[image: image4.wmf]

TD <>
Draft ETSI ES 20X XXX-3 V0.2.1 (2002-09)
ETSI Standard

Open Service Access (OSA);

Application Programming Interface (API);

Test Suite Structure and Test Purposes (TSS&TP)

Specification for the Framework

[image: image1.png]V- Y

7/

el

Reference

DES/SPAN-120088-3

Keywords

API, OSA, TSS&TP

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, send your comment to:
editor@etsi.fr
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2002.

© The Parlay Group 2002.

All rights reserved.
Contents

4Intellectual Property Rights

Foreword
4
1
Scope
5
2
References
5
3
Definitions and abbreviations
5
3.1
Definitions
5
3.2
Abbreviations
6
4
Test Suite Structure (TSS)
6
5
Test Purposes (TP)
6
Introduction
6
5.1
TP naming convention
7
5.2
Source of TP definition
7
5.3
Test strategy
7
5.4
TPs for the Framework
7
5.5
Access Session (AS)
7
5.5.1
Trust and Security Management (TSM)
7
5.2.2
Framework to Application API
15
5.2.2.1
Service Discovery (SD)
15
5.2.2.2
Service Agreement Management (SA)
16
5.2.2.3
Integrity Management (IM)
20
5.2.2.4
Event Notification (EN)
28
5.2.3
Framework to Service API
29
5.2.3.1
Service Registration (SR)
29
5.2.3.2
Service Instance Lifecycle Management (SILM)
33
5.2.3.3
Service Discovery (SD)
34
5.2.3.4
Integrity Management (IM)
35
5.2.3.5
Event Notification (EN)
43
History
45

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This European Standard (Telecommunications series) has been produced by ETSI Technical Committee Services and Protocols for Advanced Networks (SPAN).

To evaluate conformance of a particular implementation, it is necessary to have a set of test purposes to evaluate the dynamic behaviour of the Implementation Under Test (IUT). The specification containing those test purposes is called a Test Suite Structure and Test Purposes (TSS&TP) specification.

	National transposition dates

	Date of adoption of this EN:
	

	Date of latest announcement of this EN (doa):
	

	Date of latest publication of new National Standard
or endorsement of this EN (dop/e):
	

	Date of withdrawal of any conflicting National Standard (dow):
	

1
Scope

The present document provides the Test Suite Structure and Test Purposes (TSS&TP) specification for the Framework of the Application Programming Interface for Open Service Access (OSA) defined in ES 201 915‑3 [1] in compliance with the relevant requirements, and in accordance with the relevant guidance given in ISO/IEC 9646-2 [4] and ETS 300 406 [5].

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

· A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same number.

[1]
ETSI ES 201 915-3: "Open Service Access (OSA); Application Programming Interface (API); Part 3: Framework".

[2]
ETSI ES 201 xxx: "Open Service Access (OSA); Application Programming Interface (API); Implementation Conformance Statement (ICS) proforma specification for Framework and SCFs".

[3]
ISO/IEC 9646-1: "Information technology - Open Systems Interconnection - Conformance testing methodology and framework - Part 1: General concepts".

[4]
ISO/IEC 9646-2 (1994): "Information technology - Open Systems Interconnection - Conformance testing methodology and framework - Part 2: Abstract Test Suite specification".

[5]
ETSI ETS 300 406: "Methods for testing and Specification (MTS); Protocol and profile conformance testing specifications; Standardization methodology".

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in ES 201915-7 [1], ISO/IEC 9646-1 [3] and ISO/IEC 9646-2 [4] and the following apply:

abstract test case: Refer to ISO/IEC 9646‑1 [3].

Abstract Test Method (ATM): Refer to ISO/IEC 9646‑1 [3].

Abstract Test Suite (ATS): Refer to ISO/IEC 9646‑1 [3].

Implementation Under Test (IUT): Refer to ISO/IEC 9646‑1 [3].

Lower Tester (LT): Refer to ISO/IEC 9646‑1 [3].

Implementation Conformance Statement (ICS): Refer to ISO/IEC 9646‑1 [3].

ICS proforma: Refer to ISO/IEC 9646‑1 [3].

Implementation eXtra Information for Testing (IXIT): Refer to ISO/IEC 9646‑1 [3].

IXIT proforma: Refer to ISO/IEC 9646‑1 [3].

Test Purpose (TP): Refer to ISO/IEC 9646‑1 [3].

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

IUT
Implementation Under Test

ICS
Implementation Conformance Statement

IXIT
Implementation eXtra Information for Testing

SUT
System Under Test

TP
Test Purpose

TSS
Test Suite Structure

4
Test Suite Structure (TSS)

· Framework (FW)

· Framework Access Session (AS)

· Trust and Security Management (TSM)

· Framework to Application (FTA)

· Service Discovery

· Sevice Agreement Management

· Integrity Management

· Event Notification

· Framework to Service (FTS)

· Service Registration

· Service Instance Lifecycle Management

· Service Discovery

· Integrity Management

· Event Notification

· Framework to Enterprise Operator (FTE)

· Service Subscription

5
Test Purposes (TP)

Introduction

For each test requirement a TP is defined.

5.1
TP naming convention

TPs are numbered, starting at 01, within each group. Groups are organized according to the TSS. Additional references are added to identify the actual test suite (see table 1).

Table 1: TP identifier naming convention scheme

Identifier:
<suite_id>_<group>_<nnn>

<suite_id>
=
IUT name
:
"FW" for FrameWork SCF

<group>
=
group number:

two character field representing the group reference according to TSS

<nn>
=
sequential number:

(01-99)

5.2
Source of TP definition

The TPs are based on ES 201 915‑7 [1].

5.3
Test strategy

As the base standard ES 201 915‑3 [1] contains no explicit requirements for testing, the TPs were generated as a result of an analysis of the base standard and the PICS specification ES 201xxx [2].

The TPs are only based on conformance requirements related to the externally observable behaviour of the IUT and are limited to conceivable situations to which a real implementation is likely to be faced (see ETS 300 406 [5]).

5.4
TPs for the Framework

All PICS items referred to in this clause are as specified in ES 201xxx [2] unless indicated otherwise by another numbered reference.

All parameters specified in method calls are valid unless specified.

The procedures to trigger the SCF to call methods in the application are dependant on the underlying network architecture and are out of the scope of this test specification. Those method calls are preceded by the words " Triggered action".

5.4.1
Framework Access Session API

5.4.1.1
Trust and Security Management (TSM)

	Methods / Test Nr
	01
	02
	03
	04
	05
	06
	07
	08
	09

	initiateAuthentication
	X
	X
	X
	X
	X
	X
	X
	X
	X

	requestAccess
	X
	X
	X
	X
	X
	X
	X
	X
	X

	selectEncryptionMethod
	
	X
	X
	X
	X
	X
	X
	X
	

	authenticate
	
	X
	X
	X
	X
	X
	X
	X
	

	abortAuthentication
	
	
	
	
	
	X
	
	
	

	AuthenticationSucceeded
	X
	X
	X
	X
	X
	
	X
	X
	

	obtainInterface
	
	X
	X
	X
	
	
	
	X
	X

	obtainInterfaceWithCallback
	
	
	
	
	X
	
	
	
	

	endAccess
	
	
	
	
	
	
	X
	
	

	listInterfaces
	
	X
	
	
	
	
	
	
	

	releaseInterface
	
	
	
	
	
	
	
	X
	

Test FW_AS_TSM_01
Summary: Initial Access for Trusted Parties, no authentication is needed, all methods, successful
Reference: ES 201 915-3, clause 6.1.1.1

Preamble:

· Registration of the tester (Application) to the IUT (framework) by an off-line service agreement.

Test Sequence:

1.
Method call initiateAuthentication() on IpInitial interface.

Parameters:
clientDomain, authType

Check:
valid value of TpAuthDomain is returned

2.
Triggered action: cause IUT to call authenticationSucceeded() method on the tester's (Application) IpClientAPILevelAuthentication interface.

Parameters:
none

Check:
no exception is returned.

3.
Method call requestAccess() on IpAPILevelAuthentication interface.

Parameters:
accessType, clientAccessInterface

Check:
valid value of TpInterfaceRef is returned

[image: image2.wmf] : IpClientAPILevelAuthentication

Client

 : IpAPILevelAuthentication

Framework

 : IpInitial

initiateAuthentication(clientDomain, authType)

authDomain

authenticationSucceeded()

requestAccess(accessType, clientAccessInterface)

intReference

Preamble : registration of the tester (application) to the Framework by an off-line service agrement.

Test FW_AS_TSM_02
Summary: API level authentication, FW authenticates the client only, all methods, successful, use of listInterface method to get the name of supported interfaces.

Reference: ES 201 915-3, clause 6.1.1.2 & 6.1.1.4

Preamble:

· Registration of the tester (Application) to the IUT (framework) by an off-line service agreement.

Test Sequence:

1.
Method call initiateAuthentication on IpInitial interface.

Parameters:
clientDomain, authType=P_OSA_AUTHENTICATION

Check:
valid value of TpAuthDomain is returned

2.
Method call selectEncryptionMethod on IpAPILevelAuthentication interface.

Parameters:
encryptionCaps

Check:
valid value of TpEncryptionCapability is returned

3.
Triggered action: cause IUT to call authenticate method on the tester's (Application) IpClientAPILevelAuthentication interface.

Parameters:
challenge

Check:
valid value of TpOctetSet is returned

Note:
this method may be repeated with different challenges as required by the IUT.

4.
Triggered action: cause IUT to call authenticationSucceeded method on the tester's (Application) IpClientAPILevelAuthentication interface.

Parameters:
none

Check:
no exception is returned.

5.
Method call requestAccess on IpAPILevelAuthentication interface.

Parameters:
accessType, clientAccessInterface

Check:
valid value of TpInterfaceRef is returned

6.
Method call listInterfaces on IpAccess interface.

Parameters: none

Check:
valid value of TpInterfaceNameList is returned

7.
Method call obtainInterface on IpAccess interface.

Parameters:
interfaceName (suggest use of P_DISCOVERY)

Check:
valid value of IpInterfaceRef is returned

[image: image3.wmf] : IpClientAPILevelAuthentication

Client

 : IpInitial

 : IpAPILevelAuthentication

Framework

 : IpAccess

Preamble : registration of the tester (application) to the Framework by an off-line service agrement.

requestAccess(accessType, clientAccessInterface)

intReference

initiateAuthentication(clientDomain, authType)

authDomain

selectEncryptionMethod(encryptionCaps)

encryptionCapability

authenticate(challenge)

octetSet

authenticationSucceeded()

listInterfaces()

interfaceNameList

obtainInterface(interfaceName)

interfaceRef

Test FW_AS_TSM_03
Summary: API level authentication, FW and client authenticate mutually, all methods, successful

Reference: ES 201 915-3, clause 6.1.1.2 & 6.1.1.4

Preamble:

· Registration of the tester (Application) to the IUT (framework) by an off-line service agreement.

Test Sequence:

1.
Method call initiateAuthentication on IpInitial interface.

Parameters:
clientDomain, authType=P_OSA_AUTHENTICATION

Check:
valid value of TpAuthDomain is returned

2.
Method call selectEncryptionMethod on IpAPILevelAuthentication interface.

Parameters:
encryptionCaps

Check:
valid value of TpEncryptionCapability is returned

3.
Triggered action: cause IUT to call authenticate method on the tester's (Application) IpClientAPILevelAuthentication interface.

Parameters:
challenge

Check:
valid value of TpOctetSet is returned

Note:
this method may be repeated with different challenges as required by the IUT.

4.
Triggered action: cause IUT to call authenticationSucceeded method on the tester's (Application) IpClientAPILevelAuthentication interface.

Parameters:
none

Check:
no exception is returned.

5.
Method call authenticate on IpAPILevelAuthentication interface.

Parameters:
TpOctetSet

Check:
valid value of TpOctetSet is returned

Note:
this method may be repeated with different challenges as required by the IUT.

6.
Method call authenticationSucceeded on IpAPILevelAuthentication interface.

Parameters:
none

Check:
no exception is returned.

Note:
the method calls 5. and 6. may interleave between the method calls 3. and 4.

7.
Method call requestAccess on IpAPILevelAuthentication interface.

Parameters:
accessType, clientAccessInterface

Check:
valid value of TpInterfaceRef is returned

8.
Method call obtainInterface on IpAccess interface.

Parameters:
interfaceName Parameters:
interfaceName (suggest use of P_DISCOVERY)

Check:
valid value of IpInterfaceRef is returned

Test FW_AS_TSM_04
Summary: API level authentication, FW authenticates the client only, unsuccessful call of requestAccess method (preceeding authenticationSucceeded method call)

Reference: ES 201 915-3, clause 6.1.1.2 & 6.1.1.4

Preamble:

· Registration of the tester (Application) to the IUT (framework) by an off-line service agreement.

Test Sequence:

1.
Method call initiateAuthentication on IpInitial interface.

Parameters:
clientDomain, authType=P_OSA_AUTHENTICATION

Check:
valid value of TpAuthDomain is returned

2.
Method call selectEncryptionMethod on IpAPILevelAuthentication interface.

Parameters:
encryptionCaps

Check:
valid value of TpEncryptionCapability is returned

3.
Triggered action: cause IUT to call authenticate method on the tester's (Application) IpClientAPILevelAuthentication interface.

Parameters:
challenge

Check:
valid value of TpOctetSet is returned

Note:
this method may be repeated with different challenges as required by the IUT.

4.
Method call requestAccess on IpAPILevelAuthentication interface.

Parameters:
accessType, clientAccessInterface

Check:
P_ACCESS_DENIED value is returned

5.
Triggered action: cause IUT to call authenticationSucceeded method on the tester's (Application) IpClientAPILevelAuthentication interface.

Parameters:
none

Check:
no exception is returned.

6.
Method call requestAccess on IpAPILevelAuthentication interface.

Parameters:
accessType, clientAccessInterface

Check:
valid value of IpInterfaceRef is returned

7.
Method call obtainInterface on IpAccess interface.

Parameters:
interfaceName Parameters:
interfaceName (suggest use of P_DISCOVERY)

Check:
valid value of IpInterfaceRef is returned

Test FW_AS_TSM_05
Summary: API level authentication, FW authenticates the client only, use of obtainInterfaceWithCallback, successful

Reference: ES 201 915-3, clause 6.1.1.2 & 6.1.1.4

Preamble:

· Registration of the tester (Application) to the IUT (framework) by an off-line service agreement.

Test Sequence:

1.
Method call initiateAuthentication on IpInitial interface.

Parameters:
clientDomain, authType=P_OSA_AUTHENTICATION

Check:
valid value of TpAuthDomain is returned

2.
Method call selectEncryptionMethod on IpAPILevelAuthentication interface.

Parameters:
encryptionCaps

Check:
valid value of TpEncryptionCapability is returned

3.
Triggered action: cause IUT to call authenticate method on the tester's (Application) IpClientAPILevelAuthentication interface.

Parameters:
challenge

Check:
valid value of TpOctetSet is returned

Note:
this method may be repeated with different challenges as required by the IUT.

4.
Triggered action: cause IUT to call authenticationSucceeded method on the tester's (Application) IpClientAPILevelAuthentication interface.

Parameters:
none

Check:
no exception is returned.

5.
Method call requestAccess on IpAPILevelAuthentication interface.

Parameters:
accessType, clientAccessInterface

Check:
valid value of TpInterfaceRef is returned

6.
Method call obtainInterfaceWithCallback on IpAccess interface.

Parameters:
interfaceName (suggest use of P_DISCOVERY), clentInterface

Check:
valid value of IpInterfaceRef is returned

Test FW_AS_TSM_06
Summary: API level authentication, FW authenticates the client only and receives abortAuthentication. unsuccessful

Reference: ES 201 915-3, clause 6.1.1.2 & 6.1.1.4

Preamble:

· Registration of the tester (Application) to the IUT (framework) by an off-line service agreement.

Test Sequence:

1.
Method call initiateAuthentication on IpInitial interface.

Parameters:
clientDomain, authType=P_OSA_AUTHENTICATION

Check:
valid value of TpAuthDomain is returned

2.
Method call selectEncryptionMethod on IpAPILevelAuthentication interface.

Parameters:
encryptionCaps

Check:
valid value of TpEncryptionCapability is returned

3.
Triggered action: cause IUT to call authenticate method on the tester's (Application) IpClientAPILevelAuthentication interface.

Parameters:
challenge

Check:
valid value of TpOctetSet is returned

4.
Method call abortAuthentication() on IpAPILevelAuthentication interface.

Parameters:
none

Check:
none

5.
Method call requestAccess on IpAPILevelAuthentication interface.

Parameters:
accessType, clientAccessInterface

Check:
P_ACCESS_DENIED value is returned

Test FW_AS_TSM_07
Summary: API level authentication, FW authenticates the client only, successful, checks endAccess method

Reference: ES 201 915-3, clause 6.1.1.2 & 6.1.1.4

Preamble:

· Registration of the tester (Application) to the IUT (framework) by an off-line service agreement.

Test Sequence:

1.
Method call initiateAuthentication on IpInitial interface.

Parameters:
clientDomain, authType=P_OSA_AUTHENTICATION

Check:
valid value of TpAuthDomain is returned

2.
Method call selectEncryptionMethod on IpAPILevelAuthentication interface.

Parameters:
encryptionCaps

Check:
valid value of TpEncryptionCapability is returned

3.
Triggered action: cause IUT to call authenticate method on the tester's (Application) IpClientAPILevelAuthentication interface.

Parameters:
challenge

Check:
valid value of TpOctetSet is returned

Note:
this method may be repeated with different challenges as required by the IUT.

4.
Triggered action: cause IUT to call authenticationSucceeded method on the tester's (Application) IpClientAPILevelAuthentication interface.

Parameters:
none

Check:
no exception is returned.

5.
Method call requestAccess on IpAPILevelAuthentication interface.

Parameters:
accessType, clientAccessInterface

Check:
valid value of TpInterfaceRef is returned

6.
Method call endAccess on IpAccess interface.

Parameters:
endAccessProperties

Check:
valid value of IpInterfaceRef is returned

7.
Method call requestAccess on IpAPILevelAuthentication interface.

Parameters:
accessType, clientAccessInterface

Check:
P_ACCESS_DENIED value is returned

Test FW_AS_TSM_08
Summary: API level authentication, FW authenticates the client only, all methods, successful, use of releaseInterface method.

Reference: ES 201 915-3, clause 6.1.1.2 & 6.1.1.4

Preamble:

· Registration of the tester (Application) to the IUT (framework) by an off-line service agreement.

Test Sequence:

1.
Method call initiateAuthentication on IpInitial interface.

Parameters:
clientDomain, authType=P_OSA_AUTHENTICATION

Check:
valid value of TpAuthDomain is returned

2.
Method call selectEncryptionMethod on IpAPILevelAuthentication interface.

Parameters:
encryptionCaps

Check:
valid value of TpEncryptionCapability is returned

3.
Triggered action: cause IUT to call authenticate method on the tester's (Application) IpClientAPILevelAuthentication interface.

Parameters:
challenge

Check:
valid value of TpOctetSet is returned

Note:
this method may be repeated with different challenges as required by the IUT.

4.
Triggered action: cause IUT to call authenticationSucceeded method on the tester's (Application) IpClientAPILevelAuthentication interface.

Parameters:
none

Check:
no exception is returned.

5.
Method call requestAccess on IpAPILevelAuthentication interface.

Parameters:
accessType, clientAccessInterface

Check:
valid value of TpInterfaceRef is returned

6.
Method call obtainInterface on IpAccess interface.

Parameters:
interfaceName (suggest use of P_DISCOVERY)

Check:
valid value of IpInterfaceRef is returned

7.
Method call releaseInterfaces on IpAccess interface.

Parameters: interfaceName (same value as method call nr 6)

Check:
none

Test FW_AS_TSM_09
Summary: Authentication, using Underlying Distribution Technology Mechanism, all methods, successful

Reference: ES 201 915-3, clause 6.1.1.3

Preamble:

· Registration of the tester (Application) to the IUT (framework) by an off-line service agreement.

Test Sequence:

1.
Perform underlying authentication between tester and IUT..

2.
Method call initiateAuthentication on IpInitial interface.

Parameters:
clientDomain, authType=P_ AUTHENTICATION

Check:
valid value of TpAuthDomain is returned

3.
Method call requestAccess on IpAPILevelAuthentication interface.

Parameters:
accessType, clientAccessInterface

Check:
valid value of TpInterfaceRef is returned

4.
Method call obtainInterface on IpAccess interface.

Parameters:
interfaceName (suggest use of P_DISCOVERY)

Check:
valid value of IpInterfaceRef is returned

5.4.2
Framework to Application API

5.4.2.1
Service Discovery (SD)

Test FW_FTA_SD_01
Summary: IpServiceDiscovery all methods, successful

Reference: ES201 915-3, clause 7.3.1

Test Sequence:

1.
Method call listServicesTypes()

Parameters: none

Check: valid value of TpServiceNameList is returned

3.
Method call describeServiceType()

Parameters: serviceTypeName from the list returned in 1.

Check: valid value of TpServiceTypeDescription is returned

4.
Method call discoverService()

Parameters: serviceTypeName from the list returned in 1., valid desiredPropertyList, valid max

Check: valid value of TpServiceList is returned

Test FW_FTA_SD_02
Summary: IpServiceDiscovery describeServiceType, P_ILLEGAL_SERVICE_TYPE

Reference: ES201 915-3, clause 7.3.1

Test Sequence:

1.
Method call describeServiceType()

Parameters: serviceTypeName malformed

Check: P_ILLEGAL_SERVICE_TYPE exception is returned

Test FW_FTA_SD_03
Summary: IpServiceDiscovery describeServiceType, P_UNKNOWN_SERVICE_TYPE

Reference: ES201 915-3, clause 7.3.1

Test Sequence:

1.
Method call listServicesTypes()
Parameters: none

Check: valid value of TpServiceNameList is returned

2.
Method call describeServiceType()

Parameters: serviceTypeName well formed but not returned in 1.

Check P_UNKNOWN_SERVICE_TYPE exception is returned

Test FW_FTA_SD_04
Summary: IpServiceDiscovery discoverService, P_ILLEGAL_SERVICE_TYPE

Reference: ES201 915-3, clause 7.3.1

Test Sequence:

1.
Method call discoverService()

Parameters: serviceTypeName malformed

Check: P_ILLEGAL_SERVICE_TYPE exception is returned

Test FW_FTA_SD_05
Summary: IpServiceDiscovery discoverService, P_UNKNOWN_SERVICE_TYPE

Reference: ES201 915-3, clause 7.3.1

Test Sequence:

1.
Method call listServicesTypes()

Parameters: none

Check: valid value of TpServiceNameList is returned

2.
Method call discoverService()

Parameters: serviceTypeName well formed but not returned in 1.

Check: P_UNKNOWN_SERVICE_TYPE exception is returned

Test FW_FTA_SD_06
Summary: IpServiceDiscovery discoverService, P_INVALID_PROPERTY

Reference: ES201 915-3, clause 7.3.1

Test Sequence:

1.
Method call listServicesTypes()

Parameters: none

Check: valid value of TpServiceNameList is returned

2.
Method call discoverService()

Parameters: serviceTypeName from the list returned in 1., invalid desiredPropertyList, valid max

Check: P_INVALID_PROPERTY exception is returned

Test FW_FTA_SD_07
Summary: IpServiceDiscovery listSubscribedService, P_INVALID_PROPERTY

Reference: ES201 915-3, clause 7.3.1

Test Sequence:

1.
Method call listSubscribedServices()

Parameters: none

Check: valid value of TpServiceList is returned

5.4.2.2
Service Agreement Management (SA)

Test FW_FA_SA_01
Summary: IpServiceAgreementManagement, all methods, successful

Reference: ES201 915-3, clause 7.3.2

Test Sequence:

1.
Method call selectService()

Parameters: serviceID

Check: valid value of TpServiceToken is returned

2.
Method call initiateSignServiceAgreement()

Parameters: serviceToken returned in 1.

Check: no exception is returned

3.
Triggered action: cause IUT to call SignServiceAgreement () method on the tester's (Application) IpAppServiceAgreementManagement interface.

Parameters: serviceToken

Check: no exception is returned.

4.
Method call SignServiceAgreement()

Parameters: serviceToken returned in 1., agreememtText, signingAlgorithm

Check: valid value of TpSignatureAndServiceMgr is returned

5.
Method call terminateServiceAgreement()

Parameters: serviceToken returned in 1., terminationText, digitalSignature

Check: no exception is returned

Test FW_FA_SA_02
Summary: IpServiceAgreementManagement, selectService, P_INVALID_SERVICE_ID

Reference: ES201 915-3, clause 7.3.2

Test Sequence:

1.
Method call selectService()

Parameters: invalid serviceID

Check: P_INVALID_SERVICE_ID exception is returned

Test FW_FA_SA_03
Summary: IpServiceAgreementManagement, initiateSignServiceAgreement, P_INVALID_SERVICE_TOKEN

Reference: ES201 915-3, clause 7.3.2

Test Sequence:

1.
Method call initiateSignServiceAgreement()

Parameters: invalid serviceToken

Check: P_INVALID_SERVICE_TOKEN exception is returned

Test FW_FA_SA_04
Summary: IpServiceAgreementManagement, signServiceAgreement, P_INVALID_SERVICE_TOKEN

Reference: ES201 915-3, clause 7.3.2

Test Sequence:

1.
Method call selectService()

Parameters: serviceID

Check: valid value of TpServiceToken is returned

2.
Method call initiateSignServiceAgreement()

Parameters: serviceToken returned in step 1.

Check: no exception is returned

3.
Method call signServiceAgreement()

Parameters: invalid serviceToken, valid agreementText, valid signingAlgorithm

Check P_INVALID_SERVICE_TOKEN exception is returned

Test FW_FA_SA_05
Summary: IpServiceAgreementManagement, signServiceAgreement, P_INVALID_AGREEMENT_TEXT

Reference: ES201 915-3, clause 7.3.2

Test Sequence:

1.
Method call selectService()

Parameters: serviceID

Check: valid value of TpServiceToken is returned

2.
Method call initiateSignServiceAgreement()

Parameters: TpServiceToken returned in step 1.

Check: No exception is returned

3.
Method call signServiceAgreement()

Parameters: serviceToken, invalid agreementText, signingAlgorithm

Check P_INVALID_AGREEMENT_TEXT exception is returned

Test FW_FA_SA_06
Summary: IpServiceAgreementManagement, signServiceAgreement, P_INVALID_SIGNING_ALGORITHM

Reference: ES201 915-3, clause 7.3.2

Test Sequence:

1.
Method call selectService()

Parameters: serviceID

Check: valid value of TpServiceToken is returned

2.
Method call initiateSignServiceAgreement()

Parameters: serviceToken returned in step 1.

Check: No exception is returned

3.
Method call signServiceAgreement()

Parameters: serviceToken, agreementText, invalid signingAlgorithm

Check P_INVALID_SIGNING_ALGORITHM exception is returned

Test FW_FA_SA_07
Summary: IpServiceAgreementManagement, terminateServiceAgreement, P_INVALID_SERVICE_TOKEN

Reference: ES201 915-3, clause 7.3.2

Test Sequence:

1.
Method call terminateServiceAgreement()

Parameters: invalid serviceToken returned in 1., terminationText, digitalSignature

Check: P_INVALID_SERVICE_TOKEN exception is returned

Test FW_FA_SA_08
Summary: IpServiceAgreementManagement, terminateServiceAgreement, P_INVALID_SIGNATURE

Reference: ES201 915-3, clause 7.3.2

Test Sequence:

1.
Method call selectService()

Parameters: serviceID

Check: valid value of TpServiceToken is returned

2.
Method call initiateSignServiceAgreement()

Parameters: serviceToken returned in 1.

Check: no exception is returned

3.
Triggered action: cause IUT to call SignServiceAgreement () method on the tester's (Application) IpAppServiceAgrrementManagement interface.

Parameters: serviceToken

Check: no exception is returned.

4.
Method call SignServiceAgreement()

Parameters: serviceToken returned in 1., agreememtText, signingAlgorithm

Check: valid value of TpSignatureAndServiceMgr is returned

5.
Method call terminateServiceAgreement()

Parameters: serviceToken returned in 1., terminationText, invalid digitalSignature

Check: P_INVALID_SIGNATURE exception is returned

5.4.2.3
Integrity Management (IM)

Test FW_FA_IM_01
Summary: IpHeartBeatMgmt, all methods, successful

Reference: ES201 915-3, clause 7.3.3

Preamble:

· The calling application must have a callback interface and a reference to this interface.

Test Sequence:

1.
Method call enableHeartBeat()

Parameters: loadLevel

Check: no exception is returned.

2.
Triggered action: cause IUT to call pulse () method on the tester's (Application) IpAppHeartBeat interface.

Parameters: none

Check: no exception is returned.

4.
Method call disableHeartBeat()

Parameters: none

Check: no exception. Verify that no pulse() is received anymore by the expiry of the interval timer.

Test FW_FA_IM_02
Summary: IpHeartBeatMgmt, all methods, successful

Reference: ES201 915-3, clause 7.3.3

Preamble:

· The calling application must have a callback interface and a reference to this interface.

Test Sequence:

1.
Method call enableHeartBeat()

Parameters: loadLevel

Check: no exception is returned.

2.
Triggered action: cause IUT to call pulse () method on the tester's (Application) IpAppHeartBeat interface.

Parameters: none

Check: no exception is returned.

3.
Method call changeInterval()

Parameters: interval

Check: no exception is returned.
4.
Triggered action: cause IUT to call pulse () method on the tester's (Application) IpAppHeartBeat interface.

Parameters: none

Check: the change of the heartbeat Interval.

5.
Method call disableHeartBeat()

Parameters: none

Check: no exception. Verify that no pulse() is received anymore by the expiry of the interval timer.

Test FW_FA_IM_03
Summary: IpHeartBeat, all methods, successful

Reference: ES201 915-3, clause 7.3.3

Preamble:

· The calling application must have a callback interface and a reference to this interface.

Test Sequence:

1.
Triggered action: cause IUT to call enableHeartBeat () method on the tester's (Application) IpAppHeartBeatMgmt interface.

Parameters: interval, fwInterface

Check: no exception is returned.

2.
Method call pulse()

Parameters: none

Check: no exception

Test FW_FA_IM_04
Summary: IpFaultManager activityTestReq, successful

Reference: ES201 915-3, clause 7.3.3

Preamble:

· The application must have registered at least one service.

Test Sequence:

1)
Method call activityTestReq()

Parameters: activityTestID, svcID

Check: no exception is returned

2.
Triggered action: cause IUT to call activityTestRes () method on the tester's (Application) IpAppFaultManager interface.

Parameters: activityTestID, activityTestResult

Check: no exception is returned.

Test FW_FA_IM_05
Summary: IpFaultManager activityTestReq on Framework, successful

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1.
Method call activityTestReq()

Parameters: activityTestID, svcID with null value

Check: no exception is returned

Test FW_FA_IM_06
Summary: IpFaultManager activityTestReq , P_INVALID_SERVICE_ID exception

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1.
Method call activityTestReq()

Parameters: activityTestID, invalid svcID

Check: P_INVALID_SERVICE_ID exception is returned

Test FW_FA_IM_07
Summary: IpFaultManager genFaultStatsRecordReq, successful

Reference: ES201 915-3, clause 7.3.3

Preamble:

· The application must have registered at least one service.

Test Sequence:

1.
Method call genFaultStatsRecordReq()

Parameters: timePeriod, serviceIDs

Check: no exception is returned

2.
Triggered action: cause IUT to call genFaultStatsRecordRes() method on the tester's (Application) IpAppFaultManager interface.

Parameters: faultStatistics,ServiceIDs

Check: no exception is returned.

Test FW_FA_IM_08
Summary: IpFaultManager genFaultStatsRecordReq on Framework, successful

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1.
Method call genFaultStatsRecordReq()

Parameters: timePeriod, serviceIDs with null value

Check: no exception is returned

Test FW_FA_IM_09
Summary: IpFaultManager genFaultStatsRecordReq, P_INVALID_SERVICE_ID exception

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1.
Method call genFaultStatsRecordReq()

Parameters: timePeriod, invalid serviceIDs

Check: P_INVALID_SERVICE_ID exception is returned

Test FW_FA_IM_10
Summary: IpFaultManager svcUnavailableInd, successful

Reference: ES201 915-3, clause 7.3.3

Preamble:

· The application must have registered at least one service.

Test Sequence:

1.
Method call svcUnavailableInd()

Parameters: serviceID

Check: no exception is returned

Test FW_FA_IM_11
Summary: IpFaultManager svcUnavailableInd, P_INVALID_SERVICE_ID exception

Reference: ES201 915-3, clause 7.3.3

Preamble:

· The application must have register at least one service.

Test Sequence:

1.
Method call svcUnavailableInd()

Parameters: invalid serviceID

Check: P_INVALID_SERVICE_ID exception is returned

Test FW_FA_IM_12
Summary: IpFaultManager appActivityTestRes, successful

Reference: ES201 915-3, clause 7.3.3

Preamble:

· The application must have registered at least one service.

Test Sequence:

1.
Triggered action: cause IUT to call appActivityTestReq() method on the tester's (Application) IpAppFaultManager interface.

Parameters: activityTestID

Check: no exception is returned.

2.
Method call appActivityTestRes()

Parameters: activityTestID, activityTestResult

Check: no exception is returned

Test FW_FA_IM_13
Summary: IpFaultManager appActivityTestRes, P_INVALID_ACTIVITY_TEST_ID Exception

Reference: ES201 915-3, clause 7.3.3

Preamble:

· The application must have registered at least one service.

Test Sequence:

1.
Triggered action: cause IUT to call appActivityTestReq() method on the tester's (Application) IpAppFaultManager interface.

Parameters: activityTestID

Check: no exception is returned.

2.
Method call appActivityTestRes()

Parameters: invalid activityTestID, activityTestResult

Check: P_INVALID_ACTIVITY_TEST_ID exception is returned

Test FW_FA_IM_14
Summary: IpFaultManager appActivityTestErr, successful

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1..
Method call appActivityTestErr()

Parameters: activityTestID

Check: no exception is returned

Test FW_FA_IM_15
Summary: IpFaultManager appActivityTestErr, P_INVALID_ACTIVITY_TEST_ID exception

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1..
Method call appActivityTestErr()

Parameters: invalid activityTestID

Check: P_INVALID_ACTIVITY_TEST_ID exception is returned

Test FW_FA_IM_16
Summary: IpFaultManager appActivityTestErr, successful

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1.
Method call appUnavailableInd()

Parameters: serviceID

Check: no exception is returned

Test FW_FA_IM_17
Summary: IpLoadManager All methods, successful

Reference: ES201 915-3, clause 7.3.3

Preamble: The application must have registered at least one service.

Test Sequence:

1)
Method call createLoadLevelNotification()

Parameters: serviceIDs

Check: no exception is returned

2)
Method call suspendNotification()

Parameters: serviceIDs

Check: no exception is returned

3)
Method call resumeNotification()

Parameters: serviceIDs

Check: no exception is returned

4)
Method call destroyLoadLevelNotification()

Parameters: serviceIDs

Check: no exception is returned

Test FW_FA_IM_18
Summary: IpLoadManager All methods on Framework, successful

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1)
Method call createLoadLevelNotification()

Parameters: serviceIDs is null

Check: no exception is returned

2)
Method call suspendNotification()

Parameters: serviceIDs is null

Check: no exception is returned

3)
Method call resumeNotification()

Parameters: serviceIDs is null

Check: no exception is returned

4)
Method call destroyLoadLevelNotification()

Parameters: serviceIDs is null

Check: no exception is returned

Test FW_FA_IM_19
Summary: IpLoadManager createLoadLevelNotification, P_INVALID_SERVICE_ID

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1)
Method call createLoadLevelNotification()

Parameters: invalid serviceIDs

Check: P_INVALID_SERVICE_ID exception is returned

Test FW_FA_IM_20
Summary: IpLoadManager suspendNotification, P_INVALID_SERVICE_ID

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1)
Method call suspendNotification ()

Parameters: invalid serviceIDs

Check: P_INVALID_SERVICE_ID exception is returned

Test FW_FA_IM_21
Summary: IpLoadManager resumeNotification, P_INVALID_SERVICE_ID

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1)
Method call resumeNotification ()

Parameters: invalid serviceIDs

Check: P_INVALID_SERVICE_ID exception is returned

Test FW_FA_IM_22
Summary: IpLoadManager destroyLoadLevelNotification, P_INVALID_SERVICE_ID

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1)
Method call destroyLoadLevelNotification ()

Parameters: invalid serviceIDs

Check: P_INVALID_SERVICE_ID exception is returned

Test FW_FA_IM_23
Summary: IpLoadManager reportLoad, successful

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1)
Method call reportLoad ()

Parameters: loadLevel

Check: no exception is returned

Test FW_FA_IM_24
Summary: IpLoadManager queryLoadReq, successful

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1)
Method call queryLoadReq()
Parameters: serviceIDs, timeInterval

Check: no exception is returned

2)
Triggered action: cause IUT to call queryLoadRes () method on the tester's (Application) IpAppFaultManager interface.

Parameters: loadStatistics

Check: no exception is returned.

Test FW_FA_IM_25
Summary: IpLoadManager queryLoadReq on Framework, successful

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1)
Method call queryLoadReq()
Parameters: serviceIDs as null, timeInterval

Check: no exception is returned

Test FW_FA_IM_26
Summary: IpLoadManager queryLoadReq, P_INVALID_SERVICE_ID

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1)
Method call queryLoadReq()
Parameters: invalid serviceIDs, timeInterval

Check: P_INVALID_SERVICE_ID exception is returned

Test FW_FA_IM_27
Summary: IpLoadManager queryAppLoadRes, successful

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1)
Triggered action: cause IUT to call queryAppLoadReq () method on the tester's (Application) IpAppLoadManager interface.

Parameters: timeInterval

Check: no exception is returned.

2)
Method call queryAppLoadRes ()
Parameters: loadStatistics

Check: no exception is returned

Test FW_FA_IM_28
Summary: IpLoadManager queryAppLoadErr, successful

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1)
Method call queryAppLoadErr ()
Parameters: loadStatisticsError

Check: no exception is returned

Test FW_FA_IM_29
Summary: IpOAM, systemDateTimeQuery, successful

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1.
Method call systemDateTimeQuery()

Parameters: clientDateAndTime

Check: valid value of TpDateAndTime is returned

Test FW_FA_IM_30
Summary: IpOAM, systemDateTimeQuery, P_INVALID_TIME_AND-DATE_FORMAT exception

Reference: ES201 915-3, clause 7.3.3

Test Sequence:

1.
Method call systemDateTimeQuery()

Parameters: invalid clientDateAndTime

Check: _INVALID_TIME_AND-DATE_FORMAT is returned

5.4.2.4
Event Notification (EN)

Test FW_FA_EN_01
Summary: IpEventNotification, create and destroy methods, successful

Reference: ES201 915-3, clause 7.3.4

Test Sequence:

1.
Method call createNotification()

Parameters: eventCriteria

Check: valid value of TpAssignmentID is returned

2.
Method call destroyNotification()

Parameters: assignmentID give in 1.

Check: no exception is returned

Test FW_FA_EN_02
Summary: IpEventNotification, all methods, successful

Reference: ES201 915-3, clause 7.3.4

Test Sequence:

1.
Method call createNotification()

Parameters: eventCriteria

Check: valid value of TpAssignmentID is returned

2.
Triggered action: cause IUT to call reportNotification() method on the tester's (Application) IpAppEventNotification interface.

Parameters: eventInfo, assignmentID

Check: valid value of parameters is returned

3.
Triggered action: cause IUT to call notificationTerminated() method on the tester's (Application) IpSvcEventNotification interface.

Parameters: none.

Check: none.

4.
Method call destroyNotification()

Parameters: assignmentID give in 1.

Check: no exception is returned

Test FW_FA_EN_03
Summary: IpEventNotification, createNotification, P_INVALID_CRITERIA

Reference: ES201 915-3, clause 7.3.4

Test Sequence:

1.
Method call createNotification()

Parameters: invalid eventCriteria

Check: P_INVALID_ CRITERIA exception is returned

Test FW_FA_EN_04
Summary: IpEventNotification, destroyNotification, P_INVALID_ ASSIGNMENT_ID

Reference: ES201 915-3, clause 7.3.4

Test Sequence:

1.
Method call destroyNotification()

Parameters: invalid assignmentID

Check: P_INVALID_ ASSIGNMENT_ID exception is returned

5.4.3
Framework to Service API

5.4.3.1
Service Registration (SR)

Test FW_FS_SR_01
Summary: IpFwServiceRegistration, registerService and unregisterService methods, successful

Reference: ES201 915-3, clause 9.3.1

Test Sequence:

1.
Method call registerService()

Parameters: serviceTypeName, servicePropertyList

Check: valid value of TpServiceID is returned

2.
Method call unregisterService()

Parameters: serviceID given in 1.

Check: no exception is returned

Test FW_FS_SR_02
Summary: IpFwServiceRegistration, describeService method, successful

Reference: ES201 915-3, clause 9.3.1

Preamble:
the service has been previously registered (with the registerService method).

Test Sequence:

1.
Method call describeService()

Parameters: serviceID as returned by the registerService method

Check: valid value of TpServiceDescription is returned

Test FW_FS_SR_03
Summary: IpFwServiceRegistration, announceServiceAvailability and unannounceService methods, successful

Reference: ES201 915-3, clause 9.3.1

Preamble:
the service has been previously registered (with the registerService method) and the IUT has created the corresponding service manager (with the createServiceManager method on the IpServiceInstanceLifeCycleManager interface).

Test Sequence:

1.
Method call announceService()

Parameters:
serviceID as returned by the registerService method,

serviceInstanceLifeCycleManagerRef as returned by the createServiceManager method

Check: no exception is returned.

2.
Method call unannounceService()

Parameters: serviceID as returned by the registerService method,

Check: no exception is returned.

Test FW_FS_SR_04
Summary: IpFwServiceRegistration, registerService methods, P_ILLEGAL_SERVICE_TYPE

Reference: ES201 915-3, clause 9.3.1

Test Sequence:

1.
Method call registerService()

Parameters: serviceTypeName malformed, servicePropertyList

Check: P_ILLEGAL_SERVICE_TYPE exception is returned

Test FW_FS_SR_05
Summary: IpFwServiceRegistration, registerService methods, P_UNKNOWN_SERVICE_TYPE

Reference: ES201 915-3, clause 9.3.1

Test Sequence:

1.
Method call registerService()

Parameters: serviceTypeName unknown, servicePropertyList

Check: P_UNKNOWN_SERVICE_TYPE exception is returned

Test FW_FS_SR_06
Summary: IpFwServiceRegistration, registerService methods, P_PROPERTY_TYPE_MISMATCH

Reference: ES201 915-3, clause 9.3.1

Test Sequence:

1.
Method call registerService()

Parameters: serviceTypeName, servicePropertyList with a type of a property values not the same as the declared service type.

Check: P_PROPERTY_TYPE_MISMATCH exception is returned

Test FW_FS_SR_07
Summary: IpFwServiceRegistration, registerService methods, P_READ_ONLY_DYNAMIC_PROPERTY

Reference: ES201 915-3, clause 9.3.1

Test Sequence:

1.
Method call registerService()

Parameters: serviceTypeName, servicePropertyList with assignment of a dynamic value to a read only property.

Check: P_READ_ONLY_DYNAMIC_PROPERTY exception is returned

Test FW_FS_SR_08
Summary: IpFwServiceRegistration, registerService methods, P_MISSING_MANDATORY_PROPERTY

Reference: ES201 915-3, clause 9.3.1

Test Sequence:

1.
Method call registerService()

Parameters: serviceTypeName, servicePropertyList with a mandatory property missing.

Check: P_MISSING_MANDATORY_PROPERTY exception is returned

Test FW_FS_SR_09
Summary: IpFwServiceRegistration, registerService methods, P_DUPLICATE_PROPERTY_NAME

Reference: ES201 915-3, clause 9.3.1

Test Sequence:

1.
Method call registerService()

Parameters: serviceTypeName, servicePropertyList including two properties with the same property name.

Check: P_DUPLICATE_PROPERTY_NAME exception is returned

Test FW_FS_SR_10
Summary: IpFwServiceRegistration, registerService and unregisterService methods, P_ILLEGAL_SERVICE_ID

Reference: ES201 915-3, clause 9.3.1

Test Sequence:

1.
Method call registerService()

Parameters: serviceTypeName, servicePropertyList

Check: valid value of TpServiceID is returned

2.
Method call unregisterService()

Parameters: serviceID not built according to the rules for service identifiers.

Check: P_ILLEGAL_SERVICE_ID exception is returned

Test FW_FS_SR_11
Summary: IpFwServiceRegistration, registerService and unregisterService methods, P_UNKNOWN_SERVICE_ID

Reference: ES201 915-3, clause 9.3.1

Test Sequence:

1.
Method call registerService()

Parameters: serviceTypeName, servicePropertyList

Check: valid value of TpServiceID is returned

2.
Method call unregisterService()

Parameters: serviceID not offered within the Framework.

Check: P_UNKNOWN_SERVICE_ID exception is returned

Test FW_FS_SR_12
Summary: IpFwServiceRegistration, describeService method, P_ILLEGAL_SERVICE_ID

Reference: ES201 915-3, clause 9.3.1

Preamble:
the service has been previously registered (with the registerService method).

Test Sequence:

1.
Method call describeService()

Parameters: serviceID not built according to the rules for service identifiers.

Check: P_ILLEGAL_SERVICE_ID exception is returned

Test FW_FS_SR_13
Summary: IpFwServiceRegistration, describeService and unregisterService methods, P_UNKNOWN_SERVICE_ID

Reference: ES201 915-3, clause 9.3.1

Test Sequence:

1.
Method call describeService()

Parameters: serviceTypeName, servicePropertyList

Check: valid value of TpServiceID is returned

2.
Method call describeService()

Parameters: serviceID not offered within the Framework.

Check: P_UNKNOWN_SERVICE_ID exception is returned

Test FW_FS_SR_14
Summary: IpFwServiceRegistration, announceServiceAvailability methods, P_ILLEGAL_SERVICE_ID

Reference: ES201 915-3, clause 9.3.1

Preamble:
the service has been previously registered (with the registerService method) and the IUT has created the corresponding service manager (with the createServiceManager method on the IpServiceInstanceLifeCycleManager interface).

Test Sequence:

1.
Method call announceService()

Parameters: serviceID not built according to the rules for service identifiers.

Check: P_ILLEGAL_SERVICE_ID exception is returned

Test FW_FS_SR_15
Summary: IpFwServiceRegistration, announceServiceAvailability methods, P_UNKNOWN_SERVICE_ID

Reference: ES201 915-3, clause 9.3.1

Preamble:
the service has been previously registered (with the registerService method) and the IUT has created the corresponding service manager (with the createServiceManager method on the IpServiceInstanceLifeCycleManager interface).

Test Sequence:

1.
Method call announceService()

Parameters: serviceID not offered within the Framework.

Check: P_UNKNOWN_SERVICE_ID exception is returned

Test FW_FS_SR_16
Summary: IpFwServiceRegistration, announceServiceAvailability and unannounceService methods, P_ILLEGAL_SERVICE_ID

Reference: ES201 915-3, clause 9.3.1

Preamble:
the service has been previously registered (with the registerService method) and the IUT has created the corresponding service manager (with the createServiceManager method on the IpServiceInstanceLifeCycleManager interface).

Test Sequence:

1.
Method call announceService()

Parameters:
serviceID as returned by the registerService method,

serviceInstanceLifeCycleManagerRef as returned by the createServiceManager method

Check: no exception is returned.

2.
Method call unannounceService()

Parameters: serviceID not built according to the rules for service identifiers.

Check: P_ILLEGAL_SERVICE_ID exception is returned

Test FW_FS_SR_17
Summary: IpFwServiceRegistration, announceServiceAvailability and unannounceService methods, P_UNKNOWN_SERVICE_ID

Reference: ES201 915-3, clause 9.3.1

Preamble:
the service has been previously registered (with the registerService method) and the IUT has created the corresponding service manager (with the createServiceManager method on the IpServiceInstanceLifeCycleManager interface).

Test Sequence:

1.
Method call announceService()

Parameters:
serviceID as returned by the registerService method,

serviceInstanceLifeCycleManagerRef as returned by the createServiceManager method

Check: no exception is returned.

2.
Method call unannounceService()

Parameters: serviceID not offered within the Framework.

Check: P_UNKNOWN_SERVICE_ID exception is returned

5.4.3.2
Service Instance Lifecycle Management (SILM)

Test FW_FS_SILM_01
Summary: IpServiceInstanceLifecycleManager, createServiceManager and destroyServiceManager methods, successful

Reference: ES201 915-3, clause 9.3.2

Test Sequence:

1.
Method call createServiceManager()

Parameters: application, serviceProperties, serviceInstanceID

Check: valid value of IpServiceRef is returned

2.
Method call destroyServiceManager ()

Parameters: serviceInstanceID (same value as used in 1).

Check: no exception is returned

Test FW_FS_SILM_02
Summary: IpServiceInstanceLifecycleManager, createServiceManager method, P_INVALID_PROPERTY

Reference: ES201 915-3, clause 9.3.2

Test Sequence:

1.
Method call createServiceManager()

Parameters: application, serviceProperties with an invalid content, serviceInstanceID

Check: P_INVALID_PROPERTY exception is returned

5.4.3.3
Service Discovery (SD)

Test FW_FS_SD_01
Summary: IpFwServiceDiscovery all methods, successful

Reference: ES201 915-3, clause 9.3.3

Test Sequence:

1.
Method call listServicesTypes()

Parameters: none

Check: valid value of TpServiceNameList is returned

3.
Method call describeServiceType()

Parameters: serviceTypeName from the list returned in 1.

Check: valid value of TpServiceTypeDescription is returned

4.
Method call discoverService()

Parameters: serviceTypeName from the list returned in 1., valid desiredPropertyList, valid max

Check: valid value of TpServiceList is returned

Test FW_FS_SD_02
Summary: IpFwServiceDiscovery describeServiceType, P_ILLEGAL_SERVICE_TYPE

Reference: ES201 915-3, clause 9.3.3

Test Sequence:

1.
Method call describeServiceType()

Parameters: serviceTypeName malformed

Check: P_ILLEGAL_SERVICE_TYPE exception is returned

Test FW_FS_SD_03
Summary: IpFwServiceDiscovery describeServiceType, P_UNKNOWN_SERVICE_TYPE

Reference: ES201 915-3, clause 9.3.3

Test Sequence:

1.
Method call listServicesTypes()
Parameters: none

Check: valid value of TpServiceNameList is returned

2.
Method call describeServiceType()

Parameters: serviceTypeName well formed but not returned in 1.

Check P_UNKNOWN_SERVICE_TYPE exception is returned

Test FW_FS_SD_04
Summary: IpFwServiceDiscovery discoverService, P_ILLEGAL_SERVICE_TYPE

Reference: ES201 915-3, clause 9.3.3

Test Sequence:

1.
Method call discoverService()

Parameters: serviceTypeName malformed

Check: P_ILLEGAL_SERVICE_TYPE exception is returned

Test FW_FS_SD_05
Summary: IpFwServiceDiscovery discoverService, P_UNKNOWN_SERVICE_TYPE

Reference: ES201 915-3, clause 9.3.3

Test Sequence:

1.
Method call listServicesTypes()

Parameters: none

Check: valid value of TpServiceNameList is returned

2.
Method call discoverService()

Parameters: serviceTypeName well formed but not returned in 1.

Check: P_UNKNOWN_SERVICE_TYPE exception is returned

Test FW_FS_SD_06
Summary: IpFwServiceDiscovery discoverService, P_INVALID_PROPERTY

Reference: ES201 915-3, clause 9.3.3

Test Sequence:

1.
Method call listServicesTypes()

Parameters: none

Check: valid value of TpServiceNameList is returned

2.
Method call discoverService()

Parameters: serviceTypeName from the list returned in 1., invalid desiredPropertyList, valid max

Check: P_INVALID_PROPERTY exception is returned

Test FW_FS_SD_07
Summary: IpFwServiceDiscovery listSubscribedService, P_INVALID_PROPERTY

Reference: ES201 915-3, clause 9.3.3

Test Sequence:

1.
Method call listSubscribedServices()

Parameters: none

Check: valid value of TpServiceList is returned

5.4.3.4
Integrity Management (IM)

Test FW_FS_IM_01
Summary: IpFwHeartBeatMgmt, all methods, successful

Reference: ES201 915-3, clause 9.3.4

Preamble: The calling application must have a callback interface and a reference to this interface.

Test Sequence:

1.
Method call enableHeartBeat()

Parameters: loadLevel

Check: no exception is returned.

2.
Triggered action: cause IUT to call pulse () method on the tester's (Application) IpSvcHeartBeat interface.

Parameters: none

Check: no exception is returned.

3.
Method call disableHeartBeat()

Parameters: none

Check: no exception Can we verify no heartbeat is still not sending ?

Test FW_FS_IM_02
Summary: IpFwHeartBeatMgmt, all methods, successful

Reference: ES201 915-3, clause 9.3.4

Preamble:

· The calling application must have a callback interface and a reference to this interface.

Test Sequence:

1.
Method call enableHeartBeat()

Parameters: loadLevel

Check: no exception is returned.

2.
Triggered action: cause IUT to call pulse () method on the tester's (Application) IpSvcHeartBeat interface.

Parameters: none

Check: no exception is returned.

3.
Method call changeInterval()

Parameters: interval

Check: no exception is returned.
4.
Triggered action: cause IUT to call pulse () method on the tester's (Application) IpSvcHeartBeat interface.

Parameters: none

Check: the change of the heratbeat Interval.

5.
Method call disableHeartBeat()

Parameters: none

Check: no exception Verify that no pulse() is received anymore by the expiry of the interval timer.

Test FW_FS_IM_03
Summary: IpFwHeartBeat, all methods, successful

Reference: ES201 915-3, clause 9.3.4

Preamble:

· The calling application must have a callback interface and a reference to this interface.

Test Sequence:

1.
Triggered action: cause IUT to call enableHeartBeat () method on the tester's (Application) IpSvcHeartBeatMgmt interface.

Parameters: interval, fwInterface

Check: no exception is returned.

2.
Method call pulse()

Parameters: none

Check: no exception

Test FW_FS_IM_04
Summary: IpFwFaultManager activityTestReq, successful

Reference: ES201 915-3, clause 9.3.4

Preamble:

· The application must have registered at least one service.

Test Sequence:

1)
Method call activityTestReq()

Parameters: activityTestID, svcID

Check: no exception is returned

2.
Triggered action: cause IUT to call activityTestRes () method on the tester's (Application) IpSvcFaultManager interface.

Parameters: activityTestID, activityTestResult

Check: no exception is returned.

Test FW_FS_IM_05
Summary: IpFwFaultManager activityTestReq on Framework, successful

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1.
Method call activityTestReq()

Parameters: activityTestID, svcID with null value

Check: no exception is returned

Test FW_FS_IM_06
Summary: IpFwFaultManager activityTestReq , P_INVALID_SERVICE_ID exception

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1.
Method call activityTestReq()

Parameters: activityTestID, invalid svcID

Check: P_INVALID_SERVICE_ID exception is returned

Test FW_FS_IM_07
Summary: IpFwFaultManager genFaultStatsRecordReq, successful

Reference: ES201 915-3, clause 9.3.4

Preamble:

· The application must have registered at least one service.

Test Sequence:

1.
Method call genFaultStatsRecordReq()

Parameters: timePeriod, serviceIDs

Check: no exception is returned

2.
Triggered action: cause IUT to call genFaultStatsRecordRes() method on the tester's (Application) IpSvcFaultManager interface.

Parameters: faultStatistics,ServiceIDs

Check: no exception is returned.

Test FW_FS_IM_08
Summary: IpFwFaultManager genFaultStatsRecordReq on Framework, successful

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1.
Method call genFaultStatsRecordReq()

Parameters: timePeriod, serviceIDs with null value

Check: no exception is returned

Test FW_FS_IM_09
Summary: IpFwFaultManager genFaultStatsRecordReq, P_INVALID_SERVICE_ID exception

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1.
Method call genFaultStatsRecordReq()

Parameters: timePeriod, invalid serviceIDs

Check: P_INVALID_SERVICE_ID exception is returned

Test FW_FS_IM_10
Summary: IpFwFaultManager svcUnavailableInd, successful

Reference: ES201 915-3, clause 9.3.4

Preamble:

· The application must have registered at least one service.

Test Sequence:

1.
Method call svcUnavailableInd()

Parameters: serviceID

Check: no exception is returned

Test FW_FS_IM_11
Summary: IpFwFaultManager svcUnavailableInd, P_INVALID_SERVICE_ID exception

Reference: ES201 915-3, clause 9.3.4

Preamble:

· The application must have register at least one service.

Test Sequence:

1.
Method call svcUnavailableInd()

Parameters: invalid serviceID

Check: P_INVALID_SERVICE_ID exception is returned

Test FW_FS_IM_12
Summary: IpFwFaultManager appActivityTestRes, successful

Reference: ES201 915-3, clause 9.3.4

Preamble:

· The application must have registered at least one service.

Test Sequence:

1.
Triggered action: cause IUT to call appActivityTestReq() method on the tester's (Application) IpSvcFaultManager interface.

Parameters: activityTestID

Check: no exception is returned.

2.
Method call appActivityTestRes()

Parameters: activityTestID, activityTestResult

Check: no exception is returned

Test FW_FS_IM_13
Summary: IpFwFaultManager appActivityTestRes, P_INVALID_ACTIVITY_TEST_ID Exception

Reference: ES201 915-3, clause 9.3.4

Preamble:

· The application must have registered at least one service.

Test Sequence:

1.
Triggered action: cause IUT to call appActivityTestReq() method on the tester's (Application) IpSvcFaultManager interface.

Parameters: activityTestID

Check: no exception is returned.

2.
Method call appActivityTestRes()

Parameters: invalid activityTestID, activityTestResult

Check: P_INVALID_ACTIVITY_TEST_ID exception is returned

Test FW_FS_IM_14
Summary: IpFwFaultManager appActivityTestErr, successful

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1..
Method call appActivityTestErr()

Parameters: activityTestID

Check: no exception is returned

Test FW_FS_IM_15
Summary: IpFwFaultManager appActivityTestErr, P_INVALID_ACTIVITY_TEST_ID exception

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1..
Method call appActivityTestErr()

Parameters: invalid activityTestID

Check: P_INVALID_ACTIVITY_TEST_ID exception is returned

Test FW_FS_IM_16
Summary: IpFwFaultManager appActivityTestErr, successful

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1.
Method call appUnavailableInd()

Parameters: serviceID

Check: no exception is returned

Test FW_FS_IM_17
Summary: IpFwLoadManager All methods, successful

Reference: ES201 915-3, clause 9.3.4

Preamble: The application must have registered at least one service.

Test Sequence:

1)
Method call createLoadLevelNotification()

Parameters: serviceIDs

Check: no exception is returned

2)
Method call suspendNotification()

Parameters: serviceIDs

Check: no exception is returned

3)
Method call resumeNotification()

Parameters: serviceIDs

Check: no exception is returned

4)
Method call destroyLoadLevelNotification()

Parameters: serviceIDs

Check: no exception is returned

Test FW_FS_IM_18
Summary: IpFwLoadManager All methods on Framework, successful

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1)
Method call createLoadLevelNotification()

Parameters: serviceIDs is null

Check: no exception is returned

2)
Method call suspendNotification()

Parameters: serviceIDs is null

Check: no exception is returned

3)
Method call resumeNotification()

Parameters: serviceIDs is null

Check: no exception is returned

4)
Method call destroyLoadLevelNotification()

Parameters: serviceIDs is null

Check: no exception is returned

Test FW_FS_IM_19
Summary: IpFwLoadManager createLoadLevelNotification, P_INVALID_SERVICE_ID

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1)
Method call createLoadLevelNotification()

Parameters: invalid serviceIDs

Check: P_INVALID_SERVICE_ID exception is returned

Test FW_FS_IM_20
Summary: IpFwLoadManager suspendNotification, P_INVALID_SERVICE_ID

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1)
Method call suspendNotification ()

Parameters: invalid serviceIDs

Check: P_INVALID_SERVICE_ID exception is returned

Test FW_FS_IM_21
Summary: IpFwLoadManager resumeNotification, P_INVALID_SERVICE_ID

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1)
Method call resumeNotification ()

Parameters: invalid serviceIDs

Check: P_INVALID_SERVICE_ID exception is returned

Test FW_FS_IM_22
Summary: IpFwLoadManager destroyLoadLevelNotification, P_INVALID_SERVICE_ID

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1)
Method call destroyLoadLevelNotification ()

Parameters: invalid serviceIDs

Check: P_INVALID_SERVICE_ID exception is returned

Test FW_FS_IM_23
Summary: IpFwLoadManager reportLoad, successful

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1)
Method call reportLoad ()

Parameters: loadLevel

Check: no exception is returned

Test FW_FS_IM_24
Summary: IpFwLoadManager queryLoadReq, successful

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1)
Method call queryLoadReq()
Parameters: serviceIDs, timeInterval

Check: no exception is returned

2)
Triggered action: cause IUT to call queryLoadRes () method on the tester's (Application) IpSvcFaultManager interface.

Parameters: loadStatistics

Check: no exception is returned.

Test FW_FS_IM_25
Summary: IpFwLoadManager queryLoadReq on Framework, successful

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1)
Method call queryLoadReq()
Parameters: serviceIDs as null, timeInterval

Check: no exception is returned

Test FW_FS_IM_26
Summary: IpFwLoadManager queryLoadReq, P_INVALID_SERVICE_ID

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1)
Method call queryLoadReq()
Parameters: invalid serviceIDs, timeInterval

Check: P_INVALID_SERVICE_ID exception is returned

Test FW_FS_IM_27
Summary: IpFwLoadManager queryAppLoadRes, successful

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1)
Triggered action: cause IUT to call queryAppLoadReq () method on the tester's (Application) IpSvcLoadManager interface.

Parameters: timeInterval

Check: no exception is returned.

2)
Method call queryAppLoadRes ()
Parameters: loadStatistics

Check: no exception is returned

Test FW_FS_IM_28
Summary: IpFwLoadManager queryAppLoadErr, successful

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1)
Method call queryAppLoadErr ()
Parameters: loadStatisticsError

Check: no exception is returned

Test FW_FS_IM_29
Summary: IpFwOAM, systemDateTimeQuery, successful

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1.
Method call systemDateTimeQuery()

Parameters: clientDateAndTime

Check: valid value of TpDateAndTime is returned

Test FW_FS_IM_30
Summary: IpFwOAM, systemDateTimeQuery, P_INVALID_TIME_AND-DATE_FORMAT exception

Reference: ES201 915-3, clause 9.3.4

Test Sequence:

1.
Method call systemDateTimeQuery()

Parameters: invalid clientDateAndTime

Check: P_INVALID_TIME_AND-DATE_FORMAT is returned

5.4.3.5
Event Notification (EN)

Test FW_FS_EN_01
Summary: IpFwEventNotification, create and destroy methods, successful

Reference: ES201 915-3, clause 9.3.5

Test Sequence:

1.
Method call createNotification()

Parameters: eventCriteria

Check: valid value of TpAssignmentID is returned

2.
Method call destroyNotification()

Parameters: assignmentID give in 1.

Check: no exception is returned

Test FW_FS_EN_02
Summary: IpFwEventNotification, all methods, successful

Reference: ES201 915-3, clause 9.3.5

Test Sequence:

1.
Method call createNotification()

Parameters: eventCriteria

Check: valid value of TpAssignmentID is returned

2.
Triggered action: cause IUT to call reportNotification() method on the tester's (Application) IpSvcEventNotification interface.

Parameters: eventInfo, assignmentID

Check: valid value of parameters is returned

3.
Triggered action: cause IUT to call notificationTerminated() method on the tester's (Application) IpSvcEventNotification interface.

Parameters: none.

Check: none.

4.
Method call destroyNotification()

Parameters: assignmentID give in 1.

Check: no exception is returned

Test FW_FS_EN_03
Summary: IpFwEventNotification, createNotification, P_INVALID_CRITERIA

Reference: ES201 915-3, clause 9.3.5

Test Sequence:

1.
Method call createNotification()

Parameters: invalid eventCriteria

Check: P_INVALID_ CRITERIA exception is returned

Test FW_FS_EN_04
Summary: IpFwEventNotification, destroyNotification, P_INVALID_ ASSIGNMENT_ID

Reference: ES201 915-3, clause 9.3.5

Test Sequence:

1.
Method call destroyNotification()

Parameters: invalid assignmentID

Check: P_INVALID_ ASSIGNMENT_ID exception is returned

History

	Document history

	V0.0.0
	April 2002
	Skeleton

	V0.1.0
	June 2002
	Test purposes

	V0.2.0
	August 2002
	Draft including MSC

	V0.2.1
	September 2002
	Includes Framework to Enterprise Operator TPs

	
	
	

[image: image4.wmf]_1065009619.doc

