joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-021092

Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

Source:
AePONA (Eamonn Murray)
Title:
OSA 1,2: Additional Callback support in Framework.

Agenda Item:
5,6 OSA Version 1,2

Document for:
Discussion/Decision
Category:
Fault

Work Item ID:
OSA1 (ETSI ver.1, Parlay 3, 3GPP Rel-4)

OSA2 (ETSI ver.2, Parlay 4, 3GPP Rel-5)

Doc Summary:
Highly Available application implementations are restricted to the

Application – SCS interface. As a result Application – FW

functionality cannot be supported in a highly available fashion

with the existing APIs.

Specs involved:
ETSI ES 201 915-3, ETSI ES 202 915-3,

3GPP TS 29.198-3 v4.6.0, 3GPP TS 29.198-3 v5.1.0

Problem Description:

In the Call Control specification, the following sequence diagram is included to describe how an application may register multiple callback interfaces to support a highly available application implementation by way of the Parlay APIs themselves.

4.1 Additional Callbacks

The following sequence diagram shows how an application can register two call back interfaces for the same set of events. If one of the call backs can not be used, e.g., because the application crashed, the other call back interface is used instead.

[image: image1.wmf]first instance : (Logical

View::IpAppLogic)

second instance :

(Logic...

 : IpAppCallControlManager

 : IpAppCallControlManager

 : IpCallControlManager

1: new()

2: enableCallNotification()

3: new()

4: enableCallNotification()

8: callEventNotify()

9: "forward event"

5: callEventNotify()

7: "call Notify result: failure"

6: 'forward event'

1:
The first instance of the application is started on node 1. The application creates a new IpAppCallControlManager to handle callbacks for this first instance of the logic.

2:
The enableCallNotification is associated with an applicationID. The call control manager uses the applicationID to decide whether this is the same application.

3:
The second instance of the application is started on node 2. The application creates a new IpAppCallControlManager to handle callbacks for this second instance of the logic.

4:
The same enableCallNotification request is sent as for the first instance of the logic. Because both requests are associated with the same application, the second request is not rejected, but the specified callback object is stored as an additional callback.

5:
When the trigger occurs one of the first instance of the application is notified. The gateway may have different policies on how to handle additional callbacks, e.g., always first try the first registered or use some kind of round robin scheme.

6:
The event is forwarded to the first instance of the logic.

7:
When the first instance of the application is overloaded or unavailable this is communicated with an exception to the call control manager.

8:
Based on this exception the call control manager will notify another instance of the application (if available).

9:
The event is forwarded to the second instance of the logic.

The example shown makes use of multiple invocations of enableCallNotification, but equally the setCallBack method supported on IpService could also be used to provide multiple application callback interfaces for the SCS. Therefore if the application is only using the App-Svc interface, a highly available application implementation may be supported using the additional callback provided. This approach assumes that the application internally provides a copy of SCS interface references and does not rely on any middleware capability to support application availability.

However if the application or framework utilise any Fw-App interfaces as part of normal application operation, the absence of a similar ability to support additional application callbacks from the framework perspective, means that the framework is only ever aware of a single application instance and highly available applications cannot be supported by this means and require further middleware based solutions. This is demonstrated in the figure below.

[image: image2.wmf]Shared

data

App A

App A

¢

Framework

SCS

Application A authenticates with framework and discovers and selects the SCS. Thereafter the secondary application instance A' creates an additional application callback to the SCS, thus creating the linkage represented by the solid black lines. If App A fails, the SCS can continue to callback on App A’. However if Framework Integrity management is being used, and App A fails, the framework has no knowledge of App A’ and any alternate callbacks, as represented by the dashed red line above. Depending on application implementation, recovery of App A may result in it taking on the role of secondary rather than returning as primary. The same problem exists with respect to other Framework based functionality such as re-athentication of the client etc.

AePONA believes that this is a somewhat confusing message for application developers, that suggests that highly available applications may be developed through using the API additional callback mechanism, but in reality Framework to Application high availability cannot be supported in this fashion and must use an alternative middleware based solution.

AePONA suggest that this imbalance in approaches be resolved by introducing the capability for secondary application callback interfaces to also be supported within the framework. It should be possible to restrict the set of interfaces that are required to support this such as Access Session, Event Notification, Integrity Management etc.

_1097067515.doc

Shared

data

App A

App A(

Framework

SCS

