Joint-API-group (Parlay, ETSI Project OSA, 3GPP TSG_CN WG5)
N5-021045

Meeting #21, Dublin, IRELAND, 28 – 31 October 2002

Source:
BTexact Technologies (Michael Walkden), michael.walkden@bt.com
Title:
Enhancements to User Interaction.

Agenda Item:

Document for:
Discussion
Category:

Work Item ID:
OSA3 (ETSI ver 3, Parlay 5, 3GPP Rel-6)

Doc Summary:

Specs involved:
ETSI ES 201 915-5, 3GPP TS 29.198-05
Introduction

This work item, to look into possible User Interaction enhancements in light of VoiceXML and SALT technologies has been produced within the EURESCOM project P1110 by BTexact technologies. The contents and proposals for specification enhancements were presented to several Parlay members in a special London meeting (19th September 2002) with a favourable response. BTexact would therefore like to discuss the item further with a view to influencing the Parlay 5/ Release 6 specs.
1 User Interaction and VXML

1.1 Issue Definition

Currently the Parlay user interaction (UI) interfaces lie behind the state of the art in terms of controlling media resources. The advent of Voice XML has advanced UI functionality beyond that available through the Parlay API.

In order to improve the levels of voice interaction possible within a current Parlay system the developer must abandon the Parlay User Interaction interfaces and implement a direct interface between their application logic and a Voice XML server. In addition they must provision VoiceXML scripts onto a web server (either as part of the Parlay App Server or separate) in order to perform their interaction. This also requires the Parlay developer to learn VoiceXML.

This work is being performed to understand whether there is a role for a Parlay Gateway to offer a mapping and control layer in order that the developer may deploy Parlay applications that offer an improved level of Voice Interaction but allowing voice interaction control through the Parlay UI API.

There are two main issues to understand:

1. Can the Parlay UI API support interaction with Voice XML servers in such a way that the functionality offered to the Parlay developer is improved but at a level, which is still abstracted away from the VoiceXML specification and in the style of Parlay?

2. Can a Voice XML server be integrated into a Parlay system in such a way that the gateway controls the setting up of a voice connection to underlying interaction systems and thus hides complexity from the developer?

Why not just use Voice XML?

Voice XML offers a powerful environment for interacting with customers via text-to-speech, advanced speech recognition, message recording features and more. Many Voice XML servers also offer telephony capability enabling the transfer of calls and setting up and disconnection of calls.

However the benefit of Parlay is to allow a developer to use a common environment to put together services, which make use of many features. For instance a unified communications service may rely on Parlay Call Control for setting up calls, Parlay Messaging to send a text message notification and Content Charging to check the user has credit to carry out their services.

In addition a Parlay platform has access to these features at the core network level. This gives far more control to the application and means that call costs via Parlay would be significantly cheaper than using an edge of network Voice XML server provided by a Voice Application Service Provider (ASP) who introduces their own commission.

1.1.1 Scenarios

The following scenarios represent key features and proposed benefits for enhancing the Parlay UI services:

· Ability to instruct a Voice XML server to play simple announcements

This enables the developer to use Voice XML media servers as they become more prominent rather than restricting to IN voice response units.

· Ability to play pre-provisioned scripts

To allow a developer to make use of some of the powerful features within the Voice XML standard but without painstakingly trying to re-create them through the Parlay methods.

· Ability to play prompts/scripts and return the result(s) to the Parlay application

This would support a more complex dialogue between application and VXML server. The Voice XML server is able to populate several variables based on user input. It should be possible for the Parlay API to therefore return multiple values back to the application logic.

· Ability to dynamically create menu prompts from application content

· Ability to link VoiceXML systems with other Parlay services

For instance an application may connect the user to a voice platform using Parlay call control. They are able to navigate to a song and request to listen to it. Before it is played the Voice XML server refers to the Parlay logic in order to check the credit limit of that subscriber’s account via the Account Management API.
1.1.2 Advantages

Packet Mobile and fixed networks are expected to place a greater emphasis on delivering content to end-users. Currently the mechanisms for achieving this are not supported in the Parlay User Interaction API, which has maintained an IN focus. Enhancing the current User Interaction APIs will aim to accommodate the following key features:

· End to end Parlay solutions for content-based applications.

· Common Parlay approach to all call control related application development.

· Simplified development to allow end to end Parlay solutions for combined call control and interaction services since the API should provide a consistent Parlay approach and since the connection of media resources shall be under the control of the underlying Parlay Gateway.

· An enhanced User Interaction API will provide a more flexible approach to extending voice services and will map onto a set of the features made available through Voice XML and SALT enabled systems. These feature extensions shall enable applications to provide more intelligent services such as Context dependent User Interaction features.

· The UI API should continue to apply the Parlay principle in ensuring a level of abstraction between the API control interface and the operation of network resources.

1.2 Summary of Parlay User Interaction and Voice XML

1.2.1 Discussion on VoiceXML 1.0.

1.2.1.1 Voice XML system architecture.

A typical VoiceXML implementation consists of a VoiceXML interpreter and a VoiceXML interpreter context. The interpreter is responsible for executing VoiceXML code, servicing the real-time control of multiple VoiceXML applications that may be running simultaneously.

The interpreter context is responsible for handling support activities such as loading the initial document when a call is received and invoking the interpreter once a voice command is received. Both the interpreter and the interpreter context work with a speech recognition engine(s), text-to-speech (TTS) engine(s), and media server(s). This infrastructure connects to the public switched telephone network (PSTN) using telephony switching software and hardware. Figure 1 details the VoiceXML platform architecture.

[image: image1.wmf]Telephony switch

PSTN

Web

App

Server

Internet

Request

Response

Voice XML context

Voice XML

interpreter

Recognition

server

TTS

Media

server

Voice XML Platform

Figure 1
As noted above, the VoiceXML platform components interact with each other and with a Web Application Server (i.e. Web server and application server software) to run a VoiceXML application. A typical user session is described below:

- A user initiates a call using an analog or digital phone.

- The telephony infrastructure receives the call and the VoiceXML platform executes the appropriate application dialog.

- A prompt is played using the media server (either pre-recorded audio prompts or TTS generated audio files).

- User input (request) is received as a spoken word or touchtone. For speech recognition, the system matches the input against a given grammar set and returns the matched text string or an error.

- The platform executes the logic defined in the VoiceXML document.

- The output (response) is played using the media server (either pre-recorded audio prompt or TTS-generated audio).

Since the VoiceXML platform supports the HTTP protocol, existing Web infrastructure can be utilized for creating and delivering voice applications. Developers familiar with various server-side scripting technologies such as ASP, JSP, Perl, CGI, PHP and JHTML will be able to use their favorite server-side technology to create VoiceXML documents on the fly. The VoiceXML platform sends requests to the Web Application Server (WAS) and receives responses. The WAS connects to the back-end infrastructure to obtain data and content. Based on the data, content and business logic, the WAS creates a VoiceXML document dynamically or uses a static VoiceXML document that it sends back to the VoiceXML platform as a response.

1.2.1.2 Key features enabled by Voice XML.

VoiceXML’s main goal is to bring the full power of web development and content delivery to voice response applications, and to free the authors of such applications from low-level programming and resource management. It enables integration of voice services with data services using the familiar client-server paradigm. A voice service is viewed as a sequence of interaction dialogs between a user and an implementation platform. The dialogs are provided by document-servers, which may be external to the implementation platform. Document servers maintain overall service logic, perform database and legacy system operations, and produce dialogs. A VoiceXML document specifies each interaction dialog to be conducted by a VoiceXML interpreter. User input affects dialog interpretation and is collected into requests submitted to a document server. The document server may reply with another VoiceXML document to continue the user’s session with other dialogs.

Most Voice XML implementations offer the following features:

· Output of synthesised speech

· Output of Audio files

· Advanced Speech Recognition

· Recognition of DTMF input

· Recording of spoken input

· Default support functions (Help, Exit, BargeIn)

· Telephony features (Call Transfer and Disconnect)

1.2.1.3 Key applications.

VoiceXML can be used in many applications that provide interaction with data and services. It was originally designed to provide voice access to Web content. However, not all Web-based content may be suitable for voice access. Currently many applications are providing information to consumers, such as stock quotes, weather, and news. The real business opportunity for VoiceXML is with enterprise applications. Some immediate business opportunities include:

All Businesses – Interactive Voice Response, speech enabled self-service and contact center solutions.

CRM – Order status, scheduling and shipping inquiries.

Finance/Banking – Account status, funds transfer and trade history.

Travel – Flight schedules, delay notifications and reservations.

Enhanced Directory Services – Automated directory lookup and company/store locator.

Unified Communications – Address book, voice messaging, find-me/follow-me and e-mail reader.

Business Operations – Inside sales force assistance, corporate dialer, benefits enrolment and employee help-line.

Entertainment – Movie/music promotion and gaming.
1.2.2 Discussion on Parlay User Interaction 3.0/3.1.

1.2.2.1 The basics of Parlay User Interaction.

Current UI specifications allow an application to send information to or gather information from a subscriber. The UI interfaces are mostly focused on the traditional uses of voice interaction found in Intelligent Networks. This tends to limit functionality to playing single messages one after the other or to play a message and receive DTMF input.

Parlay UI also provides a key feature to help developers keep their applications concise. This is that an application with a single call leg in progress need only invoke a Parlay Call User Interaction method on the Parlay gateway in order to play a message onto that leg. “Behind the scenes” the gateway links the request with the relevant call leg, sets up a media path to the voice resource and then instructs it to play the announcement.

1.2.2.2 Analysis of User Interaction methods

The key methods in Parlay User Interaction, which will be analysed, are:

· IpUI: sendInfoReq()

· IpUI: sendInfoRes()

· IpUI: sendInfoAndCollectReq()

· IpUI: sendInfoAndCollectRes()

Investigation of sendInfoReq() in more detail presents the mechanisms by which content can be sent to the user:

Method

sendInfoReq()

This asynchronous method plays an announcement or sends other information to the user.

Returns: assignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

info : in TpUIInfo

Specifies the information to send to the user. This information can be:

- an infoID, identifying pre-defined information to be sent (announcement and/or text);

- a string, defining the text to be sent;

- a URL , identifying pre-defined information or data to be sent to or downloaded into the terminal.

language : in TpLanguage

Specifies the Language of the information to be sent to the user.

variableInfo : in TpUIVariableInfoSet

Defines the variable part of the information to send to the user.

repeatIndicator : in TpInt32

Defines how many times the information shall be sent to the end-user. A value of zero (0) indicates that the announcement shall be repeated until the call or call leg is released or an abortActionReq() is sent.

responseRequested : in TpUIResponseRequest

Specifies if a response is required from the call user interaction service, and any action the service should take.

Returns

TpAssignmentID

Raises

TpCommonExceptions,P_INVALID_SESSION_ID,P_INVALID_NETWORK_STATE,P_ILLEGAL_ID,P_ID_NOT_FOUND

The info parameter defines the control we have over the content, which can be sent to the user. It is this field which shall be mapped onto the VoiceXML features in order to see how Parlay may support such features.

info : in TpUIInfo

Specifies the information to send to the user. The TpUIInfo data type specifies a choice of one of the following:

- an infoID, identifying pre-defined information to be sent (announcement and/or text);

- a string, defining the text to be sent;

- a URL , identifying pre-defined information or data to be sent to or downloaded into the terminal.

Investigation of sendInfoAndCollectRes() in more detail presents the Parlay mechanisms by which content can be sent to the user and their response can be fed back to the application.

From Parlay 3.0:

Method

sendInfoAndCollectRes()

This asynchronous method returns the information collected to the application.

Parameters

userInteractionSessionID : in TpSessionID

Specifies the user interaction session ID of the user interaction.

assignmentID : in TpAssignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

response : in TpUIReport

Specifies the type of response received from the user.

collectedInfo : in TpString

Specifies the information collected from the user.
The response parameter informs the application of the outcome of the interaction. The collectedInfo parameter contains the actual collected information, returned by the media resource. This is returned in a TpString parameter that contains the length of the string returned and the string itself representing either a phrase or the result of a DTMF input.

1.2.3 Analysis of and Issues with the current Parlay UI API

The current UI mechanisms are flexible enough to allow a Parlay application to invoke prompts on a Voice XML server. The architecture required to perform this shall be proposed in a later section. Single pre-provisioned prompts could be played by building a corresponding simple script and invoking it via the infoID or URL field of the info parameter. As VoiceXML servers use URL’s to identify scripts and subdialogues it would appear the Parlay URL choice of the info parameter is best suited and the optimal way to instruct the server to upload and execute a script.

The free-text string implementation of infoID could allow for more flexibility in building ad-hoc prompts using the text to speech facilities of VoiceXML resources. Here, the application could then send in a free-text phrase to be played. The UI SCS could strip out the text and build it into the <prompt> field of a simple VoiceXML script, which would be invoked when the call is delivered to the VXML server. This is extremely valuable since the prompt to be played may depend on changeable content stored in a database which only the parlay application has access to.

The functions discussed so far allow pre-provisioned prompts and ad-hoc prompts to be played. However, this limits the UI capability to only playing one prompt at a time or repeats of the same prompt (using the Parlay repeatIndicator field). One of the powerful features of Voice XML is that the code residing on the VoiceXML server is optimised to perform certain functions (For example, speaking out menu options). To understand what this means and to see why the Parlay offering would be improved by harnessing this functionality let’s compare the same feature performed using Parlay and VoiceXML.

Problem: A customer wishes to order a car. We wish to find out their preferred colour for the car.

In Parlay:

1. Invoke sendInfoAndCollectReq(). This would carry a prompt saying, “Please respond using the keypad to choose your preferred colour. For Purple enter 1, for Grey enter 2, for green enter 3.”

2. The user chooses green and enters 3.

3. Invoke sendInfoAndCollectRes() containing the number entered in the collectedInfo parameter (of type TpString).

4. The Parlay App must parse the TpString to identify the response.

5. It must then assign the result to a variable and pattern match the value against all the possible outcomes which could have been entered (1, 2 or 3 in this case).

6. Finally the application wants to ask another question.

7. Invoke sendInfoAndCollectReq(). This would carry a prompt asking, “Which kind of paint finish would you like? Press 1 for standard or 2 for metallic?”

8. The user presses 2.

9. sendInfoAndCollectRes() is invoked containing the number entered in the collectedInfo parameter (of type TpString).

10. The application must again parse the output then assign the return value to a variable and again match this against the expected outcomes.

Note, at any point if something else happens, say there is no input, Parlay UI returns the sendInfoAndCollectRes() with a response parameter set to null. The App must handle this and retry by going back a step to re-deliver the prompt.

In VoiceXML.

We would first create a script (or ask a VoiceASP to do it for us). The script would look something like this:
Car Sales Application (car_seek.vxml)

<?xml version="1.0"?>

<vxml version="1.0">

 <form id="car_seek_registration">

 <field name="colour">

 <prompt>

 Please choose your preferred colour from Purple, Green or Grey?

 </prompt>

 <grammar src="car_colour.gram" type="application/x-jsgf"/>

 <catch event="help"> Please speak the colour you would like for

 this type of car.

 </catch>

 </field>

 <field name="paint_finish">

 <prompt>You have chosen <value expr="colour"/>. What paint finish

 would you like?</prompt>

 <grammar src="paint_finish.gram" type="application/x-jsgf"/>

 <catch event="help"> Speak in your preferred finish for this

 colour. Available finishes are Standard or metallic.

 </catch>

 </field>

 <block>

 <submit next="../servlet/parlay.asp" namelist="colour paint_finish"/>

 </block>

 </form>

So the procedure for obtaining this input from the user is as follows:

1. Invoke the UI script (car_seek.vxml) using sendInfoAndCollectReq(). Set the info parameter to the URL of the script (http://www.carseeker.com/vxml/car_seek.vxml).

2. The VoiceXML server loads in the script and executes the dialogue.

3. The user is asked for their choice of colour. They speak the colour and the voiceXML script then assigns the colour to the variable colour.

4. It then uses the colour in the next phrase to confirm understanding by asking, “You have chosen green, what paint finish would you like?”

5. The user answers and the chosen finish is assigned to the paint_finish variable.

6. Once this has completed the script submits the output to another web page (parlay.asp).

7. This web page is part of the Parlay gateway mapping solution and allows the return of the spoken information via the collectedInfo parameter of sendInfoAndCollectRes().

The whole process is far less intensive on the Parlay developer. They don’t have to implement any pattern matching of the spoken input against the selection of possible colours or paint finishes and the performance which the user receives is improved since half the number of Parlay methods are required. Also the ability for VoiceXML to use in-scope form variables allows the confirmation of input (see step 4 above) without much extra effort from the developer. Finally in this scenario the interaction is improved by using the automatic features of Voice XML. This could be re-prompting the user if they didn’t speak or offering more details if they ask for help.

Dynamic Content

For dynamic content we need to be able to set up ad hoc menu choices. This requires simple grammar (the text options or file identifier) and the prompt text. For example a Computer supplier has a sales desk number. Customers are routed through to a menu based voice system. The site regularly publishes updated special offers. The supplier thus requires a menu option to choose a category of PC from a manufacturer on special offer. The dialogue would be as follows;

1. Welcome to comp.com sales support. Please speak in the section from our catalogue for which you are interested.

2. User says, “Today’s bargains”.

3. The voice server replies, “You have chosen today’s bargains. Please speak in the manufacturer name of the product you like. Today’s choices are HP, Dell and Apple”

4. The user chooses Dell and the dialogue continues….

If we consider that the Parlay application is the central point of control for the computer supplier system then the day’s offers details will reside in a database which this application has access to. The developer does not want to arrange with their Voice ASP to add a new script to their service each time the daily offers change so it is better in this case for them to create dynamic content via the Parlay application.

This facility requires that the Voice server receives both the prompt to be played and the expected grammar to use to recognise the user’s answer. This can be done in two ways in VoiceXML.

1) You specify the prompt text and the location of a suitable grammar file to be used.

2) You may use in-line prompting where instead of a grammar file, a list of the possible replies to match against is supplied.

Either feature requires an update to the Parlay UI specification as either the in-line grammars must be supplied or a name of a grammar file in the UI method.

1.3 Solution

1.3.1 Specification Enhancements

1.3.1.1 Multiple Output

As seen in the car colour example of Section 1.2.3 VoiceXML systems provide efficiencies by handling some of the voice interaction automatically. This allows a Parlay developer to create advanced voice interaction as part of their applications. There are however currently some limitations in this example.

Although Voice XML systems can gather multiple responses from a user (spoken or DTMF) the Parlay API can only assign the response into one collectedInfo parameter of type TpString. Using our car colour example again, the application therefore has to implement a parser, which reads each character into a buffer. Once it reaches some result delimiter it has to assign the first result into a variable (colour). It then sets up the buffer again until the paint finish is recognised.

One suggestion is to use an XML-like format for encoding the result(s) within the free-text of the TpString type. An example of how this might look is given:

<RESULT><Number=456743214567789><Name=Smith> <expires=0604></RESULT>

ie: The generic form would be:

<RESULT><ParameterName1=value1><ParameterName2=value2> < ParameterName3= value3></RESULT> etc…

This suggestion is not an attempt to define a technology dependent encoding schema within the Parlay UI Service. It is acknowledged that this is against the vision of Parlay but the form does acknowledge that one key feature to be enabled via the enhancement of UI is to allow invocation of pre-provisioned menus.

Since these menus may contain multiple results it would make life easier for the application developer to understand what they are looking for within the UI result.

1.3.1.2 Grammar specification

In order to enable dynamic content the UI methods that invoke the playing of announcements should be extended to allow the specification of either a grammar file or a list of words representing possible user responses.

For example:

sendInfoAndCollectReq([Text prompt], [option1, option2, option3]). For example:

sendInfoAndCollectReq([Which sales section do you require.], [clothing, food, home]).

Or

sendInfoAndCollectReq([Text prompt], [/grammars/items.gram]).
1.3.1.3 Published Script Interfaces

To enable developers to harness more interaction capabilities they need to be able to invoke pre-provisioned scripts as in the car example. However this introduces the possibility of multiple outputs. If we use the suggestion stated in 1.3.1.1 of having a collectedInfo parameter containing all dialogue results it then becomes beneficial to have a process whereby it is made possible for developers to discover such scripts and their signatures (the order and names of return parameters).

Additionally the use of UI would be made easier by having a process by which the developer can locate pre-provisioned scripts with a description of their operation and a list of parameters they can expect back as a result of the script. The requirements for discovering and using such scripts would be:

a) A script is pre-provisioned onto the VoiceXML server or it could be written by the developer and reside on the Parlay Application server.

b) The URL to invoke the script is handed to the developer.

c) A description of the application is also provided to the developer. This would include the behaviour of the voice interaction application, the outputs of the completed dialogue and the location of the script (required for performance reasons).

This could be an interesting way to bridge the current domains of Parlay application developers with the number of Voice XML application service providers who currently exist.

In addition, many of the uses of voice dialogues today are to perform common tasks. Some examples might be:

· Collecting Credit card details.

· Collecting a name and address.

· Authenticating a user (Password and DTMF PIN etc)

· Collecting a telephone number

· Prompting users for a destination and departure details in the case of ticket bookings

· etc

When you consider the number of different languages these dialogues may take place in, then the argument for re-using common applications written by Voice XML experts becomes a powerful one.

It seems reasonable that Web Services technology and in particular the universal discovery and description interface should be explored further as a candidate for enabling Parlay developers to locate and use pre-provisioned Voice XML scripts. The relationship between this and the existing Parlay discovery process should be further explored. Via Web Services the three key application definition aspects described above would be available to any Parlay developer.

In addition, it is then possible for the developer to assign variables to match the outputs of the script execution since the scripts interface specification (say in WSDL) will match the entries in the collectedInfo array which makes the job of extracting the right information much simpler.

It may also add flexibility to include the publishing of the features the VoiceXML resource supports. One key feature is the possibility of storing pre-provisioned grammars, which the application is then able to call upon to invoke more feature rich dialogues. These would be discovered as part of the discovery process (grammar filename and description) such that the application knows what is available to use and thus what its voice interaction capabilities are.
1.3.2 Provisioning within the context of Parlay User interaction.

A developer can use the Parlay/OSA APIs to quickly create innovative applications based on a number of services. However once User Interaction is introduced to the developer toolkit things begin to slow down. Parlay has a valid goal to enable developers to address niche markets. Another goal is to create value-added applications. Very often to satisfy these requirements means creating applications which are specific to particular customers and have some amount of personalisation. Apply this to voice interaction and it means a requirement for non-standard announcements and interactions.

The issues discussed so far show how using the text to speech facility of Voice XML servers enables customised announcements within applications, which circumvent the need for pre-provisioning. With this approach the applications can “plug-in and go”.

However this is all very well for the current parlay user interaction approach of play one announcement, receive one response and so on but as we have seen Voice XML can do a lot more than that and this is where parlay developers can see more benefits.

In IN, announcement provisioning is laborious. A voice interaction unit that matches a service’s requirements must first be located. Then an interaction control interface must be implemented from the service logic to interaction resource. The service design must make a list of all interaction prompts/announcements required for that particular service. Finally the service developer must liase with the operator (or whoever owns the interaction resource) to record the prompts and announcements. Finally once they are deployed onto the resource the operator must hand the developer all the prompt Ids that they require to invoke the prompts.

VoiceXML has some key differences, which make provisioning announcements more efficient. Since it has been developed using Internet technologies the interfaces from service logic and voice application can be standard HTTP. This means a service developer can create their own applications and store them on their own web server. They are in control of the voice interaction within their services since the VoiceXML server will upload the developer’s scripts in order to play announcements.

Since VoiceXML is being developed as a standard there are many developers who are able to take the risk to make voice interaction services their business. This increases the number of good interaction applications available and network operators who are keen to make good voice interaction a part of their service offering would be able to tap into this market through Parlay and through the web services discovery approach stated earlier.
1.3.3 A proposed VoiceXML/Parlay architecture

In VoiceXML operation the normal way to pass user data (collected using the <field> tag) to a server is with the <submit> tag. It allows you to generate GET or PUT transactions for an HTTP server as you would for HTML pages. These transactions may include form fields or other data values. A <submit> functions much like the <INPUT TYPE="SUBMIT"> tag in an HTML form. A typical usage is:

 <submit

 next="http://mycompany.com/cgi-bin/respond.cgi"

 method="post"/>

This tag would be used inside a form, and would cause the system to submit all the form fields to the specified server. The next attribute specifies the URI of the server. The server can employ a number of technologies such as CGI, ASP, JSP, Miva Script, and so on to serve HTTP requests.

Via this method it would be possible to investigate a Parlay gateway mapping approach which can receive Parlay User Interaction invocations and map them onto the corresponding VoiceXML scripts. This also applies in the opposite direction where the results of a VoiceXML script option (say a particular menu choice) invokes some code on the Parlay gateway. The result of which would be to return the choice back to the Parlay application (sendInfoAndCollectRes()), wait for a subsequent Parlay method, then depending on the application response either request the voice server drops the call or compile a follow-on script (or invoke a pre-provisioned script) and continue the voice interaction.

[image: image2.wmf]PSTN

Voice

Server

Voice XML

interpreter

Static Voice

XML pages

A ---------------

 Static Voice

XML pages

A ---------------

Application

data

JSP/

Servlet

engine

Voice interaction

callEventNofity

()

sendInfoAndCollectReq

()

1

2:

4

3:

7

6

5

8

9

Figure 2
Media servers operating in a Parlay environment would have to have some information set into the "voiceXML interpreter context" (as defined in the VoiceXML 1.0 spec. p4) such that incoming calls are correlated with the set of voice interaction instructions held on the gateway as a result of a sendInfoReq() or sendInfoAndCollectReq(). This could be achieved by embedding URIs into the VoiceXML code so that at such decision points the Voice XML server refers to further code (situated on the Parlay gateway).

An example solution is presented in Figure 2. The VoiceXML system is integrated into a Parlay Gateway, which subsequently becomes a VoiceXML enabled UI SCF. A possible sequence of flow would be:

1. An incoming call triggers in the network up to the Parlay gateway. (Via the Call Control SCF).

2. The SCF invokes the callEventNotify() method onto the application.

3. The application wishes to play an announcement to the user thus it invokes the sendInfoAndCollectReq() method on the UI SCF.

4. The UI SCF sets up a media path between the user and the Voice XML server.

5. The VXML server has a set of static pages pre-configured. When the call arrives the corresponding service static script is uploaded.

6. This script simply says, for this type of call request further instruction from the SCF. Therefore it performs an HTTP GET onto the Servlet code residing on the gateway including the CLI (or other identifier) for the incoming call.

7. For this example the application has arranged for a menu option script to be pre-provisioned. This is the static script shown. As an example this might collect the users name and address. So the Servlet code says, for this CLI find a static script which corresponds to the script ID of the Parlay sendInfoAndCollectReq() infoID parameter.

This might otherwise have been a dynamic process. In this case the free text within the sendInfoAndCollectReq() method is built into a simple Voice XML script for upload to the VXML server.

8. Once located by the servlet this stage completes the HTTP GET request by returning the completed script back to the Voice XML server.

9. Finally the script is run on the server and the Voice Interaction dialogue can begin.

For brevity a complete scenario is not presented here but the same steps can be followed to POST User input results back to the Servlet code and thus package them up into the sendInfoAndCollectRes() method ready to be sent back to the application logic.

1.4 Conclusions/Further work

Investigate the possibility of looking into the logistics of combining aspects of the Web Services approach with the VoiceXML provisioning idea expressed.

Provide a further proposal on how a Parlay gateway can provide the mapping layer necessary to perform the functions discussed. As part of this study the performance aspects of using JSP/ASP-like technologies and HTTP should be studied to assess the impact on voice application delays.

Look into possible lists of services, which might be able to make use of the media server. In which case it could be possible to identify common behaviour and provision some common grammar files onto the media server (i.e: A telephony set of grammars which would be published either at discovery or via web services). Some examples might be:

Region.gram

A list of all a countries regions.

Cities.gram

A list of all cities in a country.

Countries.gram

List of countries.

Names.gram

Country specific common names.

Perhaps this approach could be applied to market segments in order to increase value-add from these voice applications. This would require the UI spec to accommodate a grammar to be specified by the application.

Investigate the case for introducing a further parameter to allow limited control over the playback qualities of the Voice Server. An obvious requirement for this is where an application uses a combination of pre-provisioned scripts and dynamic scripts. It would be favourable to ensure continuity by forcing the playback to be in male/female only voice type.

2 OSA/Parlay Method Changes

Interface Class IpUI

Inherits from: IpService.

The User Interaction Service Interface provides functions to send information to, or gather information from the user.

An application can use the User Interaction Service Interface independently of other services.

	<<Interface>>

IpUI

	

	sendInfoReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, language : in TpLanguage,

variableInfo : in TpUIVariableInfoSet, repeatIndicator : in TpInt32, responseRequested : in

TpUIResponseRequest) : TpAssignmentID

sendInfoAndCollectReq (userInteractionSessionID : in TpSessionID, info : in TpUIInfo, language : in

TpLanguage, grammar : in TpUIInfo, variableInfo : in TpUIVariableInfoSet, criteria : in TpUICollectCriteria, responseRequested :

in TpUIResponseRequest) : TpAssignmentID

release (userInteractionSessionID : in TpSessionID) : void

Method

sendInfoReq()

This asynchronous method plays an announcement or sends other information to the user.

Returns: assignmentID

Specifies the ID assigned by the generic user interaction interface for a user interaction request.

Parameters

userInteractionSessionID : in TpSessionID

Unchanged.

info : in TpUIInfo

Specifies the information to send to the user. This information can be:

- an infoID, identifying pre-defined information to be send (announcement and/or text);

- a string, defining the text to be sent;

- a URL , identifying pre-defined information or data to be sent to or downloaded into the terminal.

language : in TpLanguage

Unchaged.

variableInfo : in TpUIVariableInfoSet

Suggested as a possible candidate for allowing the specification of a voice gender. This would require an extension to the TpUIVariableInfo parameter.
repeatIndicator : in TpInt32

Unchanged.

responseRequested : in TpUIResponseRequest

Unchanged.

Method

sendInfoAndCollectReq()

This asynchronous method plays an announcement or sends other information to the user and collects some information

from the user. The announcement usually prompts for a number of characters (for example, these are digits or text

strings such as "YES" if the user's terminal device is a phone).

Parameters

userInteractionSessionID : in TpSessionID

Unchanged.

info : in TpUIInfo

Specifies the ID of the information to send to the user. This information can be:

- an infoID, identifying pre-defined information to be send (announcement and/or text);

- a string, defining the text to be sent;

- a URL , identifying pre-defined information or data to be sent to or downloaded into the terminal.

language : in TpLanguage

Unchanged.

grammar : in TpUIInfo

Specifies the grammar file or in-line grammar to be used to check the user response against in speech recognition systems. This information can be specified as:

- an infoID, identifying pre-defined grammar (announcement and/or text);

- a string, defining the text to be sent (used for in-line grammar);

- a URL , identifying pre-defined grammar file.
variableInfo : in TpUIVariableInfoSet

Suggested as a possible candidate for allowing the specification of a voice gender. This would require an extension to the TpUIVariableInfo parameter.
criteria : in TpUICollectCriteria

Unchanged.

responseRequested : in TpUIResponseRequest

Unchanged.

Method

release()

Unchanged.
	<<Interface>>

IpAppUI

	

	sendInfoRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, response : in

TpUIReport) : void

sendInfoErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in

TpUIError) : void

sendInfoAndCollectRes (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID,

response : in TpUIReport, collectedInfo : in TpString) : void

sendInfoAndCollectErr (userInteractionSessionID : in TpSessionID, assignmentID : in TpAssignmentID, error : in TpUIError) : void

userInteractionFaultDetected (userInteractionSessionID : in TpSessionID, fault : in TpUIFault) : void

Method

sendInfoRes()

Unchanged.

Method

sendInfoErr()

Unchanged.

Method

sendInfoAndCollectRes()

This asynchronous method returns the information collected to the application.

Parameters

userInteractionSessionID : in TpSessionID

Unchanged.

assignmentID : in TpAssignmentID

Unchanged.

response : in TpUIReport

Unchanged.

collectedInfo : in TpString

Specifies the information collected from the user. As stated in section 1.3.1.1 in order to achieve the return of multiple results there is a need to assist the application developer by agreeing upon some TpString encoding. The example in 1.3.1.1 uses an XML approach but this is open for discussion.

Method

sendInfoAndCollectErr()

Unchanged.

Method

userInteractionFaultDetected()

Unchanged.
_1096462617.ppt

Telephony switch

PSTN

Web

App

Server

Internet

Request

Response

Voice XML context

Voice XML

interpreter

Recognition

server

TTS

Media

server

Voice XML Platform

_1096379547.ppt

JSP/Servlet

engine

Voice interaction

callEventNofity()

sendInfoAndCollectReq()

1

2:

4

3:

7

6

5

8

9

PSTN

Voice

Server

Voice XML

interpreter

Static Voice

XML pages

A ---------------

 Static Voice

XML pages

A ---------------

Application

data

[image: image1.jpg]

