int_const

::= {digit}+;

float_const

::= (({digit}* "." {digit}+)

 | ({digit}+ "." {digit}*))([eE][-+]?{digit}+)?
number::=

 int_const

| float_const

;

const::=

 bool_const

| char_const

| string_const

| number

;

Operators

These define the unary arithmetic operators, binary arithmetic operators, as well as the boolean operators. "%" is the modulo operator, "in" is a list containment operator (e.g., can be used to check if a element is within a list, or if a list is contained within another). Note that the standard operator precedence will be enforced on top of this grammar.

unary_arith_op
::= "+" | "-";

binary_arith_op
::= "+" | "-" | "*" | "/" | "%";

boolean_op

::= "<=" | "<" | "==" | ">" | ">=" | "!=" | "in";

Expressions

These define complex arithmetic expressions and predicates (i.e., condition expressions). Note that we allow the presence of function calls in an action or predicate. Function calls are explained later on in this section.

arith_expr::=

 number

| unary_arith_op arith_expr

| arith_expr binary_arith_op arith_expr

| "(" arith_expr ")"

| attr_access

| func_call

;

predicate::=

 bool_const

| arith_expr boolean_op arith_expr

| (arith_expr | const) ("==" | "!=") (arith_expr | const)

| "(" predicate ")"

| attr_access

| func_call

;

Examples of arithmetic expressions include:

2 + 2

((4 + interval) % 100 – 42)

a + b.c / min(d, e) + list[i+j].f

Examples of predicates include:

true

(interval > 100)

((4 + interval) % 100 – 42) > min(list[j].c * 2, 100)

(caller in buddy_list)

Variable Access

These rules specify how variables (simple or complex typed) can be accessed in rules. List (array) elements are accessed via a standard index (“[]”) operator, and record fields are accessed via the dot (“.”) operator. Examples include x, rec.b, list[42].a, etc.

var_access::=

 identifier

 | var_access "." identifier

 | var_access "[" arith_expr "]"

;

Function Calls (for user defined functions)
As mentioned before, we allow the presence of arbitrary function calls in either the arithmetic expressions or in predicates. It is assumed that the PM SCS supports a set of functions that can be called, and a mechanism exists (during provisioning time) to be able to verify if a given function is supported. Functions can take arbitrary arguments of type expr, which can be one of constant, an arithmetic expression, a predicate, or a logical expression using the connectors not (!), and (&&) and or (||).

expr::=

 const

| arith_expr

| predicate

| "!" predicate

| predicate "&&" predicate

| predicate "||" predicate’

| "(" expr ")"

;

expr_list ::= expr {"," expr}*;

func_call
::= identifier "(" [expr_list] ")";

Examples of expressions include

in_call && (! interruptable_device)

(caller in buddy_list)

Examples of function calls include (the exact set of functions supported by PM SCS, as well as the number and type of arguments of those functions, is implementation specific):

min(j, k)

count(list)

Condition/action expressions

This defines the condition and action expressions. The condition expression corresponds exactly to the predicate mentioned above, while an action expression can be one of a simple asisgnment operation (=), or list append/delete operations (+= and -=).

condition
::= predicate;

action::=

 simple_var_access "=" expr

 | identifier += expr

 ;

Examples of action expressions include:

i = min(j, k)

is_empty = (count(list) > 0)

// the following appends element 5 to end of a list of integers

L1 += 5

// the following deletes all occurences of element rec from the list

L2 -= rec

8 Example Scenario

We now present a high-level scenario that illustrates how all the different extensions are tied together. The rulegroup that we will use contains only one rule, which uses two variables x, and y, which are of the type:

x: struct {

a: TpInt32;

b: TpFloat;

}

y: TpInt32;

Moreover, let us assume that there is onle one rulegroup (“testgroup”) associated with the domain we are considering, and the rulegroup contains only one rule of the form (it is easy to extend this scenario to the general case):

if (x.b < 3)

then

 y = x.a;

end

Finally, assume that the value of x is to be supplied for rule evaluation, and the value of y is to be returned back to the client. The steps that need to be performed are as follows (we will give psuedo-code for all the steps):

1. Provision variables:

// get the domain

IpPolicyDomainRef domain = …;

// create a variable set

domain.createVariableSet(“vset”);

// define the type of x

// note that we can use the int_type defined as part of this

// process, for the type of y as well

TpType int_type = TpType(TpAtomicType(“P_INT32”));

TpType float_type = TpType(TpAtomicType(“P_FLOAT”));

TpNameType x_a_type = {“a”, int_type};

TpNameType x_b_type = {“b”, float_type};

TpType x_type = TpType(TpRecordType([x_a_type, x_b_type]));

// define the type of y

TpType y_type = TpType(TpAtomicType(“P_INT32”));

// create the variables in the variable set

domain.createVariable(“vset”, “x”, x_type);

domain.createVariable(“vset”, “y”, y_type);

// set the values of x and y
TpAny x_value = {1, 2.5};

TpAny y_value = 3;

domain.setVariableValue(“vset”, “x”, x_value);

domain.setVariableValue(“vset”, “y”, y_value);

2. Create signature:
IpPolicySignatureRef sig = domain.createSignature(“test_sig”);

// set input and output variables

TpStringSet input_vars = [“x”];

TpStringSet output_vars = [“y”];

sig.setInputVariables(input_vars);

sig.setOutputVariables(output_vars);

// set groups and roles

TpStringSet groups = [“testgroup”];

TpStringSet roles = []; // no roles specified

sig.setGroups(groups);

sig.setRoles(roles);

3. Provision the rules:
The given rule is provisioned with the rulegroup. The variable declarations provisioned in (1) of the parent domain of the rulegroup need to be utilized to verify that the rule being provisioned is valid. For example, the condition (x.b < 3) can be verified as being valid, since “x” has a record type, and has “b” as a field, and “x.b” is a TpFloat. As an example, if the type of “x.b” had been TpString, then during provisioning, the rule condition would have been determined to be as invalid, and an exception thrown.

4. Sending a decision request:
The first three steps happen during provisioning time. In this step, we describe how the client may use the IpPolicyDomain.evalPolicy() method, as well as the notion of signatures, to request a decision to be rendered. We consider two scenarios: 1) where the value of x is explicitly specified by the client, and 2) where it is not.

Case 1:

TpAny x_value = {4, 2.7};

TpNameValue x_name_val = {“x”, x_value};

TpNameValueList inputs = [x_name_value]; // input values

TpNameValueList outputs = domain.evalPolicy(“test_sig”, inputs);

Here, the explicit value of x overrides the value of x set via setVariableValue(). Hence, before rules are evaluated for this decision, the value of x is set to {4, 2.7}. The rule condition will then be true, and the value of z will be set to 4. Hence the outputs list will contain the value of y as being 4.

Note that if the value of x was specified as:

TpAny x_value = {4, 9.0};

The rule condition would not be true, which implies that the rule action would not be executed. However, the signature “sig_test” specified that y was an output variable and hence its value was to be sent back to the client. However (as mentioned earlier in our assumptions about variable semantics), y started out as being uninitialized, and hence an exception would be returned back to the client.

Case 2:

TpNameValueList inputs = []; // input values

TpNameValue outputs = domain.evalPolicy(“test_sig”, inputs);

Here, the explicit value of x is not set. Hence the value of x set via setVariableValue() is used during rule evaluation, which implies that y will be set to to the value 1. As in the first case, the outputs list will contain one element, which would be the value of variable y.

9 Data Types for Variables
Consistent with the SA1 proposals, S1-021721 and S1-021721 we propose the following data structures for atomic and complex variable types. These definitions are intended to augment the current PM data definitions (see PM specifications document 202 915-13 V0.0.7, section C-3). Note: the data structures are referenced by the methods defined earlier in this document.

TpVar

This defines the TpVar type. It is analogous to the TpAttribute type. Extending TpAttribute to handle complex variables would have broken backward compatibility, and hence we are introducing a new data structure for this purpose. We shall examine the impact of this on the variable provisioning methods (e.g., getVariable() etc.) in subsequent sections.

TpVar is a Sequence of Data Elements of variable name, type and value.

	Sequence Element Name
	Sequence Element Type
	Notes

	VarName
	TpString
	Name of variable.

	VarType
	TpType
	Type of variable. Could be atomic or complex type.

	VarValue
	TpAny
	Value of variable. Note that depending on context, the AttributeValue may be NULL.

We propose the following types of variables: Atomic types, Record types (having named fields), and List types (where list elements could be complex types as well).

TpAtomicType

TpAtomicType is an enumerated type, and can contain the following values:

	Value
	Notes

	P_BOOLEAN
	Boolean type.

	P_INT32
	Integer type.

	P_FLOAT
	Float type.

	P_STRING
	String type.

We have decided not to use/extend TpAttributeType for this purpose. TpAttributeType is used to set attributes (or properties) of various objects (e.g., rule priority, rule action expression etc.), and its definition

may be extended in the future (e.g., we could think of defining new a new type for rule action expressions, and extending TpAttributeType appropriately). However, those new types may not make sense in the current context, hence we have decided to go ahead with defining a different type (above) for variables.

TpNameType

Records have named fields, each field being a TpType itself. This allows nested structures to be defined. We use TpNameType to define a name/type pair, and is used to define record types. This is a Sequence of Data Elements of a name and its type.

	Sequence Element Name
	Sequence Element Type
	Notes

	Name
	TpString
	Name of record field.

	Type
	TpType
	Type of record field.

TpRecordType

This defines the record data type. This is a Sequence of Data Elements of TpNameType.

TpListType

This defines a homogeneous list type. This contains the following data member:

	Element Name
	Sequence Element Type
	Notes

	ElementType
	TpType
	Type of the elements of the list.

TpType

This is a Tagged Choice of Data Elements and can be one of the following:

	Choice Element Name
	Notes

	TpAtomicType
	Used for atomic types only. Note that we do not want to use TpAttributeType here for sake of clarity.

	TpRecordType
	Used for record types only.

	TpListType
	Used for homogeneous lists. Heterogeneous lists are not supported.

TpType allows us to define arbitrarily nested complex types as shown below The level of nested data types actuall supported is implementation specific.

TpNameValue

We also define another data structure, which is not used for provisioning of variables, but is used during run-time. It is a Sequence of Data Elements of a variable name and value

	Sequence Element Name
	Sequence Element Type
	Notes

	Name
	TpString
	Name of Variable.

	Value
	TpAny
	Value of variable.

TpNameValueList

This type defines a Numbered Set of Data Elements of type TpNameValue.

� Unless explicitly noted all section references refer to sections in the Policy Management Specifications document: 202 915-13 V0.0.7.

� Strictly speaking a context also includes the structure that holds the result of the evaluation.

	Author: The Policy Management Workgroup
	Error! Reference source not found.
	 Page 3 of 27

	This is a Error! Reference source not found.Document of The Parlay Group, Inc.

