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(=========================== FIRST MODIFIED SECTION =======================(
6.1.4 Call Barring 1 

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is accepted and the call is routed to the original called party. 
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1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface. 

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range prompted for a password before the call is allowed to progress.  When a new call, that matches the event criteria set, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object. 

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface. 

4:
This message is used to forward the previous message to the IpAppLogic. 

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify. 

6:
This message is used to create a new UICall object. The reference to the call object is given when creating the UICall. 

7:
Provided all the criteria are fulfilled, a new UICall object is created. 

8:
The call barring service dialogue is invoked. 

9:
The result of the dialogue, which in this case is the PIN code, is returned to its callback object. 

10:
This message is used to forward the previous message to the IpAppLogic. 

11:
This message releases the UICall object. 

12:
Assuming the correct PIN is entered, the call is forward routed to the destination party. 

13:
This message passes the result of the call being answered to its callback object. 

14:
This message is used to forward the previous message  to the IpAppLogic 

15:
When the call is terminated in the network, the application will receive a notification. This notification will always be received when the call is terminated by the network in a normal way, the application does not have to request this event explicitly. 

16:
The event is forwarded to the application. 

17:
The application must free the call related resources in the gateway by calling deassignCall. 

6.1.5 Number Translation 1 

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event being received by the call control service. 
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1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface. 

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled.  When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object. 

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface. 

4:
This message is used to forward message 3 to the IpAppLogic. 

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of message 3. 

6:
This message invokes the number translation function. 

7:
The returned translated number is used in message 7 to route the call towards the destination. 

8:
This message passes the result of the call being answered to its callback object 

9:
This message is used to forward the previous message to the IpAppLogic. 

10:
The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue in the network, but there will be no further communication between the call object and the application. 

6.1.6 Number Translation 1 (with callbacks) 

The following sequence diagram shows a simple number translation service, initiated as a result of a prearranged event being received by the call control service.
For illustration, in this sequence the callback references are set explicitly. This is optional. All the callbacks references can also be passed in other methods. From an efficiency point of view that is also the preferred method. The rest of the sequences use that mechanism. 
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1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface. 

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled.  When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object. 

3:
This message sets the reference of the IpAppCallControlManager object in the CallControlManager. The CallControlManager reports the callEventNotify to referenced object only for enableCallNotifications that do not have a explicit IpAppCallControlManager reference specified in the enableCallNotification. 

4:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface. 

5:
This message is used to forward message 4 to the IpAppLogic. 

6:
This message is used by the application to create an object implementing the IpAppCall interface. 

7:
This message is used to set the reference to the IpAppCall for this call. 

8:
This message invokes the number translation function. 

9:
The returned translated number is used in message 7 to route the call towards the destination. 

10:
This message passes the result of the call being answered to its callback object 

11:
This message is used to forward the previous message to the IpAppLogic. 

12:
The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue in the network, but there will be no further communication between the call object and the application. 

6.1.7 Number Translation 2 

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the call control service. If the translated number being routed to does not answer or is busy then the call is automatically released. 
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1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface. 

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled.  When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object. 

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface. 

4:
This message is used to forward the previous message to the IpAppLogic. 

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify. 

6:
This message invokes the number translation function. 

7:
The returned translated number is used  to route the call towards the destination. 

8:
Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback in this message, indicating the unavailability of the called party. 

9:
This message is used to forward the previous message to the IpAppLogic. 

10:
The application takes the decision to release the call. 

6.1.8 Number Translation 3 

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the call control service. If the translated number being routed to does not answer or is busy then the call is automatically routed to a voice mailbox. 
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1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface. 

2:
 This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled.  When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object. 

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface. 

4:
This message is used to forward the previous message to the IpAppLogic. 

5:
This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify. 

6:
This message invokes the number translation function. 

7:
The returned translated number is used  to route the call towards the destination. 

8:
Assuming the called party is busy or does not answer, the object implementing the IpCall interface sends a callback, indicating the unavailability of the called party. 

9:
This message is used to forward the previous message to the IpAppLogic. 

10:
The application takes the decision to translate the number, but this time the number is translated to a number belonging to a voice mailbox system. 

11:
This message routes the call towards the voice mailbox. 

12:
This message passes the result of the call being answered to its callback object. 

13:
This message is used to forward the previous message to the IpAppLogic. 

14:
The application is no longer interested in controlling the call and therefore deassigns the call. The call will continue in the network, but there will be no further communication between the call object and the application. 

6.1.9 Number Translation 4 

The following sequence diagram shows a number translation service, initiated as a result of a prearranged event being received by the call control service. Before the call is routed to the translated number, the application requests for all call related information to be delivered back to the application on completion of the call.  
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1:
This message is used by the application to create an object implementing the IpAppCallControlManager interface. 

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a number translation service, it is likely that only new call events within a certain address range will be enabled.  When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpCallControlManager. Assuming that the criteria for creating an object implementing the IpCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object. 

3:
This message is used to pass the new call event to the object implementing the IpAppCallControlManager interface. 

4:
This message is used to forward the previous message to the IpAppLogic. 

5:
 This message is used by the application to create an object implementing the IpAppCall interface. The reference to this object is passed back to the object implementing the IpCallControlManager using the return parameter of the callEventNotify. 

6:
 This message invokes the number translation function. 

7:
The application instructs the object implementing the IpCall interface to return all call related information once the call has been released. 

8:
The returned translated number is used  to route the call towards the destination. 

9:
This message passes the result of the call being answered to its callback object. 

10:
This message is used to forward the previous message to the IpAppLogic. 

11:
Towards the end of the call, when one of the parties disconnects, a message (not shown) is directed to the object implementing the IpCall. This causes an event,  to be passed to the object implementing the IpAppCall object. 

12:
This message is used to forward the previous message to the IpAppLogic. 

13:
The application now waits for the call information to be sent. Now that the call has completed, the object implementing the IpCall interface passes the call information to its callback object. 

14:
This message is used to forward the previous message to the IpAppLogic 

15:
After the last information is received, the application deassigns the call. This will free the resources related to this call in the gateway. 

(=========================== NEXT MODIFIED SECTION =======================(
7.1.3 Call Barring 2 

The following sequence diagram shows a call barring service, initiated as a result of a prearranged event being received by the call control service. Before the call is routed to the destination number, the calling party is asked for a PIN code. The code is rejected and the call is cleared.  

[image: image7.wmf] : (Logical 

View::IpAppL...

 : 

IpAppMultiPartyCallControlManager

 : 

IpAppMultiPartyCall

 : 

IpMultiPartyCall

 : IpUICall

 : 

IpUIManager

 : IpMultiPartyCallControlManager

 : 

IpAppUICall

8: sendInfoAndCollectReq(      )

9: sendInfoAndCollectRes(    )

11: sendInfoReq(      )

12: sendInfoRes(   )

15: release(  )

1: new()

3: reportNotification(    )

4: 'forward event'

5: new()

10: 'forward event'

13: 'forward event'

2: createNotification(  )

7: createUICall(  )

14: release( )

6: getCallLegs( )

 

1:
This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface. 

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range prompted for a password before the call is allowed to progress.  When a new call, that matches the event criteria, arrives a message (not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object. 

3:
This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface. 

4:
This message is used to forward message 3 to the IpAppLogic. 

5:
This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of the callEventNotify. 

6:
The application requests an list of all the legs currently in the call. 

7:
This message is used to create a UICall object that is associated with the incoming  leg of the call. 

8:
The call barring service dialogue is invoked. 

9:
The result of the dialogue, which in this case is the PIN code, is returned to its callback object. 

10:
This message is used to forward the previous message to the IpAppLogic 

11:
Assuming an incorrect PIN is entered, the calling party is informed using additional dialogue of the reason why the call cannot be completed. 

12:
This message passes the indication that the additional dialogue has been sent. 

13:
This message is used to forward the previous message to the IpAppLogic. 

14:
No more UI is required, so the UICall object is released. 

15:
This message is used by the application to clear the call. 

7.1.5 Complex Card Service 

The following sequence diagram shows an advanced card service, initiated as a result of a prearranged event being received by the call control service. Before the call is made, the calling party is asked for an ID and PIN code. If the ID and PIN code are accepted, the calling party is prompted to enter the address of the destination party. A trigger of '#5' is then set on the controlling leg (the calling party's leg) such that if the calling party enters a '#5' an event will be sent to the application. The call is then routed to the destination party. Sometime during the call the calling party enters '#5' which causes the called leg to be released. The calling party is now prompted to enter the address of a new destination party, to which it is then routed.  
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1:
This message is used by the application to create an object implementing the IpAppMultiPartyCallControlManager interface. 

2:
This message is sent by the application to enable notifications on new call events. As this sequence diagram depicts a call barring service, it is likely that all new call events destined for a particular address or address range result in the caller being prompted for a password before the call is allowed to progress.  When a new call, that matches the event criteria set in message 2, arrives a message (not shown) is directed to the object implementing the IpMultiPartyCallControlManager. Assuming that the criteria for creating an object implementing the IpMultiPartyCall interface (e.g. load control values not exceeded) is met, other messages (not shown) are used to create the call and associated call leg object. 

3:
This message is used to pass the new call event to the object implementing the IpAppMultiPartyCallControlManager interface. 

4:
This message is used to forward message 3 to the IpAppLogic. 

5:
This message is used by the application to create an object implementing the IpAppMultiPartyCall interface. The reference to this object is passed back to the object implementing the IpMultiPartyCallControlManager using the return parameter of message 3. 

6:
This message returns the call legs currently in the call. In principle a reference to the call leg of the calling party is already obtained by the application when it was notified of the new call event. 

7:
This message is used to associate a user interaction object with the calling party. 

8:
The initial card service dialogue is invoked using this message. 

9:
The result of the dialogue, which in this case is the ID and PIN code, is returned to its callback object using this message and eventually forwarded via another message (not shown) to the IpAppLogic. 

10:
Assuming the correct ID and PIN are entered, the final dialogue is invoked. 

11:
The result of the dialogue, which in this case is the destination address, is returned  and eventually forwarded via another message (not shown) to the IpAppLogic. 

12:
This message is used to forward the address of the callback object. 

13:
The trigger for follow-on calls is set (on service code). 

14:
A new AppCallLeg is created to receive callbacks for another leg. Alternatively, the already existing AppCallLeg object could be passed in the subsequent createCallLeg(). In that case the application has to use the sessionIDs of the legs to distinguish between callbacks destined for the A-leg and callbacks destined for the B-leg. 

15:
This message is used to create a new call leg object. The object is created in the idle state and not yet routed in the network. 

16:
The application requests to be notified when the leg is answered. 

17:
The application routes the leg. As a result the network will try to reach the associated party. 

18:
When the B-party answers the call, the application is notified. 

19:
The event is forwarded to the application logic. 

20:
Legs that are created and routed explicitly  are by default in state detached. This means that the media is not connected to the other parties in the call. In order to allow inband communication between the new party and the other parties in the call the media have to be explicitly attached. 

21:
At some time during the call the calling party enters '#5'. This causes this message to be sent to the object implementing the IpAppCallLeg interface, which forwards this event as a message (not shown) to the IpAppLogic. 

22:
The event is forwarded to the application. 

23:
This message releases the called party. 

24:
Another user interaction dialogue is invoked. 

25:
The result of the dialogue, which in this case is the new destination address is returned and eventually forwarded via another message (not shown) to the IpAppLogic. 

26:
A new AppCallLeg is created to receive callbacks for another leg. 

27:
The call is then forward routed to the new destination party. 

28:
As a result a new Callleg object is created. 

29:
This message passes the result of the call being answered to its callback object and is eventually forwarded via another message (not shown) to the IpAppLogic. 

30:
When the A-party terminates the application is informed. 

31:
The event is forwarded to the application logic. 

32:
Since the release of the A-party will in this case terminate the entire call, the application is also notified with this message. 

33:
The event is forwarded to the application logic. 

34:
Since the user interaction object were not released at the moment that the call terminated, the application receives this message to indicate that the UI resources are released in the gateway and no further communication is possible. 

35:
The event is forwarded to the application logic. 

36:
The application deassigns the call object. 
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