Page 1

joint API group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-021041

Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

CR-Form-v5

CHANGE REQUEST

(

29.198-03
CR
CRNum
(

rev
-
(

Current version:
5.1.0
(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

(U)SIM

ME/UE

Radio Access Network

Core Network
X

Title:
(

Imposible for applications to re-obtain the reference to the service manager

Source:
(

Ericsson

Work item code:
(

OSA3

Date: (

10/10/2002

Category:
(

F

Release: (

REL-6

Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

Reason for change:
(

At this moment it is not possible to re-obtain a reference to the service manager of an SCF an application is using. However, in case an application has lost the reference to the Service manager e.g. due to a crash, without the SCS being aware of this, it should be possible for the application to re-obtain a reference to the Service manager.

Summary of change:
(

Remove description in method SelectService that exception will be thrown when application invokes the signServiceLevelAgreement method more than once and add text to description of signServiceLevelAgreement that method can be used to re-obtain reference to Service Manager

Consequences if
(

not approved:
Applications that loose reference to Service Manager will not be able to use SCF anymore.

Clauses affected:
(

4.1.1.1

Other specs
(

 Other core specifications
(

affected:

 Test specifications

 O&M Specifications

Other comments:
(

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

Introduction

Consider a scenario where the application (that is using a service) crashes. For the application to resume its function it has to re-gain access to the service manager. There are two ways an application can deal with this:

1. The application stores the reference to the service manager (and all other -framework- interfaces) persistently. After the application is restarted it will use the same service manager.

2. The application does NOT store the reference to the service manager (and all other –framework- interfaces) persistently. When the application restarts it has to initiate access to the framework again and also all other actions to re-obtain the reference to the service manager.

The OSA specifications shall not demand an application to store the interface references persistently, hence OSA shall support applications that do not store it persistently.

Using the current OSA specification it is however not possible for an application to use the second scenario. The reason is that an application cannot select a service for which it already has a signed service agreement. The only way out is to terminate the service agreement after restart and then select the service again. However:

1. This would require the application to store the service token persistently (since selectService, which returns the service token, may not be invoked).

2. The service has to destroy all notifications that were requested by the application.

3. The application has to re-create all notifications again.

Besides requiring additional processing capacity, this also increases the time the application is unavailable and makes implementation of redundant applications more difficult (they both need to know the service token).

Solution

To allow for an application to re-obtain the service manager it must be possible to call selectService when there still is a signed service agreement.

Two changes are required (both which are semantical):

1. selectService() shall return the same service token when called for a second time by the same application for the same service and there exists an already signed service agreement.

2. signServiceAgreement() shakk return the same service manager when there exists an already signed service agreement.

Furthermore it is important to note that:

1. The gateway has the obligation to serve the applications (SLA) regardless of the stability of the application (or the network).

2. It is the responsibility of the application to assure that previously provided callback interfaces will still exist (for instance by using permanent IORs) or are replaced by new interface references.

3. It is the responsibility of the server to implement a mechanism to deal with callback interfaces that do not respond.

Proposed Changes

The following changes are proposed to 29.198-03:

4.1.1.1 Interface Class IpServiceAgreementManagement

Inherits from: IpInterface.
<<Interface>>

IpServiceAgreementManagement

signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

selectService (serviceID : in TpServiceID) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void

Method

signServiceAgreement()

This method is used by the client application to request that the framework sign an agreement on the service, which allows the client application to use the service. If the framework agrees, both parties sign the service agreement, and a reference to the service manager interface of the service is returned to the client application. The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties. If the client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned.
There must be only one service instance per client application. Therefore, in case the client attempts to select a service for which it has already signed a service agreement and this service agreement has not been terminated, a reference to the already existing service manager will be returned.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement, and a reference to the service manager interface of the service.

structure TpSignatureAndServiceMgr {

digitalSignature:
TpOctetSet;

serviceMgrInterface:
 IpServiceRef;

};

The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application.

The serviceMgrInterface is a reference to the service manager interface for the selected service.

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework. If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature. If the signingAlgorithm is invalid, or unknown to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.
Returns

TpSignatureAndServiceMgr

Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_AGREEMENT_TEXT,P_INVALID_SERVICE_TOKEN,P_INVALID_SIGNING_ALGORITHM,P_SERVICE_ACCESS_DENIED
Method

terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.
digitalSignature : in TpOctetSet

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement().The framework uses this to check that the terminationText has been signed by the client application. If a match is made, the service agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNATURE
Method

selectService()

This method is used by the client application to identify the service that the client application wishes to use. If the client application is not allowed to access the service, then the P_SERVICE_ACCESS_DENIED exception is thrown.
Returns <serviceToken> : This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain operator specific information relating to the service level agreement. The serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client application or framework invokes the endAccess method on the other's corresponding access interface.

Parameters

serviceID : in TpServiceID

This identifies the service required. If the serviceID is not recognised by the framework, an error code (P_INVALID_SERVICE_ID) is returned.
Returns

TpServiceToken

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_ID, P_SERVICE_ACCESS_DENIED
9.3.2.1 Interface Class IpServiceInstanceLifecycleManager

Inherits from: IpInterface.
The IpServiceInstanceLifecycleManager interface allows the Framework to create and destroy Service Manager Instances.

<<Interface>>

IpServiceInstanceLifecycleManager

createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList, serviceInstanceID : in TpServiceInstanceID) : IpServiceRef

destroyServiceManager (serviceInstance : in TpServiceInstanceID) : void

Method

createServiceManager()

This method returns a new service manager interface reference for the specified application. The service instance will be configured for the client application using the properties agreed in the service level agreement.
In case there is already a service manager available for the specified application and serviceInstanceID this reference is returned and no new service manager is created.
Returns <serviceManager> : Specifies the service manager interface reference for the specified application ID.
Parameters

application : in TpClientAppID
Specifies the application for which the service manager interface is requested.
serviceProperties : in TpServicePropertyList
Specifies the service properties and their values that are to be used to configure the service instance. These properties form a part of the service level agreement. An example of these properties is a list of methods that the client application is allowed to invoke on the service interfaces.
serviceInstanceID : in TpServiceInstanceID
Specifies the Service Instance ID that the new Service Manager is to be identified by.
Returns

IpServiceRef
Raises

TpCommonExceptions, P_INVALID_PROPERTY
Method

destroyServiceManager()

This method destroys an existing service manager interface reference. This will result in the client application being unable to use the service manager any more.

Parameters

serviceInstance : in TpServiceInstanceID
Identifies the Service Instance to be destroyed.
Raises

TpCommonExceptions
9.3.3 Service Discovery Interface Classes
This API complements the Service Registration functionality described in another clause.

Before a service can be registered in the framework, the service supplier must know what "types" of services the Framework supports and what service "properties" are applicable to each service type. The "listServiceType()" method returns a list of all "service types" that are currently supported by the framework and the "describeServiceType()" method returns a description of each service type. The description of service type includes the "service-specific properties" that are applicable to each service type. Then the service supplier can retrieve a specific set of registered services that both belong to a given type and possess a specific set of "property values", by using the "discoverService()" method.

Additionally the service supplier can retrieve a list of all registered services, without regard to type or property values, by using the "listRegisteredServices()" method. However the scope of the list will depend upon the framework implementation; e.g. a service supplier may only be permitted to retrieve a list of services that the service supplier has previously registered.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 4

