Page 1

joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-021063

Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

	CR-Form-v7

	CHANGE REQUEST

	

	(

	29.198-04
	CR
	CRNum
	(

rev
	-
	(

Current version:
	4.5.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Correction to Sequence Diagrams to remove incorrect Framework references

	
	

	Source:
(

	Ultan Mulligan (ETSI PTCC)

	
	

	Work item code:
(

	OSA2
	
	Date: (

	31/10/2002

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	This CR corrects indications that call-control related events are received on the Framework, when in fact they are not.

	
	

	Summary of change:
(

	Change references to events being received by the Framework, where they are received by Call Control Manager interfaces.

	
	

	Consequences if
(

not approved:
	Developers use these sequence diagrams as examples of how OSA/Parlay really behaves. Since they consider that these examples are provided by the real experts, they consider they must be right and should be followed. If we don't correct such errors, we are deliberately misleading developers, and can only expect interoperability problems at later stages.

	
	

	Clauses affected:
(

	6.1.4, 6.1.5, 6.1.6, 6.1.7, 6.1.8, 6.1.9, 7.1.3, 7.1.5

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

(=========================== FIRST MODIFIED SECTION =======================(
6.1.4 Call Barring 1

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is accepted and the call is routed to the original called party.

[image: image1.wmf] : (Logical

View::IpAppLogic)

 : IpAppCallControlManager

 : IpAppCall

 : IpCall

 : IpUICall

 :

IpUIManager

 :

IpCallControlManager

 :

IpAppUICall

13: routeRes()

12: routeReq()

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

3: callEventNotify()

4: 'forward event'

5: new()

1: new()

14: 'forward event'

10: 'forward event'

2: enableCallNotification()

6: createUICall()

7: new()

11: release()

15: callEnded()

16: "forward event"

17: deassignCall()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range prompted for a password before the call is allowed to progress. When a new call, that matches the event criteria set, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward the previous message to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6:
This message is used to create a new UICall object. The reference to the call object is given when creating the UICall.

7:
Provided all the criteria are fulfilled, a new UICall object is created.

8:
The call barring service dialogue is invoked.

9:
The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10:
This message is used to forward the previous message to the IpAppLogic.

11:
This message releases the UICall object.

12:
Assuming the correct PIN is entered, the call is forward routed to the destination party.

13:
This message passes the result of the call being answered to its callback object.

14:
This message is used to forward the previous message to the IpAppLogic

15:
When the call is terminated in the network, the application will receive a notification. This notification will always be received when the call is terminated by the network in a normal way, the application does not have to request this event explicitly.

16:
The event is forwarded to the application.

17:
The application must free the call related resources in the gateway by calling deassignCall.

6.1.5 Number Translation 1

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event being received by the call control service.

[image: image2.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 : IpAppCallControlManager

 : (Logical

View::IpAppLo...

6: 'translate number'

7: routeReq()

8: routeRes()

3: callEventNotify()

4: 'forward event'

5: new()

9: 'forward event'

1: new()

2: enableCallNotification()

10: deassignCall()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward message 3 to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of message 3.

6:
This message invokes the number translation function.

7:
The returned translated number is used in message 7 to route the call towards the destination.

8:
This message passes the result of the call being answered to its callback object

9:
This message is used to forward the previous message to the IpAppLogic.

10:
The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue in the network, but there will be no further communication between the call object and the application.

6.1.6 Number Translation 1 (with callbacks)

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event being received by the call control service.
For illustration, in this sequence the callback references are set explicitly. This is optional. All the callbacks references can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the sequences use that mechanism.

[image: image3.wmf] :

IpCallControlManager

 : IpAppCall

 : IpCall

 : IpAppCallControlManager

 : (Logical

View::IpAppLogic)

10: routeRes()

4: callEventNotify()

8: 'translate number'

9: routeReq()

5: 'forward event'

6: new()

11: 'forward event'

1: new()

2: enableCallNotification()

12: deassignCall()

3: setCallback()

7: setCallbackWithSessionID()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The CallControlManager reports the callEventNotify to referenced object only for enableCallNotifications that do not have a explicit IpAppCallControlManager reference specified in the enableCallNotification.

4:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

5:
This message is used to forward message 4 to the IpAppLogic.

6:
This message is used by the application to create an object implementing the IpAppCall interface.

7:
This message is used to set the reference to the IpAppCall for this call.

8:
This message invokes the number translation function.

9:
The returned translated number is used in message 7 to route the call towards the destination.

10:
This message passes the result of the call being answered to its callback object

11:
This message is used to forward the previous message to the IpAppLogic.

12:
The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue in the network, but there will be no further communication between the call object and the application.

6.1.7 Number Translation 2

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the call control service. If the translated number being routed to does not answer or is busy then the call is automatically released.

[image: image4.wmf] : (Logical

View::IpAppLogic)

 : IpAppCallControlManager

 : IpAppCall

 : IpCallControlManager

 : IpCall

6: 'translate number'

9: 'forward event'

8: routeRes()

7: routeReq()

10: release()

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward the previous message to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6:
This message invokes the number translation function.

7:
The returned translated number is used to route the call towards the destination.

8:
Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback in this message, indicating the unavailability of the called party.

9:
This message is used to forward the previous message to the IpAppLogic.

10:
The application takes the decision to release the call.

6.1.8 Number Translation 3

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the call control service. If the translated number being routed to does not answer or is busy then the call is automatically routed to a voice mailbox.

[image: image5.wmf] : IpCallControlManager

 : IpAppCall

 : IpCall

 : IpAppCallControlManager

 : (Logical

View::IpAppLogic)

8: routeRes()

6: 'translate number'

7: routeReq()

9: 'forward event'

10: 'translate number'

11: routeReq()

12: routeRes()

13: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

14: deassignCall()

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
 This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward the previous message to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6:
This message invokes the number translation function.

7:
The returned translated number is used to route the call towards the destination.

8:
Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback, indicating the unavailability of the called party.

9:
This message is used to forward the previous message to the IpAppLogic.

10:
The application takes the decision to translate the number, but this time the number is translated to a number belonging to a voice mailbox system.

11:
This message routes the call towards the voice mailbox.

12:
This message passes the result of the call being answered to its callback object.

13:
This message is used to forward the previous message to the IpAppLogic.

14:
The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue in the network, but there will be no further communication between the call object and the application.

6.1.9 Number Translation 4

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the call control service. Before the call is routed to the translated number, the application requests for all call related information to be delivered back to the application on completion of the call.

[image: image6.wmf] : IpCallControlManager

 : IpAppCall

 : IpCall

 : IpAppCallControlManager

 : (Logical

View::IpAppLogic)

6: 'translate number'

7: getCallInfoReq()

8: routeReq()

9: routeRes()

13: getCallInfoRes()

14: 'forward event'

10: 'forward event'

1: new()

3: callEventNotify()

4: 'forward event'

5: new()

2: enableCallNotification()

15: deassignCall()

11: callEnded()

12: "forward event"

1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface.

4:
This message is used to forward the previous message to the IpAppLogic.

5:
 This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify.

6:
 This message invokes the number translation function.

7:
The application instructs the object implementing the IpCall interface to return all call related information once the call has been released.

8:
The returned translated number is used to route the call towards the destination.

9:
This message passes the result of the call being answered to its callback object.

10:
This message is used to forward the previous message to the IpAppLogic.

11:
Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object implementing the IpCall. This causes an event, to be passed to the object implementing the IpAppCall object.

12:
This message is used to forward the previous message to the IpAppLogic.

13:
The application now waits for the call information to be sent. Now that the call has completed, the object implementing the IpCall interface passes the call information to its callback object.

14:
This message is used to forward the previous message to the IpAppLogic

15:
After the last information is received, the application deassigns the call. This will free the resources related to this call in the gateway.

(=========================== NEXT MODIFIED SECTION =======================(
7.1.3 Call Barring 2

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is rejected and the call is cleared.

[image: image7.wmf] : (Logical

View::IpAppL...

 :

IpAppMultiPartyCallControlManager

 :

IpAppMultiPartyCall

 :

IpMultiPartyCall

 : IpUICall

 :

IpUIManager

 : IpMultiPartyCallControlManager

 :

IpAppUICall

8: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

11: sendInfoReq()

12: sendInfoRes()

15: release()

1: new()

3: reportNotification()

4: 'forward event'

5: new()

10: 'forward event'

13: 'forward event'

2: createNotification()

7: createUICall()

14: release()

6: getCallLegs()

1:
This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range prompted for a password before the call is allowed to progress. When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface.

4:
This message is used to forward message 3 to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of the callEventNotify.

6:
The application requests an list of all the legs currently in the call.

7:
This message is used to create a UICall object that is associated with the incoming leg of the call.

8:
The call barring service dialogue is invoked.

9:
The result of the dialogue, which in this case is the PIN code, is returned to its callback object.

10:
This message is used to forward the previous message to the IpAppLogic

11:
Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the call cannot be completed.

12:
This message passes the indication that the additional dialogue has been sent.

13:
This message is used to forward the previous message to the IpAppLogic.

14:
No more UI is required, so the UICall object is released.

15:
This message is used by the application to clear the call.

7.1.5 Complex Card Service

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being received by the call control service. Before the call is made, the calling party is asked for an ID and PIN code. If the ID and PIN code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is then set on the controlling leg (the calling party's leg) such that if the calling party enters a '#5' an event will be sent to the application. The call is then routed to the destination party. Sometime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination party, to which it is then routed.

[image: image8.wmf] : (Logical

View::IpAppLogic)

 :

IpAppMultiPartyCallControlManager

 :

IpAppMultiPartyCall

 :

IpMultiPartyCall

 : IpUICall

PartyB' :

IpCallLeg

AppPartyB' :

IpAppCallLeg

AppPartyB :

IpAppCallLeg

 :

IpUIManager

AppPartyA :

IpAppCallLeg

PartyB :

IpCallLeg

 :

IpMultiPartyCallControlManager

PartyA :

IpCallLeg

 :

IpAppUICall

27: createAndRouteCall()

8: sendInfoAndCollectReq()

10: sendInfoAndCollectReq()

9: sendInfoAndCollectRes()

11: sendInfoAndCollectRes()

13: eventReportReq()

1: new()

3: reportNotification()

4: 'forward event'

5: new()

23: release()

21: eventReportRes()

24: sendInfoAndCollectReq()

25: sendInfoAndCollectRes()

12: setCallbackWithSessionID()

2: createNotification()

7: createUICall()

6: getCallLegsf()

15: createCallLeg()

17: routeReq()

16: eventReportReq()

14: new()

20: attachMediaReq()

18: eventReportRes()

19: "forward event"

22: "forward event"

30: eventReportRes()

31: "forward event"

32: callEnded()

33: "forward event"

34: userInteractionFaultDetected()

35: "forward event"

36: deassignCall()

26: new ()

28: new ()

29: eventReportRes()

1:
This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface.

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range result in the caller being prompted for a password before the call is allowed to progress. When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object.

3:
This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface.

4:
This message is used to forward message 3 to the IpAppLogic.

5:
This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of message 3.

6:
This message returns the call legs currently in the call. In principle a reference to the call leg of the calling party is already obtained by the application when it was notified of the new call event.

7:
This message is used to associate a user interaction object with the calling party.

8:
The initial card service dialogue is invoked using this message.

9:
The result of the dialogue, which in this case is the ID and PIN code, is returned to its callback object using this message and eventually forwarded via another message (not shown) to the IpAppLogic.

10:
Assuming the correct ID and PIN are entered, the final dialogue is invoked.

11:
The result of the dialogue, which in this case is the destination address, is returned and eventually forwarded via another message (not shown) to the IpAppLogic.

12:
This message is used to forward the address of the callback object.

13:
The trigger for follow-on calls is set (on service code).

14:
A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg object could be passed in the subsequent createCallLeg(). In that case the application has to use the sessionIDs of the legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg.

15:
This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the network.

16:
The application requests to be notified when the leg is answered.

17:
The application routes the leg. As a result the network will try to reach the associated party.

18:
When the B-party answers the call, the application is notified.

19:
The event is forwarded to the application logic.

20:
Legs that are created and routed explicitly are by default in state detached. This means that the media is not connected to the other parties in the call. In order to allow inband communication between the new party and the other parties in the call the media have to be explicitly attached.

21:
At some time during the call the calling party enters '#5'. This causes this message to be sent to the object implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic.

22:
The event is forwarded to the application.

23:
This message releases the called party.

24:
Another user interaction dialogue is invoked.

25:
The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via another message (not shown) to the IpAppLogic.

26:
A new AppCallLeg is created to receive callbacks for another leg.

27:
The call is then forward routed to the new destination party.

28:
As a result a new Callleg object is created.

29:
This message passes the result of the call being answered to its callback object and is eventually forwarded via another message (not shown) to the IpAppLogic.

30:
When the A-party terminates the application is informed.

31:
The event is forwarded to the application logic.

32:
Since the release of the A-party will in this case terminate the entire call, the application is also notified with this message.

33:
The event is forwarded to the application logic.

34:
Since the user interaction object were not released at the moment that the call terminated, the application receives this message to indicate that the UI resources are released in the gateway and no further communication is possible.

35:
The event is forwarded to the application logic.

36:
The application deassigns the call object.

(=========================== END MODIFIED SECTION =======================(
�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 19

