Joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-021082

Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

Source:
Telcordia Technologies (John-Luc Bakker), jbakker@telcordia.com
Title:
Alternative approach to N5-021077, use XML Schema
Agenda Item:
7.5 Policy management
Document for:
Discussion
Category:

Work Item ID:
OSA3 (ETSI ver.3, Parlay 5, 3GPP Rel-6)

Doc Summary:

Specs involved:
ETSI ES 202 915-13, 3GPP TS 29.198-13

Introduction

Contribution N5-021077 has highlighted the need for increased and more powerful typing of complex variables support in the Policy Management APIs. Contribution N5-021077 addresses 3GPP OSA and Parlay requirements for Parlay release 5.

The approach advocated in N5-021077, is one of explicitly hard-coding primitive types in UML, e.g. by recognizing simple types (TpAttributeType) and complex types (TpRecordType and TpArrayType). Furthermore, a TpRecordType includes lists of field names and field types to type and name the struct’s/record’s members and a TpArrayType consists of a TpType. A TpType decomposes into a TpAttributeType, TpRecordType or TpArrayType. As can be shown by the example below, arbitrarily complex types can be created this way: (the arrows relate the field and theirs expansions)

TpAttibute

 AttributeName : VeryComplexType

 AttributeType :TpRecord

 FieldNames : [“attribute”, “array”, “record”]

 FieldTypes : [“TpAttributeType”, “TpRecordType”, “TpArrayType”]

 “attribute” : TpString

 “array” :

 ElementType : TpString

 “record:

 FieldNames : [“attribute”]

 FieldTypes : [“TpAttributeType”]

 “attribute” : TpString

This way, a PM SCF can communicate arbitrary complex type definitions to application and the application can inspect them.

The disadvantage of this method is its labour intensiveness, both on the side of the application and on the side of the SCFs. Programming errors, along with disputes, may easily occur, 1) as there is no single source from which the code can be generated. 2) There are no publicly available tools for verification or code generation. As a consequent all code dealing with syntax and semantics need to be custom written and tested. Additionally, 3) this approach does not communicate any semantics or documentation of the complex type that is conveyed.

As a side note, this way of type inspection requires a list of allowed simple types defined as constant strings; e.g. TpAttributeType: [“TpString”, “TpFloat”, “Tp…”, etc.]. This definition is not included in N5-021077.

Thus there are shortcomings with the approach described in N5-021077 that we feel can be addressed with an alternative approach.

Proposal

We propose to use XML, and XML Schema in particular, to describe and validate complex variables and their types. This approach has the following advantages:

1. There no need for a TpAttributeType that defines the type names as constant strings.

2. The structure is self-validating and gives appropriate error messages when the structure of types and field names does not conform.

3. It inherently includes documentation to help developers understand the structure they are presented. The type definition with documentation can be made available both off an online and serves as a single, undisputed source.

4. Many popular tools that perform verification or generate code support XML; the developer does not have to learn a new typing system but can apply knowledge he is familiar with.

Using established industry specifications, our approach is easily navigable. That is, if only the value of a particular type element is needed, the XPath
 standard returns this value without the need for iterating through the type and retrieving type structure knowledge from a cryptic type definition only available at runtime. This technique comes in handy when navigating to a record’s attributes (supported in N5-021077 through the dotted-approach; e.g. “x.a”.).

Below we show an XML Schema example of the complex type, dubbed VeryComplexType, presented above (for brevity, namespaces were not included):

<xs:complexType name="VeryComplexType">

 <xs:annotation>

 <xs:documentation>

 This is a very complex type.

 </xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element name="attribute" type="xs:string"/>

 <xs:element name="array">

 <xs:simpleType>

 <xs:list itemType="xs:string"/>

 </xs:simpleType>

 </xs:element>

 <xs:element name="record">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="attribute" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

An instance of the type defined above that conforms could be (again, for brevity, housekeeping data, like namespaces, were not included)):

<veryComplexType>

 <attribute>A string value</attribute>

 <array>String1 String2</array>

 <record>

 <attribute>Another string value</attribute>

 </record>

</veryComplexType>

Usage of XML is not proposed for reasons of academic elegance. More so, useable and creativity-inspiring specifications make use of techniques that are close to the targeted user. We feel that XML and XML Schema are techniques widely used by the programmers targeted by the Parlay specifications. XML can be used for many purposes, including database schema presentation, visual markup, scripting, persistent schema, including wire serializing of types. Frankly, no service creation environment can be shipped without integrated XML tools.

Example scenario (modeled after N5-021077’s section 6)

Note: without giving the full details in the form of changed to the Policy Management specification, this example assumes that methods such as “setVariableDeclaration” (introduced in N5-021077) have the appropriate signature (in the case of this example, accepts a string as argument). The argument contains either XML Schema or a URL.
[Example scenario follows and is copied and modified from N5-021077]

We now present a high-level scenario that illustrates how all the different extensions are tied together. The rulegroup that we will use contains only one rule, which uses two variables x, and y, which are of the type:

x: struct {

a: TpInt32;

b: TpFloat;

}

y: TpInt32;

Moreover, let us assume that there is only one rulegroup associated with the domain we are considering, and the rulegroup contains only one rule of the form:

if (x.b < 3)

then

 y = x.a;

end

(It is easy to extend this scenario to the general case.) Finally, assume that the value of x is to be supplied for rule evaluation, and the value of y is to be returned back to the client. The steps that need to be performed are as follows (we will give psuedo-code for all the steps):

1. Create variable declarations:

// Define the type of x

// There are two ways to convey the type; either as a URL
// that points to the offline pre-defined type, or as its full
// definition.
// The full definition is given here as it has more example
// value.

String rec_type_X = “
<xs:element name="x" type="X"/>
<xs:complexType name="X">

<xs:annotation>

<xs:documentation>
This types represents “struct x {a:int, b:float}”

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="a" type="xs:integer"/>

<xs:element name="b" type="xs:float"/>

</xs:sequence>
</xs:complexType>”;”

String int_type_Y = “
<xs:element name="y" type="Y"/>
<xs:simpleType name="Y">

<xs:restriction base="xs:integer"/>
</xs:simpleType>

// set the variable declarations

IpPolicyDomainRef domain = …; // get the domain

domain.setVariableDeclaration(rec_type_X);

domain.setVariableDeclaration(int_type_Y);

2. Create signature template:
IpPolicySignatureTemplateRef sig_tmpl =

 domain.createSignatureTemplate(“test_signature”);

// set input and output variables

TpStringList input_vars = [“x”];

TpStringList output_vars = [“y”];

sig_tmpl.setInputVariables(input_vars);

sig_tmpl.setOutputVariables(output_vars);

3. Provision the rules:
The above rule is provisioned with the rulegroup. The variable declarations provisioned in (1) of the parent domain of the rulegroup are utilized to verify that the rule being provisioned is accurate. For example, the condition (x.b
 < 3) can be verified as being valid, since “x” has a record type, and has “b” as a field, and “x.b
” is a xs:float. As an example, if the type of “x.b
” had been xs:string, then during validation, the rule condition would have been trapped as invalid, and an exception thrown.

4. Sending a decision request:
The first three steps happen during provisioning time. In this step, we describe how the client may use the IpPolicyDomain.evalPolicy() method, as well as the notion of signature templates, to request a decision to be rendered. We give X and example value; x.a is assigned 1 and x.b is assigned 1.234. Again, if x.b were assigned (for example) a string value, the validation phase would have thrown an exception.

String x=”
<x>

<a>1

1.234
</x>”;

TpStringList inputs = [x]; // input values

TpStringList outputs; // output values

IpAppPolicyDomainRef app_ref = …; // callback for client

output = domain.evalPolicy(app_ref, “test_signature”, inputs);

Note that steps 1 and 2 are not necessary if the type populated in step 4 was agreed upon off-line through exchanging XML Schema files that contain all types. This example shows dynamic addition of new types through a new XML Schema.

Conclusion

With these examples we demonstrate the applicability of XML when it comes to policy type definition and instantiation. We feel this approach has advantages over a pre-defined and programmatic solution. Summarizing, XML reduces the size of the realization interfaces by not defining all these types. XML tools are readily available and reduces development and testing effort as much of the code is generated and verification is performed automatically. XML Schema may contain integrated human and machine-readable processing hints, increasing its friendliness when interacting between different administrative domains. Finally, the biggest advantage is that the XML Schema documents that define simple or complex types may be available offline, rather than waiting for run-time definition. As a result, an application can simply point to a type defined in a (off-line) single source, available location through a URL and populate the conforming instance document. If there is an error when populating the type (e.g. in the example above we assign x.a a xs:string instead of an xs:integer) XML’s validating functions will notify the application developer (In comparison, note that CORBA’s any type is particularly hard to debug!).

In addition, no separate documentation is needed to describe the types defined. Keeping an online type definition separate from its documentation may inherently lead to discrepancies. For all these reasons, we feel that an XML-based approach as exemplified here is preferable.

� XPath is a technique that cam retrieve an element in a XML document by defining a path to it. Developers do not have to write tedious and custom looks iterating through the different scopes until they either conclude the element is not present or find it and can access the elements value.

� This should be an XPath declaration

� This should be an XPath declaration

� This should be an XPath declaration

