joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-021034

Meeting #21, Dublin, Ireland, 28 Oct - 1 Nov 2002

Source:
Ericsson (Ard-Jan Moerdijk)
Title:
Rel-6: continued discussion on event notification extension

Agenda Item:

Document for:
Discussion
Category:

Work Item ID:
OSA3 (ETSI ver.3, Parlay 5, 3GPP Rel-6)

Doc Summary:

Specs involved:
ETSI ES 201 915-3, 3GPP TS 29.198-3

1 Introduction

Last meeting in Miami, an initial proposal for extending the Framework event notification mechanism to allow the Framework to inform applications about new SCSs and their level of Backward compatibility with respect to a previous SCS version was discussed. It was concluded that a number of use cases, explaining the desired functionality would be useful in order to assess the proposal.

This contribution therefore includes use cases to further explain the steps and details involved.

2 Problem

When a new SCS becomes available it is useful to inform applications that are using an older version of the SCF type about the level of backward compatibility (or non-compatibility) involved. This allows an application provider to have an indication about the effort on his side required in migrating from the older to the newer version.

A special case is when an SCS becomes available that replaces or is backward compatible with an SCS that is already in use. There exists today no mechanism in OSA to convey such information to an Application.

3 Use cases

Here we will explore the set of use cases associated with this requirement.

3.1 Use case: Advertise new SCS

Preconditions:

The application is using an SCS, offering an implementation of an SCF for Parlay / OSA version x.y.

The application subscribed to the notification mechanism and indicated it is interested to be notified when new SCSs of certain type become available.

An implementation of a newer version of the SCF type, the application is currently using, is registered to the Parlay / OSA Framework. The SCF implementation the application is using continues running. During registration, the new implementation indicates to the Framework that it has a specific backward compatibility level compared to the previous version of the specification. The Framework operator may add to this other information, like for instance the date and time when it desires applications to be migrated to the new version. The Framework then forwards all migration related information to the application (via the notification mechanism).

Based on this information, the application provider can determine his / her strategy for migrating the application to the newer implementation.

3.2 Use case: Migrate to new SCS

This Use case is a specialisation of the “Advertise new SCS” Use case as in this case the new SCS is backward compatible and should be migrated to immediately.

Preconditions:

The application is using an SCS, offering an implementation of an SCF for Parlay / OSA version x.y.

The application subscribed to the notification mechanism and indicated it is interested to be notified when new SCSs of certain type become available.

An implementation of a newer version of the SCF type, the application is currently using, is added to the portfolio of the operator. This implementation complies to Parlay/OSA version z.0, backward compatible with the older version x.y. The operator wants to take the older version out of service and replace it with the new implementation. All the data (e.g. notifications) used by the older implementation is made available to the new implementation. Next, the new implementation is registered to the Framework and made available. When registring, the new implementation indicates to the Framework that it is backward compatible with the previous version and that applications should migrate from the older implementation to the newer one. The Framework operator may add to this other information, like for instance the indication whether the application should reset all data (e.g. notifications) in the new SCS or whether this has already been taken care of. (Note: it could also be the case that the Framework operator sets the indication that applications should migrate from the older implementation to the newer one in stead of the SCS indicating this to the Framework.). The Framework then forwards all migration related information to the application.

As the Service Agreement does not change (no other functionality is made available, no other restrictions apply), the new SCS could also directly offer the application allready Service Manager interfaces, the application should use from now on. There are several options for when the application should use these interfaces on the new SCS, one option is that the application is recommended to start using the new interfaces, another option is that the new interfaces immediately replace the old interfaces.

However, it could also be the case that the FW indicates to the application that the mechanism to (re-) sign a new Service Agreement should be used to obtain the necessary interfaces on the new SCS.

A variant of this use case is when no data (e.g. notifications) are made available to the new implementation. In that case it needs to be indicated to the application that it is responsible to set all data in the new SCS when migrating.

4 Solution

4.1 General

When a new SCS (functional entity providing the SCF / Service implementation) is made available, it first registers to the OSA / Parlay framework and during this process it supplies the Framework with the properties supported in this implementation of the SCF.

The Framework knows about all the SCF implementations that are available in the specific network operator domain and also about the applications using them and the restrictions that apply on the usage (so-called Service Level Agreements).

Therefore the Framework could do a check of the properties of the new SCF implementation against previous versions. From this check an indication can be obtained about to what extent the new SCF implementation is backward compatible with the other versions. This information could then be forwarded to the applications using previous versions together with references to interfaces of the new SCS. To achieve the latter, an extension to the current Framework notification mechanism should be made.

The Framework notification mechanism can be guided by dedicated service properties that specify that the SCF implementation replaces or outdates a specified older SCF implementation or that specify the migration strategy.

4.2 Migration Notification support on the Framework-to-Application API

4.2.1 Alternative1: No change in notification criteria

An Application subscribes for the existing criterion P_EVENT_FW_SERVICE_AVAILABLE. When an SCF becomes available the Application is informed of this. The information that is send to the Application contains additional migration information.

pro:

· Applications that subscribed for notification on new SCFs also are informed about eventual migration information.

con:

· The mechanism is not backward compatible, because the associated datatype, TpFwEventInfo that is send back to the application when a new SCF becomes available, needs to be changed.

· Applications that are only interested in migration notifications for SCFs that they use, also get notifications of arbitrary new SCFs. I.e. it might be that an application is using a specific implementation of the UI SCF and is only interested when a new version of this implementation becomes available and not when other UI SCF implementations are made available.

4.2.2 Alternative 2: New notification criterion

An Application can subscribe for a notification with a new criterion P_EVENT_FW_COMPATIBLE_SERVICE_AVAILABLE. When a compatible SCF becomes available the Application is informed of this. The information that is send to the Application contains additional migration information.

pro:

· Backward compatible, the existing mechanism does not change.

· Applications that are only interested in migration notifications for SCFs that they use, only get migration notifications.

4.2.3 Conclusion/Proposal

Alternative 2 seems the best solution, it is backward compatible and does not have striking drawbacks. This solution is worked out in the chapter “Changes to interfaces”.
4.3 Migration support on the Framework-to-Service API

4.3.1 Alternative 1: Framework compares Service Properties of new SCF with existing SCFs

In this scenario the Framework bases the migration notifications solely on a comparison of the Service Properties of a new SCF with existing SCFs.

con:

· Service Properties need to be very descriptive, complete and standardized to be able to do this.

· Difficult matching algorithm needed in the Framework.

4.3.2 Alternative 2: Additional Service Properties

Dedicated standardized Service Properties guide the migration mechanism, for example:

P_MIGRATION_STRATEGY
{SIGN_NEW_SLA, REPLACES, DEPRECATES}

P_MIGRATE_FROM_SERVICE
ServiceId
pro:

· Straightforward mechanism in the Framework to drive the migration notifications. (No difficult matching needed in Framework.)

· Migration mechanism can be easily controlled in this way by the SCF provider or the Framework operator.

4.3.3 Conclusion/Proposal

Alternative 2 seems the best solution. This solution is worked out in the chapter “Changes to data-types”.
5 Changes to data-types

4.1 Event Notification Data Definitions

4.1.1 TpFwEventName

Defines the name of event being notified.

Name
Value
Description

P_EVENT_FW_NAME_UNDEFINED
0
Undefined

P_EVENT_FW_SERVICE_AVAILABLE
1
Notification of SCS(s) available

P_EVENT_FW_SERVICE_UNAVAILABLE
2
Notification of SCS(s) becoming unavailable

4.1.2 TpFwEventCriteria

Defines the Tagged Choice of Data Elements that specify the criteria for an event notification to be generated.

Tag Element Type

TpFwEventName

Tag Element Value
Choice Element Type
Choice Element Name

P_EVENT_FW_NAME_UNDEFINED
TpString
EventNameUndefined

P_EVENT_FW_ SERVICE_AVAILABLE
TpServiceTypeNameList
ServiceTypeNameList

P_EVENT_FW_SERVICE_UNAVAILABLE
TpServiceTypeNameList
UnavailableServiceTypeNameList

P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE
TpServiceTypeNameList
CompatibleServiceTypeNameList

4.1.3 TpFwEventInfo

Defines the Tagged Choice of Data Elements that specify the information returned to the application in an event notification.

Tag Element Type

TpFwEventName

Tag Element Value
Choice Element Type
Choice Element Name

P_EVENT_FW_NAME_UNDEFINED
TpString
EventNameUndefined

P_EVENT_FW_ SERVICE_AVAILABLE
TpServiceIDList
ServiceIDList

P_EVENT_FW_SERVICE_UNAVAILABLE
TpServiceIDList
UnavailableServiceIDList

P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE
TpFWMigrationServiceAvailableInfo
MigrationServiceAvailableList

4.1.4 TpFwMigrationServiceAvailableInfo

Defines the information to be supplied when an SCS becomes available

Sequence Element

Name
Sequence Element

Type
Documentation

ServiceType
TpServiceTypeName
Type of SCS that has become available

ServiceID
TpServiceID
ID of the SCS that has become available

ReplacesServiceID
TpServiceID
ID of the SCS that this SCS replaces

BackwardCompatibilityLevel
TpBackwardCompatibilityLevel
Level of Backward compatibility involved when migrating from SCS with ID ReplacesServiceID to the new SCS with ID ServiceID

ServiceMgrInterface
IpServiceRef
Specifies a Service Manager interface that can be used by the application and replaces the Service Manager interface the application is currently using.

This parameter is optional and should be NULL when no value is given

MigrationStrategy
TpMigrationStrategy
Specifies how one should migrate to the newly made available SCS.

DataMigrated
TpBoolean
Indicates whether all the data the application set in the previous SCS (e.g. notifications) is also available in the new SCS.

Value = FALSE : the new SCS has not obtained all data (e.g. notifications) related to the old SCS and the application needs to reset all the previous data.
Value = TRUE: the new SCS has obtained data (e.g. notifications) related to the old SCS, the application can use the new SCS without resetting data.

MigrationDataAndTime
TpDataAndTime
Indicates the date and time when the applications should start using the new SCS.

4.1.5 TpBackwardCompatibiltyLevel

Defines the level of backward compatibility.
Name
Value
Description

P_BACKWARD_COMPATIBILITY_LEVEL_0
0
Already deployed client applications are not affected at all.

P_BACKWARD_COMPATIBILITY_LEVEL_1
1
Manual intervention (by OAM personnel) is needed on the client side, e.g. to re-connect after a server upgrade. The vendor of the client software is not involved.

P_BACKWARD_COMPATIBILITY_LEVEL_2
2
The vendor of the client software needs to be involved to migrate to an updated server, e.g. client applications need to be re-linked. However, the source code of the client application stays untouched, which limits the effort for the software vendor, keeping the upgrade costs still reasonable

P_BACKWARD_COMPATIBILITY_LEVEL_3
3
Level 3 means essential bug fixes based on the defined requirements. This means a change that is needed to make it possible to create interoperable implementations of the specification.

P_BACKWARD_COMPATIBILITY_LEVEL_4
4
 Level 4 means any other non-compatible change to the specification

4.1.6 TpMigrationStrategy

Defines the migration strategy.

Name
Value
Description

P_MIGRATION_STRATEGY_UNDEFINED
0
Undefined or not applicable

P_MIGRATION_STRATEGY_SIGN_NEW_SLA
1
In order to use the newly made available SCS a new Service Agreement has to be signed.

P_MIGRATION_STRATEGY_REPLACES
2
The newly made available SCS immediately replaces a previous one and one should use the new Manager interface supplied via the notification.

P_MIGRATION_STRATEGY_DEPRECATES
3
The newly made available SCS deprecates a previous one, the Application is strongly advised to start using the new Manager interface supplied via the notification.

9.2 General Service Properties
Each service instance has the following general properties:

· Service Name

· Service Version

· Service Instance ID

· Service Instance Description

· Product Name

· Product Version

· Supported Interfaces

· Operation Set

· BackwardCompatibility Matrix
· Migration Strategy

· Migrate From Service
· Data migrated

· Migration Date and Time

10.2.10 Migrate From Service

Property
Type
Optional
Description

P_MIGRATE_FROM_SERVICE
STRING_SET
OPTIONAL
Specifies set of the ServiceID that this SCF is compatible with.

4.1.7 BackwardCompatibilty Matrix

Property
Type
Mode
Description

P_LEVEL_0_SERVICE_VERSIONS
STRING_SET
OPTIONAL
This property contains the version of the APIs, to which the service is level 0 backward compatible. It is a set of strings as specified in the TpVersion type.

P_LEVEL_1_SERVICE_VERSIONS
STRING_SET
OPTIONAL
This property contains the version of the APIs, to which the service is level 1 backward compatible. It is a set of strings as specified in the TpVersion type.

P_LEVEL_2_SERVICE_VERSIONS
STRING_SET
OPTIONAL
This property contains the version of the APIs, to which the service is level 2 backward compatible. It is a set of strings as specified in the TpVersion type.

P_LEVEL_3_SERVICE_VERSIONS
STRING_SET
OPTIONAL
This property contains the version of the APIs, to which the service is level 3 backward compatible. It is a set of strings as specified in the TpVersion type.

P_LEVEL_4_SERVICE_VERSIONS
STRING_SET
OPTIONAL
This property contains the version of the APIs, to which the service is level 4 backward compatible. It is a set of strings as specified in the TpVersion type.

10.2.9 Migration Strategy

Property
Type
Mode
Description

P_MIGRATION_STRATEGY
STRING_SET
OPTIONAL
Specifies set of MIGRATION_STRATEGIES that are applicable to this SCF.

The notation to be used is : {“SIGN_NEW_SLA”,”REPLACES”, “DEPRECATES”}
Either the SCF that registers or the Framework operator needs to limit this to either none or one of the values before a ServiceProfile is assigned to a SAG.

4.1.8 Data Migrated

Property
Type
Mode
Description

P_DATA_MIGRATED
BOOLEAN_SET
OPTIONAL
This property indicates whether the data (e.g. notifications) from the previous version of an implementation of this Service Type, the application should migrate from, is also available in this Service.

4.1.9 MigrationDateAndTime

Property
Type
Mode
Description

P_MIGRATION_DATE_AND_TIME
STRING_SET
OPTIONAL
This property contains the date and time (e.g. “10-10-2002” or “10 oct 2002”) when applications should move from previous versions of an implementation of this ServiceType to this Service.

6 Changes to interfaces.

In Miami it was also pointed out that not all applications might use the Framework event notification mechanism as this is an optional feature. In case of an immediate migration, this event might thus be missed by some of the applications. Therefore, it was suggested to add the immediate migration mechanism to the interface that is used by all applications, during the whole session or life-time: IpAccess.

Below the implied changes are outlined.

4.1.9.1 Interface Class IpClientAccess

Inherits from: IpInterface.
IpClientAccess interface is offered by the client to the framework to allow it to initiate interactions during the access session.

<<Interface>>

IpClientAccess

terminateAccess (terminationText : in TpString, signingAlgorithm : in TpSigningAlgorithm, digitalSignature : in TpOctetSet) : void

<<new>> newServiceAvailable(migrationServiceAvailableInfo: in TpFWMigrationServiceAvailableInfo) : void

4.1.9.1.1 Method newServiceAvailable()

This method is used to inform the application that a new Service has been made available to which the application can or should migrate.

Parameters

migrationServiceAvailableInfo : in TpFWMigrationServiceAvailableInfo
Contains the information (serviceType of the new Service, ServiceID of Service that will be replaced by the new Service, etc) about the new Service and how and when to migrate.
Returns

-
Raises

7 Use Case realisations

Using the proposed changes outlined in 5 and 6, the use cases can be realised as follows.

7.1 Use case realisation: Advertise new SCS

[image: image1.wmf]Application

newSCS : SCFType

Parlay Z.Q

FW

oldSCS : SCFType

Parlay X.Y

registerService(Properties : Backward Compatibilty Matrix)

announceSvcAvailablity

FW operator

add additional info

reportNotification(P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE)

Note that the step to add additional info can also be after the announceSvcAvailability. This is a matter of FW implementation and not subject to standardisation.

7.2 Use case realisation: Migrate to new SCS

[image: image2.wmf]Application

newSCS : SCFType

Parlay Z.Q

FW

oldSCS : SCFType

Parlay X.Y

FW operator

registerService(Properties : Backward Compatibilty Matrix)

announceSvcAvailablity

reportNotification(P_EVENT_FW_MIGRATION_SERVICE_AVAILABLE)

"add additional info (e.g. fact that data has been migrated)"

"enable access to data of oldSCS"

"use SCS"

8 Conclusions

In order to add a function to the Framework that helps application providers with migration to newer SCSs we have investigated the impact on the Parlay/OSA specs. The impact is mainly extension of data-types used in the Framework Event Notification function and addition of general Service Properties.

Ericsson kindly requests to consider these proposed extensions to the standard.

