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Introduction

Consider a scenario where the application (that is using a service) crashes. For the application to resume its function it has to re-gain access to the service manager. There are two ways an application can deal with this:

1. The application stores the reference to the service manager (and all other -framework- interfaces) persistently. After the application is restarted it will use the same service manager.

2. The application does NOT store the reference to the service manager (and all other –framework- interfaces) persistently. When the application restarts it has to initiate access to the framework again and also all other actions to re-obtain the reference to the service manager.

The OSA specifications shall not demand an application to store the interface references persistently, hence OSA shall support applications that do not store it persistently. 

Using the current OSA specification it is however not possible for an application to use the second scenario. The reason is that an application cannot select a service for which it already has a signed service agreement. The only way out is to terminate the service agreement after restart and then select the service again. However:

1. This would require the application to store the service token persistently (since selectService, which returns the service token, may not be invoked).

2. The service has to destroy all notifications that were requested by the application.

3. The application has to re-create all notifications again.

Besides requiring additional processing capacity, this also increases the time the application is unavailable and makes implementation of redundant applications more difficult (they both need to know the service token).

Solution

To allow for an application to re-obtain the service manager it must be possible to call selectService when there still is a signed service agreement.

Two changes are required (both which are semantical):

1. selectService() shall return the same service token when called for a second time by the same application for the same service and there exists an already signed service agreement.

2. signServiceAgreement() shakk return the same service manager when there exists an already signed service agreement.

Furthermore it is important to note that:

1. The gateway has the obligation to serve the applications (SLA) regardless of the stability of the application (or the network).

2. It is the responsibility of the application to assure that previously provided callback interfaces will still exist (for instance by using permanent IORs) or are replaced by new interface references.

3. It is the responsibility of the server to implement a mechanism to deal with callback interfaces that do not respond.

Proposed Changes

The following changes are proposed to 29.198-03:

4.1.1.1 Interface Class IpServiceAgreementManagement 

Inherits from: IpInterface.
<<Interface>>

IpServiceAgreementManagement



signServiceAgreement (serviceToken : in TpServiceToken, agreementText : in TpString, signingAlgorithm : in TpSigningAlgorithm) : TpSignatureAndServiceMgr

terminateServiceAgreement (serviceToken : in TpServiceToken, terminationText : in TpString, digitalSignature : in TpOctetSet) : void

selectService (serviceID : in TpServiceID) : TpServiceToken

initiateSignServiceAgreement (serviceToken : in TpServiceToken) : void



Method

signServiceAgreement()

This method is used by the client application to request that the framework sign an agreement on the service, which allows the client application to use the service. If the framework agrees, both parties sign the service agreement, and a reference to the service manager interface of the service is returned to the client application.  The service manager returned will be configured as per the service level agreement. If the framework uses service subscription, the service level agreement will be encapsulated in the subscription properties contained in the contract/profile for the client application, which will be a restriction of the registered properties.  If the client application is not allowed to access the service, then an error code (P_SERVICE_ACCESS_DENIED) is returned.
There must be only one service instance per client application. Therefore, in case the client attempts to select a service for which it has already signed a service agreement and this service agreement has not been terminated, a reference to the already existing service manager will be returned.

Returns <signatureAndServiceMgr> : This contains the digital signature of the framework for the service agreement, and a reference to the service manager interface of the service.



















structure TpSignatureAndServiceMgr {
























digitalSignature: 
TpOctetSet;

























serviceMgrInterface:
 IpServiceRef;
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The digitalSignature is the signed version of a hash of the service token and agreement text given by the client application.





























The serviceMgrInterface is a reference to the service manager interface for the selected service. 

Parameters

serviceToken : in TpServiceToken

This is the token returned by the framework in a call to the selectService() method. This token is used to identify the service instance requested by the client application. If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
agreementText : in TpString

This is the agreement text that is to be signed by the framework using the private key of the framework.  If the agreementText is invalid, then an error code (P_INVALID_AGREEMENT_TEXT) is returned.
signingAlgorithm : in TpSigningAlgorithm

This is the algorithm used to compute the digital signature.  If the signingAlgorithm is invalid, or unknown to the framework, an error code (P_INVALID_SIGNING_ALGORITHM) is returned.
Returns

TpSignatureAndServiceMgr

Raises

TpCommonExceptions,P_ACCESS_DENIED,P_INVALID_AGREEMENT_TEXT,P_INVALID_SERVICE_TOKEN,P_INVALID_SIGNING_ALGORITHM,P_SERVICE_ACCESS_DENIED
Method

terminateServiceAgreement()

This method is used by the client application to terminate an agreement for the service.

 

Parameters

serviceToken : in TpServiceToken

This is the token passed back from the framework in a previous selectService() method call. This token is used to identify the service agreement to be terminated.  If the serviceToken is invalid, or has expired, an error code (P_INVALID_SERVICE_TOKEN) is returned.
terminationText : in TpString

This is the termination text that describes the reason for the termination of the service agreement.
digitalSignature : in TpOctetSet

This is a signed version of a hash of the service token and the termination text. The signing algorithm used is the same as the signing algorithm given when the service agreement was signed using signServiceAgreement().The framework uses this to check that the terminationText has been signed by the client application. If a match is made, the service agreement is terminated, otherwise an error code (P_INVALID_SIGNATURE) is returned.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_TOKEN, P_INVALID_SIGNATURE
Method

selectService()

This method is used by the client application to identify the service that the client application wishes to use.  If the client application is not allowed to access the service, then  the P_SERVICE_ACCESS_DENIED exception is thrown.  
Returns <serviceToken> : This is a free format text token returned by the framework, which can be signed as part of a service agreement. This will contain operator specific information relating to the service level agreement. The serviceToken has a limited lifetime. If the lifetime of the serviceToken expires, a method accepting the serviceToken will return an error code (P_INVALID_SERVICE_TOKEN). Service Tokens will automatically expire if the client application or framework invokes the endAccess method on the other's corresponding access interface. 

Parameters

serviceID : in TpServiceID

This identifies the service required. If the serviceID is not recognised by the framework, an error code (P_INVALID_SERVICE_ID) is returned.
Returns

TpServiceToken

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_ID, P_SERVICE_ACCESS_DENIED
9.3.2.1 Interface Class IpServiceInstanceLifecycleManager 

Inherits from: IpInterface.
The IpServiceInstanceLifecycleManager interface allows the Framework to create and destroy Service Manager Instances. 

<<Interface>>

IpServiceInstanceLifecycleManager



createServiceManager (application : in TpClientAppID, serviceProperties : in TpServicePropertyList, serviceInstanceID : in TpServiceInstanceID) : IpServiceRef

destroyServiceManager (serviceInstance : in TpServiceInstanceID) : void



Method

createServiceManager()

This method returns a new service manager interface reference for the specified application.  The service instance will be configured for the client application using the properties agreed in the service level agreement.
In case there is already a service manager available for the specified application and serviceInstanceID this reference is returned and no new service manager is created.
Returns <serviceManager> : Specifies the service manager interface reference for the specified application ID. 
Parameters

application : in TpClientAppID
Specifies the application for which the service manager interface is requested.
serviceProperties : in TpServicePropertyList
Specifies the service properties and their values that are to be used to configure the service instance.  These properties form a part of the service level agreement.  An example of these properties is a list of methods that the client application is allowed to invoke on the service interfaces.
serviceInstanceID : in TpServiceInstanceID
Specifies the Service Instance ID that the new Service Manager is to be identified by.
Returns

IpServiceRef
Raises

TpCommonExceptions, P_INVALID_PROPERTY
Method

destroyServiceManager()

This method destroys an existing service manager interface reference. This will result in the client application being unable to use the service manager any more.  

Parameters

serviceInstance : in TpServiceInstanceID
Identifies the Service Instance to be destroyed.
Raises

TpCommonExceptions
9.3.3 Service Discovery Interface Classes
This API complements the Service Registration functionality described in another clause.

Before a service can be registered in the framework, the service supplier must know what "types" of services the Framework supports and what service "properties" are applicable to each service type. The "listServiceType()" method returns a list of all "service types" that are currently supported by the framework and the "describeServiceType()" method returns a description of each service type.  The description of service type includes the "service-specific properties" that are applicable to each service type.  Then the service supplier can retrieve a specific set of registered services that both belong to a given type and possess a specific set of "property values", by using the "discoverService()" method.

Additionally the service supplier can retrieve a list of all registered services, without regard to type or property values, by using the "listRegisteredServices()" method.  However the scope of the list will depend upon the framework implementation; e.g. a service supplier may only be permitted to retrieve a list of services that the service supplier has previously registered.
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