0 Complex Data Types

These are introduced in Policy Manager Data Definitions.

TpType

This is a Tagged Choice of Data Elements and can be one of the following:

	Choice Element Name
	Notes

	TpAttributeType
	Used for atomic types only.

	TpRecordType
	Used for record types only.

	TpArrayType
	Used for homogeneous arrays. Heterogeneous arrays are not supported.

TpType allows us to define arbitrarily nested complex types.

TpRecordType

This defines the record data type. Records have named fields, with each field type being a TpType itself. This allows nested structures to be defined.

This is a Sequence of Data Elements of record field names and record field types.

	Sequence Element Name
	Sequence Element Type
	Notes

	FieldNames
	TpStringList
	Unbounded list of field names.

	FieldTypes
	TpTypeList
	Unbounded list of field types. Each field type corresponds to the name present at the same location in FieldNames.

TpArrayType

This defines a homogeneous array (list) type. This contains the following data member:

	Element Name
	Sequence Element Type
	Notes

	ElementType
	TpType
	Type of the elements of the list.

TpAttributeDeclaration

This is a Sequence of Data Elements of attribute name and attribute type.

	Sequence Element Name
	Sequence Element Type
	Notes

	AttributeName
	TpString
	Attribute name.

	AttributeType
	TpType
	Attribute type.

TpTypeList

This data type defines a Numbered Set of Data Elements of type TpType.

1 Managing Variables

This is introduced in IpPolicyDomain. Variable declarations are associated with domains. These variables can then be used to provision rules, and used in rule conditions/actions. Provisioning methods can utilize the type definitions associated with the variables to verify that the rules being provisioned are valid. The value of the variables would be supplied via the IpPolicyDomain::evalPolicy() method at run time, if they are part of the input variables in the corresponding signature (see section on signature templates).

Method setVariableDeclaration()

Set a variable name and type.

Parameters

variable: in TpAttributeDeclaration

The declaration of the variable.
Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS
Method getVariableDeclaration()

Get a variable declaration.

Returns: A copy of the variable declaration (which contains both its name and type).

Parameters

variableName: in TpString

The name of the variable name whose declaration is to be retrieved.
Returns

TpAttributeDeclaration

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR
Method removeVariableDeclaration()

Remove a variable declaration.

Parameters

variableName: in TpString

The name of the variable whose declaration is to be removed.
Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROGRESS
Method getVariableDeclarationCount()

Get the count of the visible variable declarations contained by this domain that the client is authorized to see.

Returns: The number of variable declarations.

Parameters

No parameters were identified for this method.
Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS_VIOLATION
Method getVariableDeclarationIterator()

Obtain a refernce to an iterator that will return the names of each of the variables declared by this domain that the client is authorized to see.

Returns: A reference to the iterator.

Parameters

No parameters were identified for this method.
Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION
2 Management methods supporting policy-evaluation capability.

 These are introduced in Interface Class IpPolicyDomain.

Method createSignatureTemplate()

Define a new policy-evaluation method signature template, specifying the signature template’s name and the input and output attributes that must appear in an instance of that signature.

Returns: A reference to the newly created definition.

Parameters

signatureTemplateName : in TpString

The name of the new policy-evaluation method signature template .
Returns

IpPolicySignatureTemplateRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS
Method getSignatureTemplate()

Get a reference to the template for a policy-evaluation method signature.

Returns: A reference to the definition.

Parameters

signatureTemplateName : in TpString

The name of the policy-evaluation method signature template to get.
Returns

IpPolicySignatureTemplateRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR
Method removeSignatureTemplate()

Remove the policy-evaluation method signature template from the domain.

Parameters

signatureTemplateName : in TpString

The name of the method signature template to remove.
Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR, P_NO_TRANSACTION_IN_PROCESS
Method getSignatureTemplateCount()

Returns the number of policy-evaluation method signature templates contained in this domain that the client is authorized to see.

Returns: The number of templates.

Parameters

No Parameters were identified for this method

Returns

TpInt32

Raises

TpCommonExceptions, P_ACCESS_VIOLATION
Method getSignatureTemplateIterator()

Obtain a reference to an iterator that will return the names of each of the policy-evaluation signature templates contained in this domain that the client is authorized to see.

Returns: A reference to the iterator.

Parameters

No Parameters were identified for this method

Returns

IpPolicyIteratorRef

Raises

TpCommonExceptions, P_ACCESS_VIOLATION

Interface Class IpPolicySignatureTemplate

Inherits from: IpPolicy.
Instances of IpPolicySignatureTemplate specify the required input and output attributes. that must be included in the signature of any policy evaluation request made via the evalPolicy() – also see createSignatureTemplate() in IpPolicyDomain. The input and output attributes referenced in the signature correspond to variables (attributes) whose names and types have been defined via the setVariableDeclaration method.

	<<Interface>>

IpPolicySignatureTemplate

	

	setInputVariables(variableNames: in TpStringList) : void

setOutputVariables(variableNames: in TpStringList) : void

getInputVariables() : TpStringList

getOutputVariables() : TpStringList

getParentDomain () : IpPolicyDomainRef

3.1 Attributes

CommonName : TpString

The identifier used to distinguish instances of a give class of objects within a container. It is defined and referenced by the 'name' parameter used in most API methods.

PolicyKeywords : TpStringSet

This attribute provides a set of one or more keywords that a policy administrator may use to assist in characterizing or categorizing a policy object. Keywords are of one of two types:

o Keywords defined in this document, or in documents that define subinterfaces of the interfaces defined in this document. These keywords provide a vendor-independent, installation-independent way of characterizing policy objects.

o Installation-dependent keywords for characterizing policy objects. Examples include "Engineering", "Billing", and "Review in December 2000".

This document defines the following keywords: "P_PM_KEYWORD_UNKNOWN", " P_PM_KEYWORD_CONFIGURATION", " P_PM_KEYWORD_USAGE", " P_PM_KEYWORD_SECURITY", " P_PM_KEYWORD_SERVICE", " P_PM_KEYWORD_MOTIVATIONAL", " P_PM_KEYWORD_INSTALLATION", and " P_PM_KEYWORD_EVENT". These concepts were originally defined in [PCIM].

One additional keyword is defined: " P_PM_KEYWORD_POLICY". The role of this keyword is to identify policy-related instances that would not otherwise be identifiable as being related to policy. It may be needed in some repository implementations.

Documents that define subinterfaces of the Policy Information Model interfaces SHOULD define additional keywords to characterize instances of these subinterfaces. By convention, keywords defined in conjunction with interface definitions are in uppercase. Installation-defined keywords can be in any case.

Caption : TpString

This attribute provides a one-line description of a policy-related object.

Description : TpString

This attribute provides a longer description than that provided by the caption attribute.

InputVariables: TpStringList

The names of the attributes that must be supplied values during a decision request.

OutputVariables: TpStringList

The names attributes whose values are to be returned back to the client as part of evaluating a decision request..

3.1.1 Method setInputVariables()

Specify the names of the input attributes that a policy-evaluation must include.

Parameters

variableNames: in TpStringList

The names of the variables.
Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_NO_TRANSACTION_IN_PROCESS
3.1.2 Method setOutputVariables()

Specify the names of the output variables that must be included in the output of resulting from a policy-evaluation method call.

Parameters

variableNames: in TpStringList

The names of the variables.
Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_NO_TRANSACTION_IN_PROCESS

3.1.3 Method getInputVariables()

Get the names of the input attributes that a evalPolicy() method is required to include.

Returns: A copy of the set of names.

Parameters

No Parameters were identified for this method

Returns

TpStringList

Raises

TpCommonExceptions

3.1.4 Method getOutputVariables()

Get the names of the output variables that a evalPolicy() method is required to include.

Returns: A copy of the set of names.

Parameters

No Parameters were identified for this method

Returns

TpStringList

Raises

TpCommonExceptions

3.1.5 Method getParentDomain()

Return a reference to the domain that contains this policy-evaluation signature template.

Returns: A reference to the containing domain.

Parameters

No Parameters were identified for this method

Returns

IpPolicyDomainRef

Raises

TpCommonExceptions

Method for policy-evaluation.

Introduced in Interface Class IpPolicyDomain

Method evalPolicy()

Invoke evaluation of relevant policy rules using the policy-evaluation signature specified.

Validate the attributes of the signature against the instance of IpPolicySignatureTemplate whose name is specified in the signatureTemplate parameter. Validation includes verifying that all attributes specified in the IpPolicySignatureTemplate, and only those, are included. Upon successful evaluation the results will be sent to the callback address provided by the appPolicyDomain parameter.

Returns: The output values included in the associated output structure, TpAttributeList

Parameters

appPolicyDomain : in IpAppPolicyDomainRef

The callback to be used to send output results to the client.

signatureTemplateName : in TpString

The name of the signature template to is used to validate attributes.
inputAttributes : in TpAttributeList

The input attributes that will be included in the signature.

Returns

TpAttributeList.

This contains the values of the output attributes to be returned.
Raises

TpCommonExceptions, P_ACCESS_VIOLATION, P_SYNTAX_ERROR, P_NAME_SPACE_ERROR

3 Extensions for condition/action expressions

A proposed EBNF for the action/condition expressions follows. Note that (as in the current BNF) the EBNF rules specified below do not completely enforce all the constraints necessary. Some constraints will need to be caught by associated parsing actions.

Also, the EBNF specifies rules for conditions/action expressions only (i.e., condition groups, negation of conditions are assumed to be handled at some higher level). Moreover, rules are given only for a single action expression, whereas a rule can contain multiple action expressions.
Basic Definitions

digit

::= "0" | "1" | ... | "9";

letter

::= "a" | "b" | ... | "z" | "A" | "B" | ... | "Z";

alphanumeric
::= digit | letter;

char

::= alphanumeric | "\"" | "\'" | "." | "+" | ...;

identifier
::= letter {[alphanumeric | "_"]}*;

Constants (literals)

bool_const
::= "true" | "false";

char_const
::= "'" char "'";

string_const
::= '"' {char}* '"';

int_const
::= {digit}+;

float_const
::= {digit}+ "." {digit}*;

number::=

 int_const

| float_const

;

const::=

 bool_const

| char_const

| string_const

| number

;

Operators

"%" is the modulo operator, "in" is a containment operator (e.g., can be used to check if a element is within a list, or if a list is contained within another). Note that the standard operator precedence will be enforced on top of this grammar.

unary_arith_op ::= "+" | "-";

binary_arith_op
::= "+" | "-" | "*" | "/" | "%";

boolean_op
::= "<=" | "<" | "==" | ">" | ">=" | "!=" | "in";

Expressions

Predicate refers to a condition expression.

arith_expr::=

 number

| unary_arith_op arith_expr

| arith_expr binary_arith_op arith_expr

| "(" arith_expr ")"

| attr_access

| func_call

;

predicate::=

 bool_const

| arith_expr boolean_op arith_expr

| (arith_expr | const) ("==" | "!=") (arith_expr | const)

| attr_access

| func_call

;

Attribute Access

These rules specify how attributes (simple or complex typed) can be accessed in rules. List (array) elements are accessed via a standard index (“[]”) operator, and record fields are accessed via the dot (“.”) operator.

simple_attr_access::=

 identifier

 | simple_attr_access "." identifier

 | simple_attr_access "[" arith_expr "]"

;

elementwise_attr_access := "?" simple_attr_access;

attr_access ::=

 simple_attr_access

| elementwise_attr_access

;

Function Calls (for user defined functions)
expr
 ::= const | arith_expr | predicate;

expr_list ::= expr {"," expr}*;

func_call ::= identifier "(" [expr_list] ")";

Condition/action expressions

condition
::= predicate;

action::=

 simple_attr_access "=" expr

 | identifier += expr

 ;

Example Scenario

We now present a high-level scenario that illustrates how all the different extensions are tied together. The rulegroup that we will use contains only one rule, which uses two variables x, and y, which are of the type:

x: struct {

a: TpInt32;

b: TpFloat;

}

y: TpInt32;

Moreover, let us assume that there is onle one rulegroup associated with the domain we are considering, and the rulegroup contains only one rule of the form (it is easy to extend this scenario to the general case):

if (x.b < 3)

then

 y = x.a;

end

Finally, assume that the value of x is to be supplied for rule evaluation, and the value of y is to be returned back to the client. The steps that need to be performed are as follows (we will give psuedo-code for all the steps):

1. Create variable declarations:

// define the type of x

// we can use the int_type defined as part of this process, for

// the type of y as well

TpType int_type = TpType(TpAttributeType(TpInt32));

TpType float_type = TpType(TpAttributeType(TpFloat));

TpStringList field_names = [“a”, “b”];

TpTypeList field_types = [int_type, float_type];

TpType rec_type = TpType(TpRecordType(field_names, field_types));

// define the declarations of x and y

TpAttributeDeclaration x_decl =

 TpAttributeDeclaration(“x”, rec_type);

TpAttributeDeclaration y_decl =

 TpAttributeDeclaration(“y”, int_type);

// set the variable declarations

IpPolicyDomainRef domain = …; // get the domain

domain.setVariableDeclaration(x_decl);

domain.setVariableDeclaration(y_decl);

2. Create signature template:
IpPolicySignatureTemplateRef sig_tmpl =

 domain.createSignatureTemplate(“test_signature”);

// set input and output variables

TpStringList input_vars = [“x”];

TpStringList output_vars = [“y”];

sig_tmpl.setInputVariables(input_vars);

sig_tmpl.setOutputVariables(output_vars);

3. Provision the rules:
The above rule is provisioned with the rulegroup. The variable declarations provisioned in (1) of the parent domain of the rulegroup are utilized to verify that the rule being provisioned is accurate. For example, the condition (x.b < 3) can be verified as being valid, since “x” has a record type, and has “b” as a field, and “x.b” is a TpFloat. As an example, if the type of “x.b” had been TpString, then during provisioning, the rule condition would have been trapped as invalid, and an exception thrown.

4. Sending a decision request:
The first three steps happen during provisioning time. In this step, we describe how the client may use the IpPolicyDomain.evalPolicy() method, as well as the notion of signature templates, to request a decision to be rendered.

TpAttribute x;

x.AttributeName = “x”;

x.AttributeType = “”; // we do not need to specify attribute type

 // here since it can be retrieved from the

 // signature template

x.AttributeValue = …; // set the attribute value in TpAny

TpAttributeList inputs = [x]; // input values

TpAttributeList outputs; // output values

IpAppPolicyDomainRef app_ref = …; // callback for client

output = domain.evalPolicy(app_ref, “test_signature”, inputs);

	Author: The Policy Management Workgroup
	Error! Reference source not found.
	 Page 1 of 18

	This is a Error! Reference source not found.Document of The Parlay Group, Inc.

